1
|
Zamir A, Rossich Molina E, Ahmed M, Stein T. Water confinement in small polycyclic aromatic hydrocarbons. Phys Chem Chem Phys 2022; 24:28788-28793. [PMID: 36382773 DOI: 10.1039/d2cp04773j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The confinement of water molecules is vital in fields from biology to nanotechnology. The conditions allowing confinement in small finite polycyclic aromatic hydrocarbons (PAHs) are unclear, yet are crucial for understanding confinement in larger systems. Here, we report a computational study of water cluster confinement within PAHs dimers. Our results serve as a model for larger carbon allotropes and for understanding molecular interactions in confined systems. We identified size and structural motifs allowing confinement and demonstrated the motifs in various PAHs systems. We show that optimal OH⋯π interactions between water clusters and the PAH dimer permit optimal confinement to occur. However, the lack of such interactions leads to the formation of CH⋯O interactions, resulting in less ideal confinement. Confinement of layered clusters is also possible, provided that the optimal OH⋯π interactions are conserved.
Collapse
Affiliation(s)
- Alon Zamir
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Estefania Rossich Molina
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Tamar Stein
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
2
|
Rossich Molina E, Xu B, Kostko O, Ahmed M, Stein T. A combined theoretical and experimental study of small anthracene-water clusters. Phys Chem Chem Phys 2022; 24:23106-23118. [PMID: 35975620 DOI: 10.1039/d2cp02617a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water-cluster interactions with polycyclic aromatic hydrocarbons (PAHs) are of paramount interest in many chemical and biological processes. We report a study of anthracene monomers and dimers with water (up to four)-cluster systems utilizing molecular beam vacuum-UV photoionization mass spectrometry and density functional calculations. Structural loss in photoionization efficiency curves when adding water indicates that various isomers are generated, while theory indicates only a slight shift in energy in photoionization states of different isomers. Calculations reveal that the energetic tendency of water is to remain clustered and not to disperse around the PAH. Theoretically, we observe water confinement exclusively in the case of four water clusters and only when the anthracenes are in a cross configuration due to optimal OH⋯π interactions, indicating dependence on the size and structure of the PAH. Furthermore theory sheds light on the structural changes that occur in water upon ionization of anthracene, due to the optimal interactions of the resulting hole and water hydrogen atoms.
Collapse
Affiliation(s)
- Estefania Rossich Molina
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Bo Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Tamar Stein
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
3
|
Sun S, Song J, Cui N, Kwon MZ, Cai H, Lee ES, Jiang HB. Research of weak interaction between water and different monolayer graphene systems. J Mol Graph Model 2021; 104:107835. [PMID: 33444978 DOI: 10.1016/j.jmgm.2021.107835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/04/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022]
Abstract
Weak interactions play a very important role in the fields of supramolecular chemistry, molecular physics, materials science, etc. They have a great impact on the structure of the compounds in the gas, liquid and solid phases and the mechanism of some reaction processes. In this study, we visualized the intermolecular interactions between H2O and different graphene systems through density functional theory. Because the surface of Graphene oxide (GO) has epoxy groups, hydroxyl groups, and other oxygen-containing groups. These groups are prone to hydrogen bonding with hydrogen atoms of H2O, and we further explain some of them based on the acid-base theory. Also, we obtained the components of interactions between different graphene complex and H2O by energy decomposition. Then we found that for systems with moderate strength hydrogen bonding, such as hydroxyl functional group systems, electrostatic attraction is dominant while the dispersion attraction and induction function play an auxiliary role together.
Collapse
Affiliation(s)
- Shixun Sun
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Jiaming Song
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Naiyu Cui
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Mi-Za Kwon
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul, 02841, South Korea
| | - HongXin Cai
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Eui-Seok Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul, 02841, South Korea.
| | - Heng Bo Jiang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China.
| |
Collapse
|
4
|
Computational study of the water-driven graphene wrinkle life-cycle towards applications in flexible electronics. Sci Rep 2020; 10:11315. [PMID: 32647172 PMCID: PMC7347945 DOI: 10.1038/s41598-020-68080-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/17/2020] [Indexed: 11/25/2022] Open
Abstract
The ubiquitous presence of wrinkles in two-dimensional materials alters their properties significantly. It is observed that during the growth process of graphene, water molecules, sourced from ambient humidity or transferred method used, can get diffused in between graphene and the substrate. The water diffusion causes/assists wrinkle formation in graphene, which influences its properties. The diffused water eventually dries, altering the geometrical parameters and properties of wrinkled graphene nanoribbons. Our study reveals that the initially distributed wrinkles tend to coalesce to form a localized wrinkle whose configuration depends on the initial wrinkle geometry and the quantity of the diffused water. The movement of the localized wrinkle is categorized into three modes—bending, buckling, and sliding. The sliding mode is characterized in terms of velocity as a function of diffused water quantity. Direct bandgap increases linearly with the initial angle except the highest angle considered (21°), which can be attributed to the electron tunneling effect observed in the orbital analysis. The system becomes stable with an increase in the initial angle of wrinkle as observed from the potential energy plots extracted from MD trajectories and confirmed with the DOS plot. The maximum stress generated is less than the plastic limit of the graphene.
Collapse
|
5
|
First-principles modeling of water permeation through periodically porous graphene derivatives. J Colloid Interface Sci 2019; 538:367-376. [DOI: 10.1016/j.jcis.2018.11.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/24/2023]
|
6
|
Brandenburg JG, Zen A, Fitzner M, Ramberger B, Kresse G, Tsatsoulis T, Grüneis A, Michaelides A, Alfè D. Physisorption of Water on Graphene: Subchemical Accuracy from Many-Body Electronic Structure Methods. J Phys Chem Lett 2019; 10:358-368. [PMID: 30615460 DOI: 10.1021/acs.jpclett.8b03679] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wet carbon interfaces are ubiquitous in the natural world and exhibit anomalous properties, which could be exploited by emerging technologies. However, progress is limited by lack of understanding at the molecular level. Remarkably, even for the most fundamental system (a single water molecule interacting with graphene), there is no consensus on the nature of the interaction. We tackle this by performing an extensive set of complementary state-of-the-art computer simulations on some of the world's largest supercomputers. From this effort a consensus on the water-graphene interaction strength has been obtained. Our results have significant impact for the physical understanding, as they indicate that the interaction is weaker than predicted previously. They also pave the way for more accurate and reliable studies of liquid water at carbon interfaces.
Collapse
Affiliation(s)
- Jan Gerit Brandenburg
- Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom
| | - Andrea Zen
- Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom
| | - Martin Fitzner
- Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom
| | - Benjamin Ramberger
- University of Vienna , Faculty of Physics and Center for Computational Materials Sciences , Sensengasse 8/12 , 1090 Wien , Austria
| | - Georg Kresse
- University of Vienna , Faculty of Physics and Center for Computational Materials Sciences , Sensengasse 8/12 , 1090 Wien , Austria
| | - Theodoros Tsatsoulis
- Institute for Theoretical Physics , Vienna University of Technology , Wiedner Hauptstrasse 8-10 , 1040 Vienna , Austria
- Max Planck Institute for Solid State Research , Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| | - Andreas Grüneis
- Institute for Theoretical Physics , Vienna University of Technology , Wiedner Hauptstrasse 8-10 , 1040 Vienna , Austria
- Max Planck Institute for Solid State Research , Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| | - Angelos Michaelides
- Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom
| | - Dario Alfè
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom
- Department of Earth Sciences , University College London , Gower Street , London WC1E 6BT , United Kingdom
- Dipartimento di Fisica Ettore Pancini , Università di Napoli Federico II , Monte S. Angelo, I-80126 Napoli , Italy
| |
Collapse
|
7
|
Xu B, Stein T, Ablikim U, Jiang L, Hendrix J, Head-Gordon M, Ahmed M. Probing solvation and reactivity in ionized polycyclic aromatic hydrocarbon–water clusters with photoionization mass spectrometry and electronic structure calculations. Faraday Discuss 2019; 217:414-433. [DOI: 10.1039/c8fd00229k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synchrotron based mass spectrometry coupled with theoretical calculations provides insight into polycyclic aromatic hydrocarbon water interactions.
Collapse
Affiliation(s)
- Bo Xu
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Tamar Stein
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Utuq Ablikim
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- People’s Republic of China
| | - Josie Hendrix
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Martin Head-Gordon
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Department of Chemistry
| | - Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| |
Collapse
|
8
|
Yang L, Guo Y, Diao D. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement. Phys Chem Chem Phys 2017; 19:14048-14054. [DOI: 10.1039/c7cp01962a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The friction coefficient at the water/graphene interface is dependent on the lateral pressure and nanochannel height under gigapascal high-pressure.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System
- School of Mechanical Engineering
- Xi’an Jiaotong University
- Xi'an 710049
- China
| | - Yanjie Guo
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System
- School of Mechanical Engineering
- Xi’an Jiaotong University
- Xi'an 710049
- China
| | - Dongfeng Diao
- Institute of Nanosurface Science and Engineering (INSE)
- Shenzhen University
- Shenzhen 518060
- China
| |
Collapse
|
9
|
Striolo A, Michaelides A, Joly L. The Carbon-Water Interface: Modeling Challenges and Opportunities for the Water-Energy Nexus. Annu Rev Chem Biomol Eng 2016; 7:533-56. [DOI: 10.1146/annurev-chembioeng-080615-034455] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Providing clean water and sufficient affordable energy to all without compromising the environment is a key priority in the scientific community. Many recent studies have focused on carbon-based devices in the hope of addressing this grand challenge, justifying and motivating detailed studies of water in contact with carbonaceous materials. Such studies are becoming increasingly important because of the miniaturization of newly proposed devices, with ubiquitous nanopores, large surface-to-volume ratio, and many, perhaps most of the water molecules in contact with a carbon-based surface. In this brief review, we discuss some recent advances obtained via simulations and experiments in the development of carbon-based materials for applications in water desalination. We suggest possible ways forward, with particular emphasis on the synergistic combination of experiments and simulations, with simulations now sometimes offering sufficient accuracy to provide fundamental insights. We also point the interested reader to recent works that complement our short summary on the state of the art of this important and fascinating field.
Collapse
Affiliation(s)
- Alberto Striolo
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Angelos Michaelides
- Thomas Young Centre, London Centre for Nanotechnology, and Department of Physics and Astronomy, University College London, London WC1H 0AH, United Kingdom
| | - Laurent Joly
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, France
| |
Collapse
|