1
|
Strandell DP, Ghosh A, Zenatti D, Nagpal P, Kambhampati P. Direct Observation of Higher Multiexciton Formation and Annihilation in CdSe Quantum Dots. J Phys Chem Lett 2023:6904-6911. [PMID: 37498205 DOI: 10.1021/acs.jpclett.3c01627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Most experiments on multiexcitons (MX) in quantum dots focused on the biexciton (XX), which is now well-understood. In contrast, there is little understanding of higher MX in quantum dots as a result of their difficulty to observe. Here, we apply time-resolved photoluminescence (t-PL) spectroscopy with 3 ps time resolution, sufficient to directly resolve previously unobserved spectral dynamics of a higher MX in CdSe quantum dots. These experiments resolve the controversy of the sequence of MX emissions, revealing that the higher channels sequentially populate the lower channels. There is a strong dependence of MX recombination kinetics upon a higher MX state, following a universal volume scaling law for Auger recombination for larger dots. Smaller dots show deviations for higher MX. In addition to triexcitons (3X), these experiments reveal MX up to the tetraexciton (4X). These experiments provide a direct observation of MX formation and annihilation in quantum dots. The impact of this observation is a step toward designing quantum dots to exploit higher MX processes.
Collapse
Affiliation(s)
- Dallas P Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Arnab Ghosh
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Davide Zenatti
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Priya Nagpal
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | |
Collapse
|
2
|
Wang Z, Lenngren N, Amarotti E, Hedse A, Žídek K, Zheng K, Zigmantas D, Pullerits T. Excited States and Their Dynamics in CdSe Quantum Dots Studied by Two-Color 2D Spectroscopy. J Phys Chem Lett 2022; 13:1266-1271. [PMID: 35089715 PMCID: PMC8842281 DOI: 10.1021/acs.jpclett.1c04110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Quantum dots (QDs) form a promising family of nanomaterials for various applications in optoelectronics. Understanding the details of the excited-state dynamics in QDs is vital for optimizing their function. We apply two-color 2D electronic spectroscopy to investigate CdSe QDs at 77 K within a broad spectral range. Analysis of the electronic dynamics during the population time allows us to identify the details of the excitation pathways. The initially excited high-energy electrons relax with the time constant of 100 fs. Simultaneously, the states at the band edge rise within 700 fs. Remarkably, the excited-state absorption is rising with a very similar time constant of 700 fs. This makes us reconsider the earlier interpretation of the excited-state absorption as the signature of a long-lived trap state. Instead, we propose that this signal originates from the excitation of the electrons that have arrived in the conduction-band edge.
Collapse
Affiliation(s)
- Zhengjun Wang
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Nils Lenngren
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- ELI
Beamlines, Institute of Physics, Czech Academy
of Sciences, v.v.i., Za Radnicí 835, 252 41 Dolní Břežany, Czech
Republic
| | - Edoardo Amarotti
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Albin Hedse
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Karel Žídek
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Regional
Center for Special Optics and Optoelectronic Systems (TOPTEC), Institute of Plasma Physics of the Czech Academy of
Sciences, 270 00 Prague 8, Czech Republic
| | - Kaibo Zheng
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Donatas Zigmantas
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Tõnu Pullerits
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
3
|
Abstract
Multidimensional optical spectra are measured from the response of a material system to a sequence of laser pulses and have the capacity to elucidate specific molecular interactions and dynamics whose influences are absent or obscured in a conventional linear absorption spectrum. Interpretation of complex spectra is supported by theoretical modeling of the spectroscopic observable, requiring implementation of quantum dynamics for coupled electrons and nuclei. Performing numerically correct quantum dynamics in this context may pose computational challenges, particularly in the condensed phase. Semiclassical methods based on calculating classical trajectories offer a practical alternative. Here I review the recent application of some semiclassical, trajectory-based methods to nonlinear molecular vibrational and electronic spectra. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Roger F. Loring
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Wells TA, Kwizera MH, Chen SM, Jemal N, Brown MD, Chen PC. Two-dimensional pattern recognition methods for rapidly recording and interpreting high resolution coherent three-dimensional spectra. J Chem Phys 2021; 154:194201. [PMID: 34240898 DOI: 10.1063/5.0047926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High resolution coherent multidimensional spectroscopy has the ability to reduce congestion and automatically sort peaks by species and quantum numbers, even for simple mixtures and molecules that are extensively perturbed. The two-dimensional version is relatively simple to carry out, and the results are easy to interpret, but its ability to deal with severe spectral congestion is limited. Three-dimensional spectroscopy is considerably more complicated and time-consuming than two-dimensional spectroscopy, but it provides the spectral resolution needed for more challenging systems. This paper describes how to design high resolution coherent 3D spectroscopy experiments so that a small number of strategically positioned 2D scans may be used instead of recording all the data required for a 3D plot. This faster and simpler approach uses new pattern recognition methods to interpret the results. Key factors that affect the resulting patterns include the scanning strategy and the four wave mixing process. Optimum four wave mixing (FWM) processes and scanning strategies have been identified, and methods for identifying the FWM process from the observed patterns have been developed. Experiments based on nonparametric FWM processes provide significant pattern recognition and efficiency advantages over those based on parametric processes. Alternative scanning strategies that use synchronous scanning and asynchronous scanning to create new kinds of patterns have also been identified. Rotating the resulting patterns in 3D space leads to an insight into similarities in the patterns produced by different FWM processes.
Collapse
Affiliation(s)
- Thresa A Wells
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Muhire H Kwizera
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Sarah M Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
| | - Nihal Jemal
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Morgan D Brown
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Peter C Chen
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| |
Collapse
|
5
|
Malý P, Lüttig J, Turkin A, Dostál J, Lambert C, Brixner T. From wavelike to sub-diffusive motion: exciton dynamics and interaction in squaraine copolymers of varying length. Chem Sci 2019; 11:456-466. [PMID: 34084345 PMCID: PMC8146531 DOI: 10.1039/c9sc04367e] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/15/2020] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Exciton transport and exciton-exciton interactions in molecular aggregates and polymers are of great importance in natural photosynthesis, organic electronics, and related areas of research. Both the experimental observation and theoretical description of these processes across time and length scales, including the transition from the initial wavelike motion to the following long-range exciton transport, are highly challenging. Therefore, while exciton dynamics at small scales are often treated explicitly, long-range exciton transport is typically described phenomenologically by normal diffusion. In this work, we study the transition from wavelike to diffusive motion of interacting exciton pairs in squaraine copolymers of varying length. To this end we use a combination of the recently introduced exciton-exciton-interaction two-dimensional (EEI2D) electronic spectroscopy and microscopic theoretical modelling. As we show by comparison with the model, the experimentally observed kinetics include three phases, wavelike motion dominated by immediate exciton-exciton annihilation (10-100 fs), sub-diffusive behavior (0.1-10 ps), and excitation relaxation (0.01-1 ns). We demonstrate that the key quantity for the transition from wavelike to diffusive dynamics is the exciton delocalization length relative to the length of the polymer: while in short polymers wavelike motion of rapidly annihilating excitons dominates, in long polymers the excitons become locally trapped and exhibit sub-diffusive behavior. Our findings indicate that exciton transport through conjugated systems emerging from the excitonic structure is generally not governed by normal diffusion. Instead, to characterize the material transport properties, the diffusion presence and character should be determined.
Collapse
Affiliation(s)
- Pavel Malý
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Julian Lüttig
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Arthur Turkin
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jakub Dostál
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
6
|
Mueller S, Lüttig J, Malý P, Ji L, Han J, Moos M, Marder TB, Bunz UHF, Dreuw A, Lambert C, Brixner T. Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways. Nat Commun 2019; 10:4735. [PMID: 31628299 PMCID: PMC6800439 DOI: 10.1038/s41467-019-12602-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
Coherent two-dimensional spectroscopy is a powerful tool for probing ultrafast quantum dynamics in complex systems. Several variants offer different types of information but typically require distinct beam geometries. Here we introduce population-based three-dimensional (3D) electronic spectroscopy and demonstrate the extraction of all fourth- and multiple sixth-order nonlinear signal contributions by employing 125-fold (1⨯5⨯5⨯5) phase cycling of a four-pulse sequence. Utilizing fluorescence detection and shot-to-shot pulse shaping in single-beam geometry, we obtain various 3D spectra of the dianion of TIPS-tetraazapentacene, a fluorophore with limited stability at ambient conditions. From this, we recover previously unknown characteristics of its electronic two-photon state. Rephasing and nonrephasing sixth-order contributions are measured without additional phasing that hampered previous attempts using noncollinear geometries. We systematically resolve all nonlinear signals from the same dataset that can be acquired in 8 min. The approach is generalizable to other incoherent observables such as external photoelectrons, photocurrents, or photoions.
Collapse
Affiliation(s)
- Stefan Mueller
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julian Lüttig
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Pavel Malý
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lei Ji
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jie Han
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen und Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Michael Moos
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen und Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany.
| |
Collapse
|
7
|
Wells TA, Barber VJ, Kwizera MH, Mukashyaka P, Chen PC. Nonparametric High-Resolution Coherent 3D Spectroscopy as a Simple and Rapid Method for Obtaining Excited-State Rotational Constants. J Phys Chem A 2018; 122:8794-8801. [DOI: 10.1021/acs.jpca.8b08640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thresa A. Wells
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, United States
| | - Victoria J. Barber
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, United States
| | - Muhire H. Kwizera
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, United States
| | - Patience Mukashyaka
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, United States
| | - Peter C. Chen
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, United States
| |
Collapse
|
8
|
Chen PC. An Introduction to Coherent Multidimensional Spectroscopy. APPLIED SPECTROSCOPY 2016; 70:1937-1951. [PMID: 27940533 DOI: 10.1177/0003702816669730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Coherent multidimensional spectroscopy is a field that has drawn much attention as an optical analogue to multidimensional nuclear magnetic resonance imaging. Coherent multidimensional spectroscopic techniques produce spectra that show the magnitude of an optical signal as a function of two or more pulsed laser frequencies. Spectra can be collected in either the frequency or the time domain. In addition to improving resolution and overcoming spectral congestion, coherent multidimensional spectroscopy provides the ability to investigate and conduct studies based upon the relationship between different peaks. The purpose of this paper is to provide a general introduction to the area of coherent multidimensional spectroscopy, to provide a brief overview of current experimental approaches, and to discuss some emerging developments in this relatively young field.
Collapse
|
9
|
Tollerud JO, Cundiff ST, Davis JA. Revealing and Characterizing Dark Excitons through Coherent Multidimensional Spectroscopy. PHYSICAL REVIEW LETTERS 2016; 117:097401. [PMID: 27610881 DOI: 10.1103/physrevlett.117.097401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Indexed: 06/06/2023]
Abstract
Dark excitons are of fundamental importance in a broad range of contexts but are difficult to study using conventional optical spectroscopy due to their weak interaction with light. We show how coherent multidimensional spectroscopy can reveal and characterize dark states. Using this approach, we identify parity-forbidden and spatially indirect excitons in InGaAs/GaAs quantum wells and determine details regarding lifetimes, homogeneous and inhomogeneous linewidths, broadening mechanisms, and coupling strengths. The observations of coherent coupling between these states and bright excitons hint at a role for a multistep process by which excitons in the barrier can relax into the quantum wells.
Collapse
Affiliation(s)
- Jonathan O Tollerud
- Centre for Quantum and Optical Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Steven T Cundiff
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jeffrey A Davis
- Centre for Quantum and Optical Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
10
|
Nuernberger P, Ruetzel S, Brixner T. Multidimensionale elektronische Spektroskopie photochemischer Reaktionen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Nuernberger P, Ruetzel S, Brixner T. Multidimensional Electronic Spectroscopy of Photochemical Reactions. Angew Chem Int Ed Engl 2015; 54:11368-86. [PMID: 26382095 DOI: 10.1002/anie.201502974] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/11/2022]
Abstract
Coherent multidimensional electronic spectroscopy can be employed to unravel various channels in molecular chemical reactions. This approach is thus not limited to analysis of energy transfer or charge transfer (i.e. processes from photophysics), but can also be employed in situations where the investigated system undergoes permanent structural changes (i.e. in photochemistry). Photochemical model reactions are discussed by using the example of merocyanine/spiropyran-based molecular switches, which show a rich variety of reaction channels, in particular ring opening and ring closing, cis-trans isomerization, coherent vibrational wave-packet motion, radical ion formation, and population relaxation. Using pump-probe, pump-repump-probe, coherent two-dimensional and three-dimensional, triggered-exchange 2D, and quantum-control spectroscopy, we gain intuitive pictures on which product emerges from which reactant and which reactive molecular modes are associated.
Collapse
Affiliation(s)
- Patrick Nuernberger
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany)
| | - Stefan Ruetzel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg (Germany)
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg (Germany).
| |
Collapse
|
12
|
Wells TA, Muthike AK, Robinson JE, Chen PC. High resolution coherent three dimensional spectroscopy of NO2. J Chem Phys 2015; 142:212426. [PMID: 26049446 DOI: 10.1063/1.4917317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Expansion from coherent 2D spectroscopy to coherent 3D spectroscopy can provide significant advantages when studying molecules that have heavily perturbed energy levels. This paper illustrates such advantages by demonstrating how high resolution coherent 3D (HRC3D) spectroscopy can be used to study a portion of the visible spectrum of nitrogen dioxide. High resolution coherent 2D spectra usually contain rotational and vibrational patterns that are easy to analyze, but severe congestion and complexity preclude its effective use for many parts of the NO2 spectrum. HRC3D spectroscopy appears to be much more effective; multidimensional rotational and vibrational patterns produced by this new technique are easy to identify even in the presence of strong perturbations. A method for assigning peaks, which is based upon analyzing the resulting multidimensional patterns, has been developed. The higher level of multidimensionality is useful for reducing uncertainty in peak assignments, improving spectral resolution, providing simultaneous information on multiple levels and states, and predicting, verifying, and categorizing peaks.
Collapse
Affiliation(s)
- Thresa A Wells
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, USA
| | | | | | - Peter C Chen
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, USA
| |
Collapse
|
13
|
Testing for memory-free spectroscopic coordinates by 3D IR exchange spectroscopy. Proc Natl Acad Sci U S A 2014; 111:10462-7. [PMID: 25002483 DOI: 10.1073/pnas.1406967111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using 3D infrared (IR) exchange spectroscopy, the ultrafast hydrogen-bond forming and breaking (i.e., complexation) kinetics of phenol to benzene in a benzene/CCl4 mixture is investigated. By introducing a third time point at which the hydrogen-bonding state of phenol is measured (in comparison with 2D IR exchange spectroscopy), the spectroscopic method can serve as a critical test of whether the spectroscopic coordinate used to observe the exchange process is a memory-free, or Markovian, coordinate. For the system under investigation, the 3D IR results suggest that this is not the case. This conclusion is reconfirmed by accompanying molecular dynamics simulations, which furthermore reveal that the non-Markovian kinetics is caused by the heterogeneous structure of the mixed solvent.
Collapse
|