1
|
Garofalini SH, Lentz J. Subpicosecond Molecular Rearrangements Affect Local Electric Fields and Auto-Dissociation in Water. J Phys Chem B 2023; 127:3392-3401. [PMID: 37036747 DOI: 10.1021/acs.jpcb.2c06490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Molecular simulations of auto-dissociation of water molecules in an 81,000 atom bulk water system show that the electric field variations caused by local bond length and angle variations enhance proton transfer within ∼600 fs prior to auto-dissociation. In this paper, auto-dissociation relates to the initial separation of a proton from a water molecule to another, forming the H33O+ and OH- ions. Only transfers for which a proton's initial nearest covalently bonded oxygen remained the same for at least 1 ps prior to the transfer and for which that proton's new nearest acceptor oxygen remained the same for at least 1 ps after the transfer were evaluated. Electric fields from solvent atoms within 6 Å of a transferring proton (H*) are dominant, with little contribution from farther molecules. However, exclusion of the accepting oxygen in such electric field calculations shows that the field on H* from the other solvent atoms weakens as the time to transfer becomes less than 600 fs, indicating the primary importance of the accepting oxygen on enabling auto-dissociation. All resultant OH- and H3O+ ion pairs recombined at times greater than 1 ps after auto-dissociation. A concentration of 8.01 × 1017 cm-3 for these ion pairs was observed. The simulations indicate that transient auto-dissociation in water is more common than that inferred from dc-conductivity experiments (10-5 vs 10-7) and is consistent with the results of calculations that include nuclear quantum effects. The conductivity experiments require the rearrangement of farther water molecules to form hydrogen-bonded "water wires" that afford long-range and measurable proton transport away from the reaction site. Nonetheless, the relatively large number of picosecond-lived auto-dissociation products might be engineered within 2D layers and oriented external fields to offer new energy-related systems.
Collapse
Affiliation(s)
- Stephen H Garofalini
- Department of Matserials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08855, United States
| | - Jesse Lentz
- Department of Matserials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08855, United States
| |
Collapse
|
2
|
Vibrational dynamics of the OD stretch in an atomistic simulation of HDO in H2O. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Hao H, Ruiz Pestana L, Qian J, Liu M, Xu Q, Head‐Gordon T. Chemical transformations and transport phenomena at interfaces. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongxia Hao
- Kenneth S. Pitzer Theory Center and Department of Chemistry University of California Berkeley California USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Luis Ruiz Pestana
- Department of Civil and Architectural Engineering University of Miami Coral Gables Florida USA
| | - Jin Qian
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Meili Liu
- Department of Civil and Architectural Engineering University of Miami Coral Gables Florida USA
| | - Qiang Xu
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Teresa Head‐Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry University of California Berkeley California USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
- Department of Bioengineering and Chemical and Biomolecular Engineering University of California Berkeley California USA
| |
Collapse
|
4
|
Döpke MF, Westerbaan van der Meij F, Coasne B, Hartkamp R. Surface Protolysis and Its Kinetics Impact the Electrical Double Layer. PHYSICAL REVIEW LETTERS 2022; 128:056001. [PMID: 35179914 DOI: 10.1103/physrevlett.128.056001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Surface conductivity in the electrical double layer (EDL) is known to be affected by proton hopping and diffusion at solid-liquid interfaces. Yet, the role of surface protolysis and its kinetics on the thermodynamic and transport properties of the EDL are usually ignored as physical models consider static surfaces. Here, using a novel molecular dynamics method mimicking surface protolysis, we unveil the impact of such chemical events on the system's response. Protolysis is found to strongly affect the EDL and electrokinetic aspects with major changes in ζ potential and electro-osmotic flow.
Collapse
Affiliation(s)
- Max F Döpke
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| | | | - Benoit Coasne
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Remco Hartkamp
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| |
Collapse
|
5
|
Delpino GP, Borges R, Zambanini T, Joca JFS, Gaubeur I, de Souza ACS, Marchi J. Sol-gel-derived 58S bioactive glass containing holmium aiming brachytherapy applications: A dissolution, bioactivity, and cytotoxicity study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111595. [PMID: 33321639 DOI: 10.1016/j.msec.2020.111595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023]
Abstract
Bioactive glasses containing rare earth elements have been proposed as promising candidates for applications in brachytherapy of bone cancer. However, their safety relies on a proper dissolution to avoid radioactive materials in the human body, and desirable bioactive properties to regenerate the bone defect caused by the tumor. In this work, we proposed a new series of sol-gel-derived bioactive glasses containing holmium oxide, based on the system (100-x)(58SiO2-33CaO-9P2O5)-xHo2O3 (x = 1.25, 2.5 and 5 wt%). The glasses were characterized regarding their dissolution behavior, bioactivity, and cytotoxicity with pre-osteoblastic cells. Also, in the dissolution experiments, the Arrhenius and Eyring equations were used to obtain some thermodynamic properties of glass dissolution. The results evidenced that the addition of holmium ions in the glass structure decreased the energy barrier of hydrolysis reactions, which favors glass dissolution in an early-stage. However, in the long-term, the strength of Si-O-Ho bonds may be the cause of more stable dissolution. Besides, glasses containing holmium were as bioactive as the 58S bioactive glasses, a highly bioactive composition. Cytotoxicity results showed that all glasses were not cytotoxic, and the composition containing 5 wt.% of Ho2O3 enhanced cell viability. Finally, these results suggest that these glasses are suitable materials for brachytherapy applications due to their proper dissolution behavior, high bioactivity, and high cell viability.
Collapse
Affiliation(s)
| | - Roger Borges
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Telma Zambanini
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | | | - Ivanise Gaubeur
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | | | - Juliana Marchi
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil.
| |
Collapse
|
6
|
Lentz J, Garofalini SH. Formation and migration of H3O+ and OH− ions at the water/silica and water/vapor interfaces under the influence of a static electric field: a molecular dynamics study. Phys Chem Chem Phys 2020; 22:22537-22548. [DOI: 10.1039/d0cp03656k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water ‘layers’ 1 and 2 in pink; ‘layer’ 3 in blue and green over portion of glass surface (grey). +90° field causes water migration and clustering.
Collapse
Affiliation(s)
- Jesse Lentz
- Interfacial Molecular Science Laboratory
- Department of Materials Science and Engineering, Rutgers University
- USA
| | - Stephen H. Garofalini
- Interfacial Molecular Science Laboratory
- Department of Materials Science and Engineering, Rutgers University
- USA
| |
Collapse
|
7
|
Lentz J, Garofalini SH. Role of the hydrogen bond lifetimes and rotations at the water/amorphous silica interface on proton transport. Phys Chem Chem Phys 2019; 21:12265-12278. [PMID: 31139793 DOI: 10.1039/c9cp01994d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a highly robust and reactive all-atom potential, molecular dynamics computer simulations have been used to provide detailed analysis of the behavior of water and protons at a large-scale amorphous silica surface that offers the heterogeneity of surface sites and water/silica interactions. Structural data of the H-O distances as a function of distance from the glass surface showed variation in hydrogen bond (H-bond) lengths to second and third nearest oxygen neighbors that play an important role in H-bond lifetimes, rotations, and proton transfer, especially at the glass surface. The higher density and inherently closer average spacing between oxygens in the glass surface (2.6 Å) in comparison to that in water (2.8 Å) create a significantly different environment for H-bond lifetimes and proton transfers. Continuous H-bond lifetime autocorrelation functions for water H-bonded to the surface are considerably shorter than those of bulk water, whereas the intermittent lifetime autocorrelation functions are longer. Such results affect proton transfers that are over an order of magnitude higher at the surface than farther from the surface or in bulk water. However, most of these transfers are rattling events between the participating oxygens, one of which is the newly formed H3O+ ion adjacent to the interface. Such a H3O+ ion has an extremely low barrier to proton transfer back to the surface site in comparison to a H3O+ ion in bulk water. Nonetheless, the simulations showed that rotation of the H3O+ ion away from the initial transfer site allowed for structural diffusion of an excess proton away from the surface. Proton conduction from such rotations could be enhanced by external forces.
Collapse
Affiliation(s)
- Jesse Lentz
- Interfacial Molecular Science Laboratory, Department of Materials Science and Engineering, Rutgers University, USA.
| | - Stephen H Garofalini
- Interfacial Molecular Science Laboratory, Department of Materials Science and Engineering, Rutgers University, USA.
| |
Collapse
|
8
|
Quantum-chemical simulation of the adsorption-induced reduction of strength of siloxane bonds. J Mol Model 2019; 25:161. [PMID: 31089813 DOI: 10.1007/s00894-019-4057-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
Mechanical strength of silicate glasses is known to decrease markedly due to the adsorption of molecules from the environment, especially in aqueous alkali solutions. This effect, known as the adsorption-induced reduction of strength (AIRS), has not yet been fully understood. Here, the dependence on the chemical nature and electronic properties of adsorbates of the AIRS of siloxane bonds in silica was studied by means of quantum-chemical calculations at the wB97X-D3/def2-TZVP level of theory. A siloxane bond was modelled by H3Si-O-SiH3 and (HO)3Si-O-Si(OH)3 clusters, and the AIRS was simulated by a linear tensile deformation of the siloxane bond in the presence of the following adsorbates: OH-, Cl-, H2O, H+ and H3O+. Potential energy profiles and derivative force curves of the siloxane bond rupture were obtained. The varying effect of the adsorbates on the energy-force characteristics of the AIRS can be explained by changes in the bond lengths and electron occupancy. It is shown that the AIRS of the siloxane bonds increases with an increase in the nucleophilicity of the adsorbates, and correlates with an adsorbate-induced redistribution of electron density.
Collapse
|
9
|
Rabchinskii MK, Dideikin AT, Kirilenko DA, Baidakova MV, Shnitov VV, Roth F, Konyakhin SV, Besedina NA, Pavlov SI, Kuricyn RA, Lebedeva NM, Brunkov PN, Vul' AY. Facile reduction of graphene oxide suspensions and films using glass wafers. Sci Rep 2018; 8:14154. [PMID: 30237450 PMCID: PMC6147865 DOI: 10.1038/s41598-018-32488-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
This paper reports a facile and green method for conversion of graphene oxide (GO) into graphene by low-temperature heating (80 °C) in the presence of a glass wafer. Compared to conventional GO chemical reduction methods, the presented approach is easy-scalable, operationally simple, and based on the use of a non-toxic recyclable deoxygenation agent. The efficiency of the proposed method is further expanded by the fact that it can be applied for reducing both GO suspensions and large-scale thin films formed on various substrates prior to the reduction process. The quality of the obtained reduced graphene oxide (rGO) strongly depends on the type of the used glass wafer, and, particularly, magnesium silicate glass can provide rGO with the C/O ratio of 7.4 and conductivity of up to 33000 S*cm-1. Based on the data obtained, we have suggested a mechanism of the observed reduction process in terms of the hydrolysis of the glass wafer with subsequent interaction of the leached alkali and alkali earth cations and silicate anions with graphene oxide, resulting in elimination of the oxygen-containing groups from the latter one. The proposed approach can be efficiently used for low-cost bulk-quantity production of graphene and graphene-based materials for a wide field of applications.
Collapse
Affiliation(s)
| | - Arthur T Dideikin
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia
| | - Demid A Kirilenko
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia. .,ITMO University, 49 Kronverksky Pr., Saint-Petersburg, 197101, Russia.
| | - Marina V Baidakova
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia.,ITMO University, 49 Kronverksky Pr., Saint-Petersburg, 197101, Russia
| | - Vladimir V Shnitov
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia
| | - Friedrich Roth
- TU Bergakademie Freiberg, Institute of Experimental Physics, Freiberg, D-09599, Germany
| | - Sergei V Konyakhin
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia.,St. Petersburg Academic University, St. Petersburg, 194021, Russia.,Institute Pascal, PHOTON-N2, University Clermont Auvergne, CNRS, 63178, Aubiere Cedex, France
| | - Nadezhda A Besedina
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia.,St. Petersburg Academic University, St. Petersburg, 194021, Russia
| | - Sergei I Pavlov
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia
| | - Roman A Kuricyn
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia
| | - Natalie M Lebedeva
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia
| | - Pavel N Brunkov
- ITMO University, 49 Kronverksky Pr., Saint-Petersburg, 197101, Russia
| | - Alexander Ya Vul'
- Ioffe Institute, 26 Politekhnicheskaya, Saint-Petersburg, 194021, Russia
| |
Collapse
|
10
|
Maçon ALB, Jacquemin M, Page SJ, Li S, Bertazzo S, Stevens MM, Hanna JV, Jones JR. Lithium-silicate sol-gel bioactive glass and the effect of lithium precursor on structure-property relationships. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 2016; 81:84-94. [PMID: 32009741 PMCID: PMC6961499 DOI: 10.1007/s10971-016-4097-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/27/2016] [Indexed: 06/10/2023]
Abstract
ABSTRACT This work reports the synthesis of lithium-silicate glass, containing 10 mol% of Li 2 O by the sol-gel process, intended for the regeneration of cartilage. Lithium citrate and lithium nitrate were selected as lithium precursors. The effects of the lithium precursor on the sol-gel process, and the resulting glass structure, morphology, dissolution behaviour, chondrocyte viability and proliferation, were investigated. When lithium citrate was used, mesoporous glass containing lithium as a network modifier was obtained, whereas the use of lithium nitrate produced relatively dense glass-ceramic with the presence of lithium metasilicate, as shown by X-ray diffraction, 29 Si and 7 Li MAS NMR and nitrogen sorption data. Nitrate has a better affinity for lithium than citrate, leading to heterogeneous crystallisation from the mesopores, where lithium salts precipitated during drying. Citrate decomposed at a lower temperature, where the crystallisation of lithium-silicate crystal is not thermodynamically favourable. Upon decomposition of the citrate, a solid-state salt metathesis reaction between citrate and silanol occurred, followed by the diffusion of lithium within the structure of the glass. Both glass and glass-ceramic released silica and lithium ions in culture media, but release rate was lower for the glass-ceramic. Both samples did not affect chondrocyte viability and proliferation.
Collapse
Affiliation(s)
| | - Manon Jacquemin
- Department of Materials, Imperial College London, London, SW7 2AZ UK
| | - Samuel J. Page
- Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - Siwei Li
- Department of Materials, Imperial College London, London, SW7 2AZ UK
| | - Sergio Bertazzo
- Department of Materials, Imperial College London, London, SW7 2AZ UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
| | - John V. Hanna
- Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - Julian R. Jones
- Department of Materials, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|