Zhang JW, Kan XM, Liu BQ, Liu GC, Tian AX, Wang XL. Systematic Investigation of Reaction-Time Dependence of Three Series of Copper-Lanthanide/Lanthanide Coordination Polymers: Syntheses, Structures, Photoluminescence, and Magnetism.
Chemistry 2015;
21:16219-28. [PMID:
26387571 DOI:
10.1002/chem.201502203]
[Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 11/09/2022]
Abstract
Three series of copper-lanthanide/lanthanide coordination polymers (CPs) Ln(III) Cu(II) Cu(I) (bct)3 (H2 O)2 [Ln=La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Er (10), Yb (11), and Lu (12), H2 bct=2,5-bis(carboxymethylmercapto)-1,3,4-thiadiazole acid], Ln(III) Cu(I) (bct)2 [Ln=Ce (2 a), Pr (3 a), Nd (4 a), Sm (5 a), Eu (6 a), Gd (7 a), Tb (8 a), Dy (9 a), Er (10 a), Yb (11 a), and Lu (12 a)], and Ln(III) 2 (bct)3 (H2 O)5 [Ln=La (1 b), Ce (2 b), Pr (3 b), Nd (4 b), Sm (5 b), Eu (6 b), Gd (7 b), Tb (8 b), and Dy (9 b)] have been successfully constructed under hydrothermal conditions by modulating the reaction time. Structural characterization has revealed that CPs 1-12 possess a unique one-dimensional (1D) strip-shaped structure containing two types of double-helical chains and a double-helical channel. CPs 2 a-12 a show a three-dimensional (3D) framework formed by Cu(I) linking two types of homochiral layers with double-helical channels. CPs 1 b-9 b exhibit a 3D framework with single-helical channels. CPs 6 b and 8 b display visible red and green luminescence of the Eu(III) and Tb(III) ions, respectively, sensitized by the bct ligand, and microsecond-level lifetimes. CP 8 b shows a rare magnetic transition between short-range ferromagnetic ordering at 110 K and long-range ferromagnetic ordering below 10 K. CPs 9 a and 9 b display field-induced single-chain magnet (SCM) and/or single-molecule magnet (SMM) behaviors, with Ueff values of 51.7 and 36.5 K, respectively.
Collapse