1
|
Villanueva ME, Bar L, Porcar L, Gerelli Y, Losada-Pérez P. Resolving the interactions between hydrophilic CdTe quantum dots and positively charged membranes at the nanoscale. J Colloid Interface Sci 2025; 677:620-631. [PMID: 39116560 DOI: 10.1016/j.jcis.2024.07.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
The use of quantum dot nanoparticles (QDs) in bio-applications has gained quite some interest and requires a deep understanding of their interactions with model cell membranes. This involves assessing the extent of nanoparticle disruption of the membrane and how it depends on both nanoparticle and membrane physicochemical properties. Surface charge plays an important role in nanoparticle adsorption, which is primarily driven by electrostatic interactions; yet, once adsorbed, most reported works overlook the subsequent spatial nanoparticle insertion and location within the membrane. There is therefore a need for studies to assess the mutual role of membrane and nanoparticle charge into membrane structure and stability at the nanoscale, with a view to better design and control the functionality of these nanomaterials. In this work, we have resolved the extent of the interactions between hydrophilic, negatively charged CdTe QDs and positively charged lipid bilayers. A multiscale combination of surface-sensitive techniques enabled probing how surface charge mediates QD adsorption and membrane reorganization. Increasing membrane surface charge results into a larger adsorption of oppositely charged QDs, concomitantly inducing structural changes. Hydration of the membrane hydrophobic parts by QDs goes deeper into the inner leaflet with increasing membrane charge, resulting in supported lipid bilayers with decreased nanomechanical stability.
Collapse
Affiliation(s)
- M E Villanueva
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, 1050 Brussels, Belgium
| | - L Bar
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, 1050 Brussels, Belgium
| | - L Porcar
- Large-Scale Structure Group, Institut Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Y Gerelli
- Italian National Research Council - Institute for Complex Systems (CNR-ISC), and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | - P Losada-Pérez
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, 1050 Brussels, Belgium.
| |
Collapse
|
2
|
Villanueva ME, Bar L, Redondo-Morata L, Namdar P, Ruysschaert JM, Pabst G, Vandier C, María Bouchet A, Losada-Pérez P. Spontaneous nanotube formation of an asymmetric glycolipid. J Colloid Interface Sci 2024; 671:410-422. [PMID: 38815376 DOI: 10.1016/j.jcis.2024.05.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
Over the past decades, advances in lipid nanotechnology have shown that self-assembled lipid structures providing ease of preparation, chemical stability, and biocompatibility represent a landmark on the development of multidisciplinary technologies. Lipid nanotubes (LNTs) are a unique class of lipid self-assembled structures, bearing unique properties such as high-aspect ratio, tunable diameter size, and precise molecular recognition. They can be obtained either by the action of external factors to already formed vesicles or spontaneously, the latter depending strongly on subtle molecular features. Here, we report on the spontaneous formation of supported lipid nanotubes of a particular type of glycolipid, ohmline, whose hydrophobic core displays remarkable asymmetry. The combination of bulk and surface-sensitive techniques indicates that below its main transition, ohmline displays an interdigitated gel phase, likely driven by the unique asymmetry in its hydrophobic core. Enhanced order packing by interdigitation favors the formation of ohmline nanotubes in agreement with chiral-based models of nanotube formation. The findings presented in this work call for additional studies to link lipid molecular structure-assembly relationships, whose understanding is relevant for the controlled design of lipid nanotubes networks in particular and controlled design of soft-matter nanomaterials in general.
Collapse
Affiliation(s)
- Martín E Villanueva
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium.
| | - Laure Bar
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium
| | - Lorena Redondo-Morata
- Aix-Marseille University, INSERM, DyNaMo, Turing Centre for Living systems, Marseille 13009, France
| | - Peter Namdar
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstr 50/III, Graz 8010, Austria
| | - Jean-Marie Ruysschaert
- Structure and Functions of Biological Membranes, Université libre de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium; Lifesome Therapeutics S. L., Calle Faraday 7, Madrid 28049, Spain
| | - Georg Pabst
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstr 50/III, Graz 8010, Austria
| | - Christophe Vandier
- Niche, Nutrition, Cancer and Oxidative Metabolism (N2Cox) UMR 1069, University of Tours, INSERM, Tours, France; Lifesome Therapeutics S. L., Calle Faraday 7, Madrid 28049, Spain
| | | | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium.
| |
Collapse
|
3
|
Diedrichsen RG, Vetri V, Prévost S, Foderà V, Nielsen HM. Carrier peptide interactions with liposome membranes induce reversible clustering by surface adsorption and shape deformation. J Colloid Interface Sci 2023; 650:1821-1832. [PMID: 37515972 DOI: 10.1016/j.jcis.2023.07.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023]
Abstract
The cell-penetrating peptide penetratin and its analogues shuffle and penetramax have been used as carrier peptides for oral delivery of therapeutic peptides such as insulin. Their mechanism of action for this purpose is not fully understood but is believed to depend on the interactions of the peptide with the cell membrane. In the present study, peptide-liposome interactions were investigated using advanced biophysical techniques including small-angle neutron scattering and fluorescence lifetime imaging microscopy. Liposomes were used as a model system for the cell membrane. All the investigated carrier peptides induced liposome clustering at a specific peptide/lipid ratio. However, distinctively different types of membrane interactions were observed, as the liposome clustering was irreversible for penetratin, but fully or partly reversible for shuffle and penetramax, respectively. All three peptides were found to adsorb to the surface of the lipid bilayers, while only shuffle and penetramax led to shape deformation of the liposomes. Importantly, the peptide interactions did not disrupt the liposomes under any of the investigated conditions, which is advantageous for their application in drug delivery. This detailed insight on peptide-membrane interactions is important for understanding the mechanism of peptide-based excipients and the influence of peptide sequence modifications.
Collapse
Affiliation(s)
- Ragna Guldsmed Diedrichsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Valeria Vetri
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze Ed. 18, 90128 Palermo, Italy.
| | - Sylvain Prévost
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France.
| | - Vito Foderà
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
4
|
Stability of supported hybrid lipid bilayers on chemically and topographically-modified surfaces. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Kurakin S, Ivankov O, Skoi V, Kuklin A, Uhríková D, Kučerka N. Cations Do Not Alter the Membrane Structure of POPC—A Lipid With an Intermediate Area. Front Mol Biosci 2022; 9:926591. [PMID: 35898308 PMCID: PMC9312375 DOI: 10.3389/fmolb.2022.926591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Combining small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and densitometric measurements, we have studied the interactions of the divalent cations Ca2+ and Mg2+ with the lipid vesicles prepared of a mixed-chain palmitoyl-oleoyl-phosphatidylcholine (POPC) at 25°C. The structural parameters of the POPC bilayer, such as the bilayer thickness, lateral area, and volume per lipid, displayed no changes upon the ion addition at concentrations up to 30 mM and minor changes at > 30 mM Ca2+ and Mg2+, while some decrease in the vesicle radius was observed over the entire concentration range studied. This examination allows us to validate the concept of lipid–ion interactions governed by the area per lipid suggested previously and to propose the mixed mode of those interactions that emerge in the POPC vesicles. We speculate that the average area per POPC lipid that corresponds to the cutoff length of lipid–ion interactions generates an equal but opposite impact on ion bridges and separate lipid–ion pairs. As a result of the dynamic equilibrium, the overall structural properties of bilayers are not affected. As the molecular mechanism proposed is affected by the structural properties of a particular lipid, it might help us to understand the fundamentals of processes occurring in complex multicomponent membrane systems.
Collapse
Affiliation(s)
- Sergei Kurakin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
- Institute of Physics, Kazan Federal University, Kazan, Russia
| | - Oleksandr Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Vadim Skoi
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Alexander Kuklin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- *Correspondence: Norbert Kučerka,
| |
Collapse
|
6
|
Zevnik J, Dular M. Liposome destruction by a collapsing cavitation microbubble: A numerical study. ULTRASONICS SONOCHEMISTRY 2021; 78:105706. [PMID: 34411844 PMCID: PMC8379499 DOI: 10.1016/j.ultsonch.2021.105706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 05/07/2023]
Abstract
Hydrodynamic cavitation poses as a promising new method for wastewater treatment as it has been shown to be able to eradicate bacteria, inactivate viruses, and destroy other biological structures, such as liposomes. Although engineers are already commercializing devices that employ cavitation, we are still not able to answer the fundamental question: What exactly are the damaging mechanisms of hydrodynamic cavitation in various applications? In this light, the present paper numerically addresses the interaction between a single cavitation microbubble and a nearby lipid vesicle of a similar size. A coupled fluid-structure interaction model is employed, from which three critical modes of vesicle deformation are identified and temporally placed in relation to their corresponding driving mechanisms: (a) unilateral stretching at the waist of the liposome during the first bubble collapse and subsequent shock wave propagation, (b) local wrinkling at the tip until the bubble rebounds, and (c) bilateral stretching at the tip of the liposome during the phase of a second bubble contraction. Here, unilateral and bilateral stretching refer to the local in-plane extension of the bilayer in one and both principal directions, respectively. Results are discussed with respect to critical dimensionless distance for vesicle poration and rupture. Liposomes with initially equilibrated envelopes are not expected to be structurally compromised in cases with δ>1.0, when a nearby collapsing bubble is not in their direct contact. However, the critical dimensionless distance for the case of an envelope with pre-existing pores is identified at δ=1.9. Additionally, the influence of liposome-bubble size ratio is addressed, from which a higher potential of larger bubbles for causing stretching-induced liposome destruction can be identified.
Collapse
Affiliation(s)
- Jure Zevnik
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, Ljubljana, Slovenia.
| | - Matevž Dular
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, Ljubljana, Slovenia
| |
Collapse
|
7
|
Kuklin AI, Ivankov OI, Rogachev AV, Soloviov DV, Islamov AK, Skoi VV, Kovalev YS, Vlasov AV, Ryzykau YL, Soloviev AG, Kucerka N, Gordeliy VI. Small-Angle Neutron Scattering at the Pulsed Reactor IBR-2: Current Status and Prospects. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521020085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Study of Resveratrol's Interaction with Planar Lipid Models: Insights into Its Location in Lipid Bilayers. MEMBRANES 2021; 11:membranes11020132. [PMID: 33672841 PMCID: PMC7918209 DOI: 10.3390/membranes11020132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/16/2023]
Abstract
Resveratrol, a polyphenolic molecule found in edible fruits and vegetables, shows a wide range of beneficial effects on human health, including anti-microbial, anti-inflammatory, anti-cancer, and anti-aging properties. Due to its poor water solubility and high liposome-water partition coefficient, the biomembrane seems to be the main target of resveratrol, although the mode of interaction with membrane lipids and its location within the cell membrane are still unclear. In this study, using electrophysiological measurements, we study the interaction of resveratrol with planar lipid membranes (PLMs) of different composition. We found that resveratrol incorporates into palmitoyl-oleoyl-phosphatidylcholine (POPC) and POPC:Ch PLMs and forms conductive units unlike those found in dioleoyl-phosphatidylserine (DOPS):dioleoyl-phosphatidylethanolamine (DOPE) PLMs. The variation of the biophysical parameters of PLMs in the presence of resveratrol provides information on its location within a lipid double layer, thus contributing to an understanding of its mechanism of action.
Collapse
|
9
|
Lubart Q, Hannestad JK, Pace H, Fjällborg D, Westerlund F, Esbjörner EK, Bally M. Lipid vesicle composition influences the incorporation and fluorescence properties of the lipophilic sulphonated carbocyanine dye SP-DiO. Phys Chem Chem Phys 2020; 22:8781-8790. [DOI: 10.1039/c9cp04158c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid membrane composition influences insertion efficiency and photophysical properties of lipophilic membrane-inserting dyes.
Collapse
Affiliation(s)
- Quentin Lubart
- Division of Biological Physics
- Department of Physics
- Chalmers University of Technology
- 41296 Gothenburg
- Sweden
| | - Jonas K. Hannestad
- Division of Biological Physics
- Department of Physics
- Chalmers University of Technology
- 41296 Gothenburg
- Sweden
| | - Hudson Pace
- Department of Integrative Medical Biology
- Umeå University
- 90185 Umeå
- Sweden
| | - Daniel Fjällborg
- Division of Biological Physics
- Department of Physics
- Chalmers University of Technology
- 41296 Gothenburg
- Sweden
| | - Fredrik Westerlund
- Division of Chemical Biology
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- 41296 Gothenburg
- Sweden
| | - Elin K. Esbjörner
- Division of Chemical Biology
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- 41296 Gothenburg
- Sweden
| | - Marta Bally
- Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine
- Umeå University
- 90185 Umeå
- Sweden
| |
Collapse
|
10
|
Liu YW, Chen YY, Hsu CY, Chiu TY, Liu KL, Lo CF, Fang MY, Huang YC, Yeh TK, Pak KY, Gray BD, Hsu TA, Huang KH, Shih C, Shia KS, Chen CT, Tsou LK. Linker Optimization and Therapeutic Evaluation of Phosphatidylserine-Targeting Zinc Dipicolylamine-based Drug Conjugates. J Med Chem 2019; 62:6047-6062. [PMID: 31181158 DOI: 10.1021/acs.jmedchem.9b00173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report that compound 13, a novel phosphatidylserine-targeting zinc(II) dipicolylamine drug conjugate, readily triggers a positive feedback therapeutic loop through the in situ generation of phosphatidylserine in the tumor microenvironment. Linker modifications, pharmacokinetics profiling, in vivo antitumor studies, and micro-Western array of treated-tumor tissues were employed to show that this class of conjugates induced regeneration of apoptotic signals, which facilitated subsequent recruitment of the circulating conjugates through the zinc(II) dipicolylamine-phosphatidylserine association and resulted in compounding antitumor efficacy. Compared to the marketed compound 17, compound 13 not only induced regressions in colorectal and pancreatic tumor models, it also exhibited at least 5-fold enhancement in antitumor efficacy with only 40% of the drug employed during treatment, culminating in a >12.5-fold increase in therapeutic potential. Our study discloses a chemically distinct apoptosis-targeting theranostic, with built-in complementary functional moieties between the targeting module and the drug mechanism to expand the arsenal of antitumor therapy.
Collapse
Affiliation(s)
- Yu-Wei Liu
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Yun-Yu Chen
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Chia-Yu Hsu
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Tai-Yu Chiu
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Kuan-Liang Liu
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Chen-Fu Lo
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Ming-Yu Fang
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Yu-Cheng Huang
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc. , West Chester , Pennsylvania 19380 , United States
| | - Brian D Gray
- Molecular Targeting Technologies, Inc. , West Chester , Pennsylvania 19380 , United States
| | - Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Kuan-Hsun Huang
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Lun K Tsou
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| |
Collapse
|
11
|
Schott-Verdugo S, Gohlke H. PACKMOL-Memgen: A Simple-To-Use, Generalized Workflow for Membrane-Protein-Lipid-Bilayer System Building. J Chem Inf Model 2019; 59:2522-2528. [PMID: 31120747 DOI: 10.1021/acs.jcim.9b00269] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present PACKMOL-Memgen, a simple-to-use, generalized workflow for automated building of membrane-protein-lipid-bilayer systems based on open-source tools including Packmol, memembed, pdbremix, and AmberTools. Compared with web-interface-based related tools, PACKMOL-Memgen allows setup of multiple configurations of a system in a user-friendly and efficient manner within minutes. The generated systems are well-packed and thus well-suited as starting configurations in MD simulations under periodic boundary conditions, requiring only moderate equilibration times. PACKMOL-Memgen is distributed with AmberTools and runs on most computing platforms, and its output can also be used for CHARMM or adapted to other molecular-simulation packages.
Collapse
Affiliation(s)
- Stephan Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany.,Centro de Bioinformática y Simulación Molecular (CBSM), Faculty of Engineering , Universidad de Talca , 1 Poniente 1141 , Casilla 721 , Talca , Chile
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute for Complex Systems-Structural Biochemistry (ICS 6) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| |
Collapse
|
12
|
Casein interaction with lipid membranes: Are the phase state or charge density of the phospholipids affecting protein adsorption? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2588-2598. [DOI: 10.1016/j.bbamem.2018.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023]
|
13
|
Amadei F, Fröhlich B, Stremmel W, Tanaka M. Nonclassical Interactions of Phosphatidylcholine with Mucin Protect Intestinal Surfaces: A Microinterferometry Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14046-14057. [PMID: 30359036 DOI: 10.1021/acs.langmuir.8b03035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Albeit many studies demonstrated that the accumulation of phospholipids in the intestinal mucosal surfaces is essential for the protection of colon epithelia against pathogenic bacteria, the mechanism of interactions between phospholipids and the surface protein mucin is not well understood. In this study, the significance of interfacial interactions between phospholipids and mucin proteins was quantified by the combination of an in vitro intestinal surface model and label-free microinterferometry. The model of intestinal surfaces consists of planar lipid membranes deposited on solid substrates (supported membranes) that display mucin proteins at defined surface densities. Following the quantitative characterization of the systems, we monitored the vertical fluctuation of 10 μm-large particles on model intestinal surfaces by using microinterferometry, and calculated the effective interfacial interaction potentials by analytically solving the Langevin equation. We found that the spring constant of interfacial potentials calculated based on a harmonic approximation increased concomitantly with the increase in surface potentials, indicating the dominant role of electrostatic interactions. Intriguingly, the spring constants of particles coated with phospholipids do not follow electrostatic interactions. The spring constant of particles coated with zwitterionic phosphatidylcholine was larger compared to membranes incorporating positively or negatively charged lipids. Our data suggested the presence of another underlying molecular level interaction, such as phosphocholine-saccharide interactions. The fact that phosphatidylcholine sustains the binding capability to enzymatically degraded mucin suggests that the direct delivery of phosphatidylcholine to the damaged mucus is a promising strategy for the better treatment of patients affected by inflammatory bowel diseases.
Collapse
Affiliation(s)
- Federico Amadei
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
| | - Benjamin Fröhlich
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
| | - Wolfgang Stremmel
- Medical Center Baden-Baden , D76530 Baden-Baden , Germany
- Internal Medicine IV , University Hospital Heidelberg , D69120 Heidelberg , Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
- Center for Integrative Medicine and Physics, Institute for Advanced Study , Kyoto University , 606-8501 Kyoto , Japan
| |
Collapse
|
14
|
Mutants of β2-glycoprotein I: Their features and potent applications. Best Pract Res Clin Rheumatol 2018; 32:572-590. [DOI: 10.1016/j.berh.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Heberle FA, Pabst G. Complex biomembrane mimetics on the sub-nanometer scale. Biophys Rev 2017; 9:353-373. [PMID: 28717925 PMCID: PMC5578918 DOI: 10.1007/s12551-017-0275-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain-forming lipid mixtures to asymmetric lipid bilayers. Here, we review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. In particular, we focus on: (1) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function of a size transition from nanoscopic to macroscopic domains; (2) membrane-mediated protein partitioning into lipid domains; (3) the role of the aqueous medium in tuning interactions between membranes and domains; and (4) leaflet-specific structure in asymmetric bilayers and passive lipid flip-flop.
Collapse
Affiliation(s)
- Frederick A Heberle
- The Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA
- Joint Institute for Biological Sciences and Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, 8010, Graz, Austria.
- BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
16
|
Liu YW, Shia KS, Wu CH, Liu KL, Yeh YC, Lo CF, Chen CT, Chen YY, Yeh TK, Chen WH, Jan JJ, Huang YC, Huang CL, Fang MY, Gray BD, Pak KY, Hsu TA, Huang KH, Tsou LK. Targeting Tumor Associated Phosphatidylserine with New Zinc Dipicolylamine-Based Drug Conjugates. Bioconjug Chem 2017; 28:1878-1892. [PMID: 28581724 DOI: 10.1021/acs.bioconjchem.7b00225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A series of zinc(II) dipicolylamine (ZnDPA)-based drug conjugates have been synthesized to probe the potential of phosphatidylserine (PS) as a new antigen for small molecule drug conjugate (SMDC) development. Using in vitro cytotoxicity and plasma stability studies, PS-binding assay, in vivo pharmacokinetic studies, and maximum tolerated dose profiles, we provided a roadmap and the key parameters required for the development of the ZnDPA based drug conjugate. In particular, conjugate 24 induced tumor regression in the COLO 205 xenograft model and exhibited a more potent antitumor effect with a 70% reduction of cytotoxic payload compared to that of the marketed irinotecan when dosed at the same regimen. In addition to the validation of PS as an effective pharmacodelivery target for SMDC, our work also provided the foundation that, if applicable, a variety of therapeutic agents could be conjugated in the same manner to treat other PS-associated diseases.
Collapse
Affiliation(s)
- Yu-Wei Liu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Kuan-Liang Liu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Yu-Cheng Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Chen-Fu Lo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Yun-Yu Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Wei-Han Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Jiing-Jyh Jan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Yu-Chen Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Ming-Yu Fang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Brian D Gray
- Molecular Targeting Technologies, Inc. , West Chester, Pennsylvania 19380, United States
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc. , West Chester, Pennsylvania 19380, United States
| | - Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Kuan-Hsun Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| | - Lun K Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli 35053, Taiwan, ROC
| |
Collapse
|
17
|
Kolahdouzan K, Jackman JA, Yoon BK, Kim MC, Johal MS, Cho NJ. Optimizing the Formation of Supported Lipid Bilayers from Bicellar Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5052-5064. [PMID: 28457139 DOI: 10.1021/acs.langmuir.7b00210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Supported lipid bilayers (SLBs) are widely studied model membrane platforms that are compatible with various surface-sensitive measurement techniques. SLBs are typically formed on silica-based materials, and there are numerous possible fabrication routes involving either bottom-up molecular self-assembly or vesicle adsorption and rupture. In between these two classes of fabrication strategies lies an emerging approach based on depositing quasi-two-dimensional lamellar, bicellar disks composed of a mixture of long-chain and short-chain phospholipids to promote the formation of SLBs. This approach takes advantage of the thermodynamic preference of long-chain phospholipids to form planar SLBs, whereas short-chain phospholipids have brief residence times. Although a few studies have shown that SLBs can be formed on silica-based materials from bicellar mixtures, outstanding questions remain about the self-assembly mechanism as well as the influence of the total phospholipid concentration, ratio of the two phospholipids (termed the "q-ratio"), and process of sample preparation. Herein, we address these questions through comprehensive quartz crystal microbalance-dissipation, fluorescence microscopy, and fluorescence recovery after photobleaching experiments. Our findings identify that optimal SLB formation occurs at lower total concentrations of phospholipids than previously used as short-chain phospholipids behave like membrane-destabilizing detergents at higher concentrations. Using lower phospholipid concentrations, we also discovered that the formation of SLBs proceeds through a two-step mechanism involving a critical coverage of bicellar disks akin to vesicle fusion. In addition, the results indicate that at least one cycle of freeze-thaw-vortexing is useful during the sample preparation process to produce SLBs. Taken together, the findings in this work identify optimal routes for fabricating SLBs from bicellar mixtures and reveal mechanistic details about the bicelle-mediated SLB formation process, which will aid further exploration of bicellar mixtures as tools for model membrane fabrication.
Collapse
Affiliation(s)
- Kavoos Kolahdouzan
- Department of Chemistry, Pomona College , 645 North College Avenue, Claremont, California 91711, United States
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Min Chul Kim
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Malkiat S Johal
- Department of Chemistry, Pomona College , 645 North College Avenue, Claremont, California 91711, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
18
|
Eicher B, Heberle FA, Marquardt D, Rechberger GN, Katsaras J, Pabst G. Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles. J Appl Crystallogr 2017; 50:419-429. [PMID: 28381971 PMCID: PMC5377341 DOI: 10.1107/s1600576717000656] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022] Open
Abstract
Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effort but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ∼120 nm diameter palmitoyl-oleoyl phosphatidyl-choline (POPC) vesicles, compared to the inner leaflet. Analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K, i.e. above the melting transition temperature of the two lipids.
Collapse
Affiliation(s)
- Barbara Eicher
- Instiute of Molecular Biosciences, Biophysics Division, University of Graz, Austria; BioTechMed-Graz, Graz, 8010, Austria
| | - Frederick A Heberle
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA; Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Drew Marquardt
- Instiute of Molecular Biosciences, Biophysics Division, University of Graz, Austria; BioTechMed-Graz, Graz, 8010, Austria
| | - Gerald N Rechberger
- Instiute of Molecular Biosciences, University of Graz, Austria; Omics-Center Graz, BioTechMed-Graz, Austria
| | - John Katsaras
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Georg Pabst
- Instiute of Molecular Biosciences, Biophysics Division, University of Graz, Austria; BioTechMed-Graz, Graz, 8010, Austria
| |
Collapse
|
19
|
Gallová J, Klacsová M, Devínsky F, Balgavý P. Partial volumes of cholesterol and monounsaturated diacylphosphatidylcholines in mixed bilayers. Chem Phys Lipids 2015; 190:1-8. [DOI: 10.1016/j.chemphyslip.2015.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
|