1
|
Ahmad W, Shahzadi I, Haider A, Ul-Hamid A, Ullah H, Khan S, Somaily HH, Ikram M. Efficient Dye Degradation and Antimicrobial Behavior with Molecular Docking Performance of Silver and Polyvinylpyrrolidone-Doped Zn-Fe Layered Double Hydroxide. ACS OMEGA 2024; 9:5068-5079. [PMID: 38313529 PMCID: PMC10831970 DOI: 10.1021/acsomega.3c09890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Zn-Fe layered double hydroxide (LDH) was synthesized through the low-temperature-based coprecipitation method. Various concentrations of Ag (1, 3, and 5 wt %) with a fixed amount (5 wt %) of polyvinylpyrrolidone (PVP) were doped into LDH nanocomposites. This research aims to improve the bactericidal properties and catalytic activities of doping-dependent nanocomposites. Adding Ag and PVP to LDH enhanced oxygen vacancies, which increased the amount of hydroxide adsorption sites and the number of active sites. The doped LDH was employed to degrade rhodamine-B dye in the presence of a reducing agent (NaBH4), and the obtained results showed maximum dye degradation in a basic medium compared to acidic and neutral. The bactericidal efficacy of doped Zn-Fe (5 wt %) showed a considerably greater inhibition zone of 3.65 mm against Gram-negative (G-ve) or Escherichia coli (E. coli). Furthermore, molecular docking was used to decipher the mystery behind the microbicidal action of Ag-doped PVP/Zn-Fe LDH and to propose an inhibition mechanism of β-ketoacyl-acyl carrier protein synthase IIE. coli (FabH) and deoxyribonucleic acid gyrase E. coli behind in vitro results.
Collapse
Affiliation(s)
- Wakeel Ahmad
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab 54000, Pakistan
| | - Iram Shahzadi
- School
of Pharmacy, University of Management and
Technology, Lahore 54770, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad
Nawaz Shareef, University of Agriculture, Multan, Punjab 66000, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hameed Ullah
- Laboratory
of Nanomaterials for Renewable Energy and Artificial Photosynthesis
(NanoREAP), Institute of Physics, UFRGS, Porto Alegre, Rio Grande
do Sul 91509-900, Brazil
| | - Sherdil Khan
- Laboratory
of Nanomaterials for Renewable Energy and Artificial Photosynthesis
(NanoREAP), Institute of Physics, UFRGS, Porto Alegre, Rio Grande
do Sul 91509-900, Brazil
| | - Hamoud H. Somaily
- Department
of Physics, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 62529, Saudi Arabia
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab 54000, Pakistan
| |
Collapse
|
2
|
Sakr AAE, Abd El-Hafiz DR, Elgabry O, Abdullah ES, Ebiad MA, Zaki T. Visible light photoreforming of greenhouse gases by nano Cu-Al LDH intercalated with urea-derived anions. RSC Adv 2023; 13:33541-33558. [PMID: 38020006 PMCID: PMC10652186 DOI: 10.1039/d3ra06190f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
The accumulation of anthropogenic greenhouse gases (GHGs) in the atmosphere causes global warming. Global efforts are carried out to prevent temperature overshooting and limit the increase in the Earth's surface temperature to 1.5 °C. Carbon dioxide and methane are the largest contributors to global warming. We have synthesized copper-aluminium layered double hydroxide (Cu-Al LDH) catalysts by urea hydrolysis under microwave (MW) irradiation. The effect of MW power, urea concentration, and MII/MIII ratios was studied. The physicochemical properties of the prepared LDH catalysts were characterized by several analysis techniques. The results confirmed the formation of the layered structure with the intercalation of urea-derived anions. The urea-derived anions enhanced the optical and photocatalytic properties of the nano Cu-Al LDH in the visible-light region. The photocatalytic activity of the prepared Cu-Al LDH catalysts was tested for greenhouse gas conversion (CH4, CO2, and H2O) under visible light. The dynamic gas mixture flow can pass through the reactor at room temperature under atmospheric pressure. The results show a high conversion percentage for both CO2 and CH4. The highest converted amounts were 7.48 and 1.02 mmol mL-1 g-1 for CH4 and CO2, respectively, under the reaction conditions. The main product was formaldehyde with high selectivity (>99%). The results also show the stability of the catalysts over several cycles. The current work represents a green chemistry approach for efficient photocatalyst synthesis, visible light utilization, and GHGs' conversion into a valuable product.
Collapse
Affiliation(s)
- Ayat A-E Sakr
- Gas Chromatogarphy Lab, Analysis & Evaluation Division, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Dalia R Abd El-Hafiz
- Catalysis Lab, Petroleum Refining Division, Egyptian Petroleum Research Institute Nasr City P.B. 11727 Cairo Egypt
| | - Osama Elgabry
- Gas Chromatogarphy Lab, Analysis & Evaluation Division, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Eman S Abdullah
- Gas Chromatogarphy Lab, Analysis & Evaluation Division, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Mohamed A Ebiad
- Gas Chromatogarphy Lab, Analysis & Evaluation Division, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Tamer Zaki
- Catalysis Lab, Petroleum Refining Division, Egyptian Petroleum Research Institute Nasr City P.B. 11727 Cairo Egypt
| |
Collapse
|
3
|
Sahoo DP, Das KK, Mansingh S, Sultana S, Parida K. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Vital Role of Synthesis Temperature in Co–Cu Layered Hydroxides and Their Fenton-like Activity for RhB Degradation. Catalysts 2022. [DOI: 10.3390/catal12060646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cu and Co have shown superior catalytic performance to other transitional elements, and layered double hydroxides (LDHs) have presented advantages over other heterogeneous Fenton catalysts. However, there have been few studies about Co–Cu LDHs as catalysts for organic degradation via the Fenton reaction. Here, we prepared a series of Co–Cu LDH catalysts by a co-precipitation method under different synthesis temperatures and set Rhodamine B (RhB) as the target compound. The structure-performance relationship and the influence of reaction parameters were explored. A study of the Fenton-like reaction was conducted over Co–Cu layered hydroxide catalysts, and the variation of synthesis temperature greatly influenced their Fenton-like catalytic performance. The Co–Cut=65°C catalyst with the strongest LDH structure showed the highest RhB removal efficiency (99.3% within 30 min). The change of synthesis temperature induced bulk-phase transformation, structural distortion, and metal–oxygen (M–O) modification. An appropriate temperature improved LDH formation with defect sites and lengthened M–O bonds. Co–Cu LDH catalysts with a higher concentration of defect sites promoted surface hydroxide formation for H2O2 adsorption. These oxygen vacancies (Ovs) promoted electron transfer and H2O2 dissociation. Thus, the Co–Cu LDH catalyst is an attractive alternative organic pollutants treatment.
Collapse
|
5
|
Kandasamy B, Govindasamy P, Thangavelu P, Theerthagiri J, Min A, Choi MY. Improved visible light photocatalytic degradation of yttrium doped NiMgAl layered triple hydroxides for the effective removal of methylene blue dye. CHEMOSPHERE 2022; 290:133299. [PMID: 34914961 DOI: 10.1016/j.chemosphere.2021.133299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Fabrication of layered triple hydroxides (LTH) is a typical and remarkable approach to produce new functionalities passionately investigated for photocatalytic removal of organic pollutants from industrial wastewater. The hydrothermal method was used to prepare different weight percentages of yttrium (Y) doped NiMgAl LTH. The structural, functional, optical, and morphological properties of the prepared samples were investigated using X-ray diffraction, Fourier transformed-infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, and scanning electron microscopy. The photocatalytic degradation of the different percentages of Y-doped LTH samples were assessed through the photocatalytic degradation of methylene blue dye under the visible light irradiation. When compared to other lower concentrations of Y doping, the photocatalytic degradation efficiency of 1 wt.% Y-doped LTH was higher. Thus, the optimized LTH's improved photocatalytic performance was attributed to increased visible light absorption with low transmission and improved electron-hole separation.
Collapse
Affiliation(s)
- Bhuvaneswari Kandasamy
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India
| | - Palanisamy Govindasamy
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India
| | - Pazhanivel Thangavelu
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India.
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
6
|
Muráth S, Varga T, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I, Varga G. Morphological aspects determine the catalytic activity of porous hydrocalumites: the role of the sacrificial templates. MATERIALS TODAY CHEMISTRY 2022. [DOI: 10.1016/j.mtchem.2021.100682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Ali Khan A, Tahir M. Construction of an S-Scheme Heterojunction with Oxygen-Vacancy-Rich Trimetallic CoAlLa-LDH Anchored on Titania-Sandwiched Ti3C2 Multilayers for Boosting Photocatalytic CO2 Reduction under Visible Light. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Azmat Ali Khan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta 87100, Pakistan
| | - Muhammad Tahir
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551 Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Bobde P, Patel RK, Panchal D, Sharma A, Sharma AK, Dhodapkar RS, Pal S. Utilization of layered double hydroxides (LDHs) and their derivatives as photocatalysts for degradation of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59551-59569. [PMID: 34508320 DOI: 10.1007/s11356-021-16296-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Direct or indirect discharge of wastes containing organic pollutants have contributed to the environmental pollution globally. Decontamination of highly polluted natural resources such as water using an effective treatment is a great challenge for public health and environmental protection. Photodegradation of organic pollutants using efficient photocatalyst has attracted extensive interest due to their stability, effectiveness towards degradation efficiency, energy, and cost efficiency. Among various photocatalysts, layered double hydroxides (LDHs) and their derivatives have shown great potential towards photodegradation of organic pollutants. Herein, we review the mechanism, key factors, and performance of LDHs and their derivatives for the photodegradation of organic pollutants. LDH-based photocatalysts are classified into three different categories namely unmodified LDHs, modified LDHs, and calcined LDHs. Each LDH category is reviewed separately in terms of their photodegradation efficiency and kinetics of degradation. In addition, the effect of photocatalyst dose, pH, and initial concentration of pollutant as well as photocatalytic mechanisms are also summarized. Lastly, the stability and reusability of different photocatalysts are discussed. Challenges related to modeling the LDHs and its derivatives are addressed in order to improve their functional capacity.
Collapse
Affiliation(s)
- Prakash Bobde
- Department of Research & Development, Energy Acres Building, University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun, Uttarakhand, 248007, India
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
| | - Ravi Kumar Patel
- Incubation, Energy Acres Building, University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Deepak Panchal
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Sharma
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Kumar Sharma
- Centre for Alternate Energy Research, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Rita S Dhodapkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Director's Research Cell, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
| | - Sukdeb Pal
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
|
10
|
Wang L, Zhu Z, Wang F, Qi Y, Zhang W, Wang C. State-of-the-art and prospects of Zn-containing layered double hydroxides (Zn-LDH)-based materials for photocatalytic water remediation. CHEMOSPHERE 2021; 278:130367. [PMID: 33813335 DOI: 10.1016/j.chemosphere.2021.130367] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/27/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
With the rapid worldwide development of industry and human activities, increasing amounts of multifarious contaminants have significantly threatened environmental ecosystems and human health. Solar photocatalytic decontamination, as an environmentally friendly technology, has been regarded as a good approach to eliminate water pollutants. To date, various photocatalysts have been developed for the purpose of water remediation. Zn-containing layered double hydroxides (Zn-LDHs) and their derivatives are promising candidates due to their suitable band edge positions (oxidation-reduction potentials) for high photocatalytic performances, flexible properties derived from adjustable components and tailorable electronic structures, chemical stabilities, and low toxicities. This review focuses on the fabrication and modification of Zn-LDHs and their photocatalytic applications for the elimination of contaminants in water, including the degradation of toxic organic pollutants, transfer of hazardous heavy metals to lower toxicity heavy metals, and bacterial inactivation. The mechanisms involved in the photocatalytic processes are also thoroughly reviewed. Finally, the emerging scientific and engineering opportunities and challenges in environmental photocatalysis are presented. This review provides basic insights into the construction of Zn-LDH-based materials with high photocatalytic activities and new perspectives on their applications for the photocatalytic elimination of contaminants, which is helpful for the development of photocatalysis for environmental remediation from the lab to industry.
Collapse
Affiliation(s)
- Lan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, China; Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Zhiqiang Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, China
| | - Fu Wang
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yihao Qi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, China
| |
Collapse
|
11
|
Wan H, Chen F, Ma W, Liu X, Ma R. Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction. NANOSCALE 2020; 12:21479-21496. [PMID: 33089855 DOI: 10.1039/d0nr05072e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The electrocatalytic oxygen reduction reaction (ORR) is a crucial part in developing high-efficiency fuel cells and metal-air batteries, which have been cherished as clean and sustainable energy conversion devices/systems to meet the ever-increasing energy demand. ORR electrocatalysts currently employed in the cathodes of fuel cells and metal-air batteries are mainly based on high-cost and scarce noble metal elements. It is thus of great importance to develop cheap and earth-abundant ORR electrocatalysts. In this aspect, redox-active transition metal hydroxides, a class of multifunctional inorganic layered materials, have been proposed as prospective candidates on account of their abundance and high ORR activities. In this article, the preparation and structural evolution of transition metal hydroxides, in particular their exfoliation into two-dimensional (2D) nanosheets, as well as compositing/integrating with catalytic active and/or conductive components to overcome the insulating nature of hydroxides in alkaline ORR, are summarized. Recent advances have demonstrated that 2D transition metal hydroxides with carefully tuned compositions and elaborately designed nanoarchitectures can achieve both high activity and high pathway selectivity, as well as excellent stability comparable to those of commercial Pt/C electrocatalysts. To realize the dream of renewable electrochemical energy conversion, new strategies and insights into rational designing of 2D hydroxide-based nanostructures with further enhanced electrocatalytic performance are still to be vigorously pursued.
Collapse
Affiliation(s)
- Hao Wan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Fashen Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China. and State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Wei Ma
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Xiaohe Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China. and State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Renzhi Ma
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
12
|
Zhang S, Xu J, Cheng H, Zang C, Bian F, Sun B, Shen Y, Jiang H. Photocatalytic H 2 Evolution from Ammonia Borane: Improvement of Charge Separation and Directional Charge Transmission. CHEMSUSCHEM 2020; 13:5264-5272. [PMID: 32681615 DOI: 10.1002/cssc.202001536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Co/MII Fe layered double hydroxide (LDH) LDH photocatalysts have been designed from the aspect of employing stable half-filled Fe3+ to trap photogenerated electrons, adjusting the MII -O-Fe oxo-bridged structure to optimize the short-range directional charge transmission and intercalating oxometallate anions into the LDH to further improve light absorption along with electron-hole separation and non-noble metal Co NP loading and reduction to form a heterojunction. These LDH-based photocatalysts are employed for photocatalytic H2 evolution from ammonia borane in aqueous solution under visible light at 298 K. The photocatalytic H2 evolution activity is greatly improved through adjustment of the MII -O-Fe oxo-bridged structure and molybdate intercalation into the LDH. Turnover frequencies of up to 113.2 min-1 are achieved with Co/CoFe-Mo. Alongside the experimental results and materials characterization, capture experiments and in situ DRIFTS analysis are carried out to study the photocatalytic hydrogen production mechanism.
Collapse
Affiliation(s)
- Sishi Zhang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Jie Xu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Hongmei Cheng
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Cuicui Zang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Fengxia Bian
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Bin Sun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Yu Shen
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
- Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, P. R. China
| | - Heyan Jiang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| |
Collapse
|
13
|
One-pot synthesis of CeO2/Mg-Al layered double oxide nanosheets for efficient visible-light induced photo-reduction of Cr(VI). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Altaf N, Liang S, Iqbal R, Hayat M, Reina TR, Wang Q. Cu-CuOx/rGO catalyst derived from hybrid LDH/GO with enhanced C2H4 selectivity by CO2 electrochemical reduction. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Huy BT, Paeng DS, Thi Bich Thao C, Kim Phuong NT, Lee YI. ZnO-Bi2O3/graphitic carbon nitride photocatalytic system with H2O2-assisted enhanced degradation of Indigo carmine under visible light. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
16
|
Nayak S, Parida K. Superactive NiFe-LDH/graphene nanocomposites as competent catalysts for water splitting reactions. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00700e] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adaptable strategies for the design of superactive NiFe-LDH/graphene nanocomposites for high-performance catalytic activity towards electrocatalytic, photoelectrocatalytic, and photocatalytic water splitting have been reviewed.
Collapse
Affiliation(s)
- Susanginee Nayak
- Centre for Nano Science and Nano Technology
- Siksha ‘O’ Anusandhan Deemed to be University
- Bhubaneswar-751030
- India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology
- Siksha ‘O’ Anusandhan Deemed to be University
- Bhubaneswar-751030
- India
| |
Collapse
|
17
|
A new biocompatible ternary Layered Double Hydroxide Adsorbent for ultrafast removal of anionic organic dyes. Sci Rep 2019; 9:16225. [PMID: 31700113 PMCID: PMC6838081 DOI: 10.1038/s41598-019-52849-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022] Open
Abstract
It would be of great significance to introduce a new biocompatible Layered Double Hydroxide (LDH) for the efficient remediation of wastewater. Herein, we designed a facile, biocompatible and environmental friendly layered double hydroxide (LDH) of NiFeTi for the very first time by the hydrothermal route. The materialization of NiFeTi LDH was confirmed by FTIR, XRD and Raman studies. BET results revealed the high surface area (106 m2/g) and the morphological studies (FESEM and TEM) portrayed the sheets-like structure of NiFeTi nanoparticles. The material so obtained was employed as an efficient adsorbent for the removal of organic dyes from synthetic waste water. The dye removal study showed >96% efficiency for the removal of methyl orange, congo red, methyl blue and orange G, which revealed the superiority of material for decontamination of waste water. The maximum removal (90%) of dyes was attained within 2 min of initiation of the adsorption process which supported the ultrafast removal efficiency. This ultrafast removal efficiency was attributed to high surface area and large concentration of -OH and CO32− groups present in NiFeTi LDH. In addition, the reusability was also performed up to three cycles with 96, 90 and 88% efficiency for methyl orange. Furthermore, the biocompatibility test on MHS cell lines were also carried which revealed the non-toxic nature of NiFeTi LDH at lower concentration (100% cell viability at 15.6 μg/ml). Overall, we offer a facile surfactant free method for the synthesis of NiFeTi LDH which is efficient for decontamination of anionic dyes from water and also non-toxic.
Collapse
|
18
|
Fraqueza G, Fuentes J, Krivosudský L, Dutta S, Mal SS, Roller A, Giester G, Rompel A, Aureliano M. Inhibition of Na +/K +- and Ca 2+-ATPase activities by phosphotetradecavanadate. J Inorg Biochem 2019; 197:110700. [PMID: 31075720 DOI: 10.1016/j.jinorgbio.2019.110700] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) are promising inorganic inhibitors for P-type ATPases. The experimental models used to study the effects of POMs on these ATPases are usually in vitro models using vesicles from several membrane sources. Very recently, some polyoxotungstates, such as the Dawson anion [P2W18O62]6-, were shown to be potent P-type ATPase inhibitors; being active in vitro as well as in ex-vivo. In the present study we broaden the spectrum of highly active inhibitors of Na+/K+-ATPase from basal membrane of epithelial skin to the bi-capped Keggin-type anion phosphotetradecavanadate Cs5.6H3.4PV14O42 (PV14) and we confront the data with activity of other commonly encountered polyoxovanadates, decavanadate (V10) and monovanadate (V1). The X-ray crystal structure of PV14 was solved and contains two trans-bicapped α-Keggin anions HxPV14O42(9-x)-. The anion is built up from the classical Keggin structure [(PO4)@(V12O36)] capped by two [VO] units. PV14 (10 μM) exhibited higher ex-vivo inhibitory effect on Na+/K+-ATPase (78%) than was observed at the same concentrations of V10 (66%) or V1 (33%). Moreover, PV14 is also a potent in vitro inhibitor of the Ca2+-ATPase activity (IC50 5 μM) exhibiting stronger inhibition than the previously reported activities for V10 (15 μM) and V1 (80 μM). Putting it all together, when compared both P-typye ATPases it is suggested that PV14 exibited a high potential to act as an in vivo inhibitor of the Na+/K+-ATPase associated with chloride secretion.
Collapse
Affiliation(s)
- Gil Fraqueza
- ISE, University of Algarve, 8005-139 Faro, Portugal; CCMar, University of Algarve, 8005-139 Faro, Portugal
| | - Juan Fuentes
- CCMar, University of Algarve, 8005-139 Faro, Portugal
| | - Lukáš Krivosudský
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstr. 14, 1090 Wien, Austria; Comenius University, Faculty of Natural Sciences, Department of Inorganic Chemistry, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka, Mangalore 575025, Karnataka, India
| | - Sib Sankar Mal
- Department of Chemistry, National Institute of Technology Karnataka, Mangalore 575025, Karnataka, India.
| | - Alexander Roller
- Universität Wien, Fakultät für Chemie, Zentrum für Röntgenstrukturanalyse, 1090 Wien, Austria
| | - Gerald Giester
- Universität Wien, Fakultät für Geowissenschaften, Geographie und Astronomie, Institut für Mineralogie und Kristallographie, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstr. 14, 1090 Wien, Austria.
| | - Manuel Aureliano
- CCMar, University of Algarve, 8005-139 Faro, Portugal; FCT, University of Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
19
|
Preparation and application of metal ion-doped CoMgAl-hydrotalcite visible-light-driven photocatalyst. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2019. [DOI: 10.1007/s40090-019-0178-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Abazari R, Mahjoub AR, Sanati S, Rezvani Z, Hou Z, Dai H. Ni–Ti Layered Double Hydroxide@Graphitic Carbon Nitride Nanosheet: A Novel Nanocomposite with High and Ultrafast Sonophotocatalytic Performance for Degradation of Antibiotics. Inorg Chem 2019; 58:1834-1849. [DOI: 10.1021/acs.inorgchem.8b02575] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14115−175, Iran
| | - Ali Reza Mahjoub
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14115−175, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Zolfaghar Rezvani
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Zhiquan Hou
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
21
|
Marques-da-Silva D, Fraqueza G, Lagoa R, Vannathan AA, Mal SS, Aureliano M. Polyoxovanadate inhibition of Escherichia coli growth shows a reverse correlation with Ca2+-ATPase inhibition. NEW J CHEM 2019. [DOI: 10.1039/c9nj01208g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Polyoxovanadates were recently found to be the most active among a series of polyoxometalates against bacteria. In this study, a reverse correlation was found between the Ca2+-ATPase IC50 and the E. Coli GI50 values.
Collapse
Affiliation(s)
- Dorinda Marques-da-Silva
- ESTG, Polytechnic Institute of Leiria
- Portugal
- UCIBIO, Faculty of Science and Technology
- University NOVA of Lisbon
- Portugal
| | - Gil Fraqueza
- ISE, University of Algarve
- 8005-139 Faro
- Portugal
- CCMar, University of Algarve
- 8005-139 Faro
| | - Ricardo Lagoa
- ESTG, Polytechnic Institute of Leiria
- Portugal
- UCIBIO, Faculty of Science and Technology
- University NOVA of Lisbon
- Portugal
| | | | - Sib Sankar Mal
- Department of Chemistry
- National Institute of Technology Karnataka
- Mangalore 575025
- India
| | - Manuel Aureliano
- CCMar, University of Algarve
- 8005-139 Faro
- Portugal
- FCT
- University of Algarve
| |
Collapse
|
22
|
Das S, Patnaik S, Parida KM. Fabrication of a Au-loaded CaFe2O4/CoAl LDH p–n junction based architecture with stoichiometric H2 & O2 generation and Cr(vi) reduction under visible light. Inorg Chem Front 2019. [DOI: 10.1039/c8qi00952j] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-efficient Au-loaded CaFe2O4/CoAl LDH p–n junction for H2 & O2 generation and Cr(vi) reduction.
Collapse
Affiliation(s)
- Snehaprava Das
- Center for Nano Science and Nano Technology SOA Deemed to be University
- Bhubaneswar-751030
- India
| | - Sulagna Patnaik
- Center for Nano Science and Nano Technology SOA Deemed to be University
- Bhubaneswar-751030
- India
| | - K. M. Parida
- Center for Nano Science and Nano Technology SOA Deemed to be University
- Bhubaneswar-751030
- India
| |
Collapse
|
23
|
Influence of ammonia on properties of TiO 2
-MgFe 2
O 4
as high visible-light active photocatalysts for the degradation of Rhodamine B. VIETNAM JOURNAL OF CHEMISTRY 2018. [DOI: 10.1002/vjch.201800090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Construction of diatomite/ZnFe layered double hydroxides hybrid composites for enhanced photocatalytic degradation of organic pollutants. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Tho NTM, Huy BT, Khanh DNN, Ha HNN, Huy VQ, Vy NTT, Huy DM, Dat DP, Phuong NTK. Facile synthesis of ZnBi2O4-graphite composites as highly active visible-light photocatalyst for the mineralization of rhodamine B. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0156-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Monfort O, Plesch G. Bismuth vanadate-based semiconductor photocatalysts: a short critical review on the efficiency and the mechanism of photodegradation of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19362-19379. [PMID: 29860700 DOI: 10.1007/s11356-018-2437-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The number of publications on photocatalytic bismuth vanadate-based materials is constantly increasing. Indeed, bismuth vanadate is gaining stronger interest in the photochemical community since it is a solar-driven photocatalyst. However, the efficiency of BiVO4-based photocatalyst under sunlight is questionable: in most of the studies investigating the photodegradation of organic pollutants, only few works identify the by-products and evaluate the real efficiency of BiVO4-based materials. This short review aims to (i) present briefly the principles of photocatalysis and define the photocatalytic efficiency and (ii) discuss the formation of reactive species involved in the photocatalytic degradation process of pollutants and thus the corresponding photodegradation mechanism could be determined. All these points are developed in a comprehensive discussion by focusing especially on pure, doped, and composite BiVO4. Therefore, this review exhibits a critical overview on different BiVO4-based photocatalytic systems with their real efficiency. This is a necessary knowledge for potential implementation of BiVO4 materials in environmental applications at larger scale than laboratory conditions.
Collapse
Affiliation(s)
- Olivier Monfort
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)-UMR 6226, 35000, Rennes, France.
- Faculty of Natural Sciences, Department of Inorganic Chemistry, Comenius University in Bratislava, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovakia.
| | - Gustav Plesch
- Faculty of Natural Sciences, Department of Inorganic Chemistry, Comenius University in Bratislava, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovakia
| |
Collapse
|
27
|
Das S, Dash SK, Parida KM. Kinetics, Isotherm, and Thermodynamic Study for Ultrafast Adsorption of Azo Dye by an Efficient Sorbent: Ternary Mg/(Al + Fe) Layered Double Hydroxides. ACS OMEGA 2018; 3:2532-2545. [PMID: 31458543 PMCID: PMC6641271 DOI: 10.1021/acsomega.7b01807] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/05/2018] [Indexed: 05/03/2023]
Abstract
The extremely high adsorption efficiency of malachite green (MG) was examined through a series of batch experiments by using Fe3+-doped Mg/Al layered double hydroxides (LDHs). The incorporation of iron into Mg/Al LDH with varying Al + Fe molar ratio of 4 + 1, 3 + 2, 2 + 3, and 1 + 4 increased the adsorption capacity with respect to time. The spectral analysis and N2 sorption studies showed that there was retention of surface morphology in all of the iron-modified LDH samples. The experimental evidences showed that the adsorbent Mg/(Al + Fe) with a molar ratio of 10:2 + 3 had a significant removal, i.e., 99.94% for MG with the initial concentration of 1000 mg L-1 at pH ∼ 9 and at room temperature in 5 min. With further increase in iron loading (at ratio 10:1 + 4), there was a decrease in the removal of MG due to the agglomeration of Fe2O3 on the surface. The adsorption process was best fitted to the Freundlich isotherm followed by the pseudo-second-order model. The standard thermodynamic parameters (ΔH°, ΔS°, and ΔG°) were obtained over the temperature range of 20-50 °C. It was observed that the adsorption of MG onto Mg/(Al + Fe) LDH was spontaneous, exothermic, and enthalpy driven in the physisorption mode. A worthy desorption efficiency was achieved by using ethanol and water, which was more than 90% in the three cycles. Maintaining almost the same removal efficiency of MG even after three cycles indicated Mg/(Al + Fe) LDH as a promising material for wastewater treatment. This work was anticipated to open up new possibilities in dealing with anionic dye pollutants.
Collapse
|
28
|
Senapati S, Shukla R, Tripathi YB, Mahanta AK, Rana D, Maiti P. Engineered Cellular Uptake and Controlled Drug Delivery Using Two Dimensional Nanoparticle and Polymer for Cancer Treatment. Mol Pharm 2018; 15:679-694. [PMID: 29298488 DOI: 10.1021/acs.molpharmaceut.7b01119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two major problems in chemotherapy, poor bioavailability of hydrophobic anticancer drug and its adverse side effects causing nausea, are taken into account by developing a sustained drug release vehicle along with enhanced bioavailability using two-dimensional layered double hydroxides (LDHs) with appropriate surface charge and its subsequent embedment in polymer matrix. A model hydrophobic anticancer drug, raloxifene hydrochloride (RH), is intercalated into a series of zinc iron LDHs with varying anion charge densities using an ion exchange technique. To achieve significant sustained delivery, drug-intercalated LDH is embedded in poly(ε-caprolactone) (PCL) matrix to develop intravenous administration and to improve the therapeutic index of the drug. The cause of sustained release is visualized from the strong interaction between LDH and drug, as measured through spectroscopic techniques, like X-ray photoelectron spectroscopy, infrared, UV-visible spectroscopy, and thermal measurement (depression of melting temperature and considerable reduction in heat of fusion), using differential scanning calorimeter, followed by delayed diffusion of drug from polymer matrix. Interestingly, polymer nanohybrid exhibits long-term and excellent in vitro antitumor efficacy as opposed to pure drug or drug-intercalated LDH or only drug embedded PCL (conventional drug delivery vehicle) as evident from cell viability and cell adhesion experiments prompting a model depicting greater killing efficiency (cellular uptake) of the delivery vehicle (polymer nanohybrid) controlled by its better cell adhesion as noticed through cellular uptake after tagging of fluorescence rhodamine B separately to drug and LDH. In vivo studies also confirm the sustained release of drug in the bloodstream of albino rats using polymer nanohybrid (novel drug delivery vehicle) along with a healthy liver vis-à-vis burst release using pure drug/drug-intercalated LDHs with considerable damaged liver.
Collapse
Affiliation(s)
- Sudipta Senapati
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005, India
| | - Rashmi Shukla
- Department of Medicinal Chemistry, Institute of Medical Science, Banaras Hindu University , Varanasi 221 005, India
| | - Yamini Bhusan Tripathi
- Department of Medicinal Chemistry, Institute of Medical Science, Banaras Hindu University , Varanasi 221 005, India
| | - Arun Kumar Mahanta
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005, India
| | - Dipak Rana
- Industrial Membrane Research Institute, Department of Chemical and Biological Engineering, University of Ottawa , 161 Louis Pasteur St., Ottawa, ON KIN 6N5, Canada
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005, India
| |
Collapse
|
29
|
Lee JM, Yang JH, Kwon NH, Jo YK, Choy JH, Hwang SJ. Intercalative hybridization of layered double hydroxide nanocrystals with mesoporous g-C3N4 for enhancing visible light-induced H2 production efficiency. Dalton Trans 2018; 47:2949-2955. [DOI: 10.1039/c7dt03466k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly efficient visible-light-active hybrid photocatalysts with enhanced electronic coupling are synthesized via the intercalative hybridization of Zn–Cr-LDH nanocrystals with mesoporous g-C3N4.
Collapse
Affiliation(s)
- Jang Mee Lee
- Center for Hybrid Interfacial Chemical Structure (CICS)
- Department of Chemistry and Nanoscience
- College of Natural Sciences
- Ewha Womans University
- Seoul 03760
| | - Jae-Hun Yang
- Center for Hybrid Interfacial Chemical Structure (CICS)
- Department of Chemistry and Nanoscience
- College of Natural Sciences
- Ewha Womans University
- Seoul 03760
| | - Nam Hee Kwon
- Center for Hybrid Interfacial Chemical Structure (CICS)
- Department of Chemistry and Nanoscience
- College of Natural Sciences
- Ewha Womans University
- Seoul 03760
| | - Yun Kyung Jo
- Center for Hybrid Interfacial Chemical Structure (CICS)
- Department of Chemistry and Nanoscience
- College of Natural Sciences
- Ewha Womans University
- Seoul 03760
| | - Jin-Ho Choy
- Center for Hybrid Interfacial Chemical Structure (CICS)
- Department of Chemistry and Nanoscience
- College of Natural Sciences
- Ewha Womans University
- Seoul 03760
| | - Seong-Ju Hwang
- Center for Hybrid Interfacial Chemical Structure (CICS)
- Department of Chemistry and Nanoscience
- College of Natural Sciences
- Ewha Womans University
- Seoul 03760
| |
Collapse
|
30
|
Khataee A, Arefi-Oskoui S, Samaei L. ZnFe-Cl nanolayered double hydroxide as a novel catalyst for sonocatalytic degradation of an organic dye. ULTRASONICS SONOCHEMISTRY 2018; 40:703-713. [PMID: 28946476 DOI: 10.1016/j.ultsonch.2017.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
ZnFe nanolayered double hydroxide (NLDH) with anions of Cl- in its interlayer space was synthesized using a facile co-precipitation method. The synthesized ZnFe-Cl NLDH was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), N2 adsorption/desorption, diffuse reflectance spectroscopy (DRS) and point of zero charge pH (pHpzc) analyses. In this research, the sonocatalytic activity of the as-prepared NLDH was investigated for removal of acid red 17 as model pollutant. The effects of the operating parameters including sonocatalyst concentration, pH, initial dye concentration, intensity of ultrasonic irradiation and the presence of radical scavengers and process enhancers were studied on the sonocatalytic degradation of acid red 17. The decreased decolorization efficiency in the presence of the radical scavengers confirmed that the free radicals play the basic roll in the degradation of acid red 17 molecules. In addition a probable mechanism for degradation of acid red 17 through the sonocatalytic process was proposed according to the identified intermediates detected using gas chromatography-mass (GC-MS) spectroscopy.
Collapse
Affiliation(s)
- Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Lale Samaei
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| |
Collapse
|
31
|
Sahoo DP, Patnaik S, Rath D, Parida KM. Synergistic effects of plasmon induced Ag@Ag3VO4/ZnCr LDH ternary heterostructures towards visible light responsive O2 evolution and phenol oxidation reactions. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00742f] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The SPR effect of monodisperse Ag nanoparticles in Ag@Ag3VO4/ZnCr LDH heterostructures exhibits high photocatalytic activity towards evolution of O2 and oxidation of phenol.
Collapse
Affiliation(s)
- Dipti Prava Sahoo
- Centre for Nano Science and Nano Technology
- Siksha O Anusandhan University
- Bhubaneswar-751030
- India
| | - Sulagna Patnaik
- Centre for Nano Science and Nano Technology
- Siksha O Anusandhan University
- Bhubaneswar-751030
- India
| | - Dharitri Rath
- Centre for Nano Science and Nano Technology
- Siksha O Anusandhan University
- Bhubaneswar-751030
- India
| | - K. M. Parida
- Centre for Nano Science and Nano Technology
- Siksha O Anusandhan University
- Bhubaneswar-751030
- India
| |
Collapse
|
32
|
Fahel J, Kim S, Durand P, André E, Carteret C. Enhanced catalytic oxidation ability of ternary layered double hydroxides for organic pollutants degradation. Dalton Trans 2017; 45:8224-35. [PMID: 27097543 DOI: 10.1039/c6dt00441e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co(2+) and Cu(2+) substituted MgAl layered double hydroxides with an M(2+)/M(3+) atomic ratio of 2.0 were synthesized by a co-precipitation method and fully characterized using various techniques including powder X-ray diffraction, ICP-AES analysis, FT-IR, DR UV-Vis spectroscopy, N2 adsorption-desorption and transmission electron microscopy. The materials revealed a good crystallinity with no phase impurity and successful substitution of cobalt and copper ions in the framework of binary LDH with the target ratio of metals in the sheet. The adsorption characteristics (kinetic and isotherm) and the catalytic oxidation of organic pollutants, methylene blue (cationic dye) and orange II (anionic) were carried out to investigate a potential use of LDH materials as catalysts. In particular, Co3Cu1Al2 LDH exhibited an excellent catalytic activity towards catalytic dye degradation, especially for orange II with good stability and reusability over several times. Furthermore, this LDH material showed good catalytic performance for several chlorophenol compounds, suggesting its practical application in wastewater treatment. Therefore, layered double hydroxides substituted with Co(2+) and Cu(2+) could be promising candidates in various applications, such as the abatement of organic pollutants.
Collapse
Affiliation(s)
- Jean Fahel
- LCPME UMR 7564, CNRS - Université de Lorraine, F-54600 Villers-lès-Nancy, France.
| | - Sanghoon Kim
- LCPME UMR 7564, CNRS - Université de Lorraine, F-54600 Villers-lès-Nancy, France.
| | - Pierrick Durand
- CRM2 UMR 7036, CNRS - Université de Lorraine, F-54506 Vandœuvre-lès-Nancy, France
| | - Erwan André
- LCPME UMR 7564, CNRS - Université de Lorraine, F-54600 Villers-lès-Nancy, France.
| | - Cédric Carteret
- LCPME UMR 7564, CNRS - Université de Lorraine, F-54600 Villers-lès-Nancy, France.
| |
Collapse
|
33
|
Marques MPM, Gianolio D, Ramos S, Batista de Carvalho LAE, Aureliano M. An EXAFS Approach to the Study of Polyoxometalate-Protein Interactions: The Case of Decavanadate-Actin. Inorg Chem 2017; 56:10893-10903. [PMID: 28858484 DOI: 10.1021/acs.inorgchem.7b01018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
EXAFS and XANES experiments were used to assess decavanadate interplay with actin, in both the globular and polymerized forms, under different conditions of pH, temperature, ionic strength, and presence of ATP. This approach allowed us to simultaneously probe, for the first time, all vanadium species present in the system. It was established that decavanadate interacts with G-actin, triggering a protein conformational reorientation that induces oxidation of the cysteine core residues and oxidovanadium (VIV) formation. The local environment of vanadium's absorbing center in the [decavanadate-protein] adducts was determined, a V-SCys coordination having been verified experimentally. The variations induced in decavanadate's EXAFS profile by the presence of actin were found to be almost totally reversed by the addition of ATP, which constitutes a solid proof of decavanadate interaction with the protein at its ATP binding site. Additionally, a weak decavanadate interplay with F-actin was suggested to take place, through a mechanism different from that inferred for globular actin. These findings have important consequences for the understanding, at a molecular level, of the significant biological activities of decavanadate and similar polyoxometalates, aiming at potential pharmacological applications.
Collapse
Affiliation(s)
- M Paula M Marques
- "Química-Física Molecular" R&D Unit, Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra , 3000-456 Coimbra, Portugal
| | - Diego Gianolio
- Diamond Light Source, Harwell Science & Innovation Campus , Didcot OX11 0DE, United Kingdom
| | - Susana Ramos
- UCIBIO, REQUIMTE, Departamento de Química, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - Luís A E Batista de Carvalho
- "Química-Física Molecular" R&D Unit, Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
| | - Manuel Aureliano
- "Química-Física Molecular" R&D Unit, Department of Chemistry, University of Coimbra , 3004-535 Coimbra, Portugal
- FCT and CCmar, University of Algarve , 8005-139 Faro, Portugal
| |
Collapse
|
34
|
Mohapatra L, Patra D, Parida K, Zaidi SJ. Enhanced Photocatalytic Activity of a Molybdate-Intercalated Iron-Based Layered Double Hydroxide. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601191] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Kulamani Parida
- Centre for Nano Science and Nano Technology; ITER; Siksha “O” Anusandhan University; India
| | - Syed Javaid Zaidi
- Center for Advanced Materials (CAM); Qatar University (QU); Doha Qatar
| |
Collapse
|
35
|
Mohapatra L, Parida K. A review of solar and visible light active oxo-bridged materials for energy and environment. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00116a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Oxo-bridged systems are versatile photo-redox catalysts for environmental decontamination and artificial photosynthesis.
Collapse
Affiliation(s)
- Lagnamayee Mohapatra
- Qatar Environment and Energy Research Institute (QEERI)
- Hamad Bin Khalifa University
- Qatar Foundation
- Doha
- Qatar
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology
- Siksha ‘O’Anusandhan University
- Bhubaneswar-751030
- India
| |
Collapse
|
36
|
Kusano D, Emori M, Sakama H. Influence of electronic structure on visible light photocatalytic activity of nitrogen-doped TiO2. RSC Adv 2017. [DOI: 10.1039/c6ra25238a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
N-doped TiO2 was synthesized by sol–gel method from precursor solutions with or without urea and post calcination in NH3 gas. Localized states associated with N were successfully found at 0.24 eV to 0.34 eV above valence band maximum in the band gap.
Collapse
Affiliation(s)
- Daigo Kusano
- Department of Physics
- Sophia University
- Tokyo 102-8554
- Japan
| | - Masato Emori
- Department of Physics
- Sophia University
- Tokyo 102-8554
- Japan
| | - Hiroshi Sakama
- Department of Physics
- Sophia University
- Tokyo 102-8554
- Japan
| |
Collapse
|
37
|
Dinari M, Momeni MM, Bozorgmehr Z, Karimi S. Bismuth-containing layered double hydroxide as a novel efficient photocatalyst for degradation of methylene blue under visible light. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-1021-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Roy Chowdhury P, Bhattacharyya KG. Synthesis and characterization of Mn/Co/Ti LDH and its utilization as a photocatalyst in visible light assisted degradation of aqueous Rhodamine B. RSC Adv 2016; 6:112016-112034. [PMID: 30112172 PMCID: PMC6089547 DOI: 10.1039/c6ra24288j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Luminescent Mn/Co/Ti LDH, synthesized by a single step hydrothermal route, has been found to be optically responsive for utilization as a highly efficient photocatalyst in destruction of the cationic dye Rhodamine B, in aqueous solution under visible light irradiation. The material has been found to be better than the commercial catalysts like MnO, CoO, TiO2 and Degussa P25. Multiple techniques like XRD, XPS, FT-IR, EIS, TG, UV-visible DRS, PL, TRES, N2-sorption-desorption, dynamic light scattering, TEM-EDS and AFM analyses were used to characterize the LDH. The results indicated Mn/Co/Ti LDH to have a multilayered crystalline structure with hexagonal morphology that carries metal ions in mixed valences, oxygen vacancies, defect states, thermal stability, narrow band gap, high surface area, and electrostatic surface charge variation with pH. The photocatalytic activity of the LDH could be co-related with the structural aspects such as oxidation states, narrow band gap, high surface area and existence of defects. The active species responsible for photocatalysis have been evaluated with EPR, terephthalic acid fluorescence probe and indirect radical-hole trapping experiments. The photodegradation mechanism involves electron and hole hopping across the material and also photosensitization of the dye. Ex situ 1H-NMR and GC-MS analyses of the colorless end products of Rhodamine B destruction provide further insight into the reaction mechanism. The complete mineralization of the decolorized end product of degradation was evaluated with TOC analysis. The results indicate the potential for using multi metal incorporated LDH in destroying dyes and their degradation products in industrial wastewater.
Collapse
|
39
|
Iguchi S, Hasegawa Y, Teramura K, Hosokawa S, Tanaka T. Preparation of transition metal-containing layered double hydroxides and application to the photocatalytic conversion of CO2 in water. J CO2 UTIL 2016. [DOI: 10.1016/j.jcou.2016.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Zhang ST, Dou Y, Zhou J, Pu M, Yan H, Wei M, Evans DG, Duan X. DFT-Based Simulation and Experimental Validation of the Topotactic Transformation of MgAl Layered Double Hydroxides. Chemphyschem 2016; 17:2754-66. [DOI: 10.1002/cphc.201600354] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Shi-Tong Zhang
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Yibo Dou
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Junyao Zhou
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - David G. Evans
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| |
Collapse
|
41
|
Aureliano M, Ohlin CA, Vieira MO, Marques MPM, Casey WH, Batista de Carvalho LAE. Characterization of decavanadate and decaniobate solutions by Raman spectroscopy. Dalton Trans 2016; 45:7391-9. [PMID: 27031764 DOI: 10.1039/c5dt04176g] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The decaniobate ion, (Nb10 = [Nb10O28](6-)) being isoelectronic and isostructural with the decavanadate ion (V10 = [V10O28](6-)), but chemically and electrochemically more inert, has been useful in advancing the understanding of V10 toxicology and pharmacological activities. In the present study, the solution chemistry of Nb10 and V10 between pH 4 and 12 is studied by Raman spectroscopy. The Raman spectra of V10 show that this vanadate species dominates up to pH 6.45 whereas it remains detectable until pH 8.59, which is an important range for biochemistry. Similarly, Nb10 is present between pH 5.49 and 9.90 and this species remains detectable in solution up to pH 10.80. V10 dissociates at most pH values into smaller tetrahedral vanadate oligomers such as V1 and V2, whereas Nb10 dissociates into Nb6 under mildly (10 > pH > 7.6) or highly alkaline conditions. Solutions of V10 and Nb10 are both kinetically stable under basic pH conditions for at least two weeks and at moderate temperature. The Raman method provides a means of establishing speciation in the difficult niobate system and these findings have important consequences for toxicology activities and pharmacological applications of vanadate and niobate polyoxometalates.
Collapse
Affiliation(s)
- Manuel Aureliano
- FCT and CCmar, University of Algarve, 8005-139 Faro, Portugal. and Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Portugal
| | - C André Ohlin
- School of Chemistry, Monash University, Clayton, Vic 3800, Australia
| | - Michele O Vieira
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Portugal
| | - M Paula M Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Portugal and Department of Life Sciences, University of Coimbra, 3004-535 Coimbra, Portugal
| | - William H Casey
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | |
Collapse
|
42
|
Iguchi S, Kikkawa S, Teramura K, Hosokawa S, Tanaka T. Investigation of the electrochemical and photoelectrochemical properties of Ni–Al LDH photocatalysts. Phys Chem Chem Phys 2016; 18:13811-9. [DOI: 10.1039/c6cp01646d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layered double hydroxide (LDH) photocatalysts, including Ni–Al LDH, are active for the photocatalytic conversion of CO2 in water under UV light irradiation.
Collapse
Affiliation(s)
- Shoji Iguchi
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Soichi Kikkawa
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kentaro Teramura
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Saburo Hosokawa
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Tsunehiro Tanaka
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
43
|
Aureliano M. Decavanadate Toxicology and Pharmacological Activities: V10 or V1, Both or None? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6103457. [PMID: 26904166 PMCID: PMC4745863 DOI: 10.1155/2016/6103457] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023]
Abstract
This review covers recent advances in the understanding of decavanadate toxicology and pharmacological applications. Toxicological in vivo studies point out that V10 induces several changes in several oxidative stress parameters, different from the ones observed for vanadate (V1). In in vitro studies with mitochondria, a particularly potent V10 effect, in comparison with V1, was observed in the mitochondrial depolarization (IC50 = 40 nM) and oxygen consumption (99 nM). It is suggested that mitochondrial membrane depolarization is a key event in decavanadate induction of necrotic cardiomyocytes death. Furthermore, only decavanadate species and not V1 potently inhibited myosin ATPase activity stimulated by actin (IC50 = 0.75 μM) whereas exhibiting lower inhibition activities for Ca(2+)-ATPase activity (15 μM) and actin polymerization (17 μM). Because both calcium pump and actin decavanadate interactions lead to its stabilization, it is likely that V10 interacts at specific locations with these proteins that protect against hydrolysis but, on the other hand, it may induce V10 reduction to oxidovanadium(IV). Putting it all together, it is suggested that the pharmacological applications of V10 species and compounds whose mechanism of action is still to be clarified might involve besides V10 and V1 also vanadium(IV) species.
Collapse
Affiliation(s)
- M. Aureliano
- 1Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-135 Faro, Portugal
- 2CCMar (Centre of Marine Sciences), University of Algarve, Campus of Gambelas, 8005-135 Faro, Portugal
- *M. Aureliano:
| |
Collapse
|
44
|
Huang D, Ma J, Yu L, Wu D, Wang K, Yang M, Papoulis D, Komarneni S. AgCl and BiOCl composited with NiFe-LDH for enhanced photo-degradation of Rhodamine B. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Benalioua B, Mansour M, Bentouami A, Boury B, Elandaloussi EH. The layered double hydroxide route to Bi-Zn co-doped TiO₂ with high photocatalytic activity under visible light. JOURNAL OF HAZARDOUS MATERIALS 2015; 288:158-167. [PMID: 25699677 DOI: 10.1016/j.jhazmat.2015.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/07/2015] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
In this work, a co-doped Bi-Zn-TiO₂ photocatalist is synthesized by an original synthesis route of layered double hydroxide followed by heat treatment at 670 °C. After characterization the photocatalyst efficiency is estimated by the photo-discoloration of an anionic dye (indigo carmine) under visible light and compare to TiO₂-P25 as reference material. In this new photocatalyst, anatase and ZnO wurtzite are the only identified crystalline phase, rutile and Bi₂O₃ being undetected. Moreover, the binding energy of Bi determined (XPS analysis) is different from the one of Bi in Bi₂O₃. Compared to TiO₂-P25, the absorption is red shifted (UV-vis DRS) and the Bi-Zn-TiO₂ photocatalyst showed sorption capacity toward indigo carmine higher than that TiO₂-P25. The kinetics of the photo-discoloration is faster with Bi-Zn-TiO₂ than with TiO₂-P25. Indeed, a complete discoloration is obtained after 70 min and 120 min in the presence of Bi-Zn-TiO₂ and TiO₂-P25 respectively. The identification of the responsible species on photo-discoloration was carried out in the presence of different scavengers. The study showed that the first responsible is h(+) specie with a moderate contribution of superoxide anion radical and a minor contribution of the hydroxyl radical. The material showed high stability after five uses with the same rate of photo-discoloration.
Collapse
Affiliation(s)
- Bahia Benalioua
- Laboratoire de Valorisation des Matériaux, Université de Mostaganem BP 227, Mostaganem 27000 Algeria
| | - Meriem Mansour
- Laboratoire de Valorisation des Matériaux, Université de Mostaganem BP 227, Mostaganem 27000 Algeria
| | - Abdelhadi Bentouami
- Laboratoire de Valorisation des Matériaux, Université de Mostaganem BP 227, Mostaganem 27000 Algeria.
| | - Bruno Boury
- ICG-CMOS-UMR 5253, Université Montpellier 2, Place Eugène Bataillon CC 1702, 34095 Montpellier Cedex 05, France
| | - El Hadj Elandaloussi
- Laboratoire de Valorisation des Matériaux, Université de Mostaganem BP 227, Mostaganem 27000 Algeria
| |
Collapse
|
46
|
|
47
|
Xia S, Shao M, Zhou X, Pan G, Ni Z. Ti/ZnO–MxOy composites (M = Al, Cr, Fe, Ce): synthesis, characterization and application as highly efficient photocatalysts for hexachlorobenzene degradation. Phys Chem Chem Phys 2015; 17:26690-702. [DOI: 10.1039/c5cp04125b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel organic–inorganic nanoscale layered materials were synthesized by intercalating the Ti-containing Schiff base complex into the interlayer of the ZnM layered double hydroxides (LDHs, M = Al, Cr, Fe, Ce).
Collapse
Affiliation(s)
- Shengjie Xia
- Department of Chemistry
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Mengmeng Shao
- Department of Chemistry
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | | | - Guoxiang Pan
- Department of Materials Chemistry
- School of Life Science
- Huzhou Teachers College
- Huzhou 313000
- P. R. China
| | - Zheming Ni
- Department of Chemistry
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| |
Collapse
|