1
|
Epasto LM, Maimbourg T, Rosso A, Kurzbach D. Unified understanding of the breakdown of thermal mixing dynamic nuclear polarization: The role of temperature and radical concentration. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107670. [PMID: 38603922 DOI: 10.1016/j.jmr.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
We reveal an interplay between temperature and radical concentration necessary to establish thermal mixing (TM) as an efficient dynamic nuclear polarization (DNP) mechanism. We conducted DNP experiments by hyperpolarizing widely used DNP samples, i.e., sodium pyruvate-1-13C in water/glycerol mixtures at varying nitroxide radical (TEMPOL) concentrations and microwave irradiation frequencies, measuring proton and carbon-13 spin temperatures. Using a cryogen consumption-free prototype-DNP apparatus, we could probe cryogenic temperatures between 1.5 and 6.5 K, i.e., below and above the boiling point of liquid helium. We identify two mechanisms for the breakdown of TM: (i) Anderson type of quantum localization for low radical concentration, or (ii) quantum Zeno localization occurring at high temperature. This observation allowed us to reconcile the recent diverging observations regarding the relevance of TM as a DNP mechanism by proposing a unifying picture and, consequently, to find a trade-off between radical concentration and electron relaxation times, which offers a pathway to improve experimental DNP performance based on TM.
Collapse
Affiliation(s)
- Ludovica M Epasto
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria
| | - Thibaud Maimbourg
- Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, 91191, Gif-sur-Yvette, France
| | - Alberto Rosso
- Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France.
| | - Dennis Kurzbach
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Lê TP, Hyacinthe JN, Capozzi A. Multi-sample/multi-nucleus parallel polarization and monitoring enabled by a fluid path technology compatible cryogenic probe for dissolution dynamic nuclear polarization. Sci Rep 2023; 13:7962. [PMID: 37198242 DOI: 10.1038/s41598-023-34958-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
Low throughput is one of dissolution Dynamic Nuclear Polarization (dDNP) main shortcomings. Especially for clinical and preclinical applications, where direct 13C nuclei polarization is usually pursued, it takes hours to generate one single hyperpolarized (HP) sample. Being able to hyperpolarize more samples at once represents a clear advantage and can expand the range and complexity of the applications. In this work, we present the design and performance of a highly versatile and customizable dDNP cryogenic probe, herein adapted to a 5 T "wet" preclinical polarizer, that can accommodate up to three samples at once and, most importantly, it is capable of monitoring the solid-state spin dynamics of each sample separately, regardless of the kind of radical used and the nuclear species of interest. Within 30 min, the system was able to dispense three HP solutions with high repeatability across the channels (30.0 ± 1.2% carbon polarization for [1-13C]pyruvic acid doped with trityl radical). Moreover, we tested multi-nucleus NMR capability by polarizing and monitoring simultaneously 13C, 1H and 129Xe. Finally, we implemented [1-13C]lactate/[1-13C]pyruvate polarization and back-to-back dissolution and injection in a healthy mouse model to perform multiple-substrate HP Magnetic Resonance Spectroscopy (MRS) at 14.1 T.
Collapse
Affiliation(s)
- Thanh Phong Lê
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland
- Image Guided Intervention Laboratory, Department of Radiology and Medical Informatics, University of Geneva, 4 Rue Gabrielle - Perret - Gentil, 1211, Geneva, Switzerland
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, 47 Avenue de Champel, 1206, Geneva, Switzerland
| | - Andrea Capozzi
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland.
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Building 349, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
3
|
Maimbourg T, Basko DM, Holzmann M, Rosso A. Bath-Induced Zeno Localization in Driven Many-Body Quantum Systems. PHYSICAL REVIEW LETTERS 2021; 126:120603. [PMID: 33834813 DOI: 10.1103/physrevlett.126.120603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
We study a quantum interacting spin system subject to an external drive and coupled to a thermal bath of vibrational modes, uncorrelated for different spins, serving as a model for dynamic nuclear polarization protocols. We show that even when the many-body eigenstates of the system are ergodic, a sufficiently strong coupling to the bath may effectively localize the spins due to many-body quantum Zeno effect. Our results provide an explanation of the breakdown of the thermal mixing regime experimentally observed above 4-5 K in these protocols.
Collapse
Affiliation(s)
| | - Denis M Basko
- Université Grenoble Alpes and LPMMC, CNRS, 25 rue des Martyrs, 38042 Grenoble, France
| | - Markus Holzmann
- Université Grenoble Alpes and LPMMC, CNRS, 25 rue des Martyrs, 38042 Grenoble, France
| | - Alberto Rosso
- LPTMS, CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
4
|
Jähnig F, Himmler A, Kwiatkowski G, Däpp A, Hunkeler A, Kozerke S, Ernst M. A spin-thermodynamic approach to characterize spin dynamics in TEMPO-based samples for dissolution DNP at 7 T field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 303:91-104. [PMID: 31030064 DOI: 10.1016/j.jmr.2019.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
The spin dynamics of dissolution DNP samples consisting of 4.5 M [13C]urea in a mixture of (1/1)Vol glycerol/water using 4-Oxo-TEMPO as a radical was investigated. We analyzed the DNP dynamics as function of radical concentration at 7 T and 3.4 T static magnetic field as well as function of deuteration of the solvent matrix at the high field. The spin dynamics could be reproduced in all cases, at least qualitatively, by a thermodynamic model based on spin temperatures of the nuclear Zeeman baths and an electron non-Zeeman (dipolar) bath. We find, however, that at high field (7 T) and low radical concentrations (25 mM) the nuclear spins do not reach the same spin temperature indicating a weak coupling of the two baths. At higher radical concentrations, as well as for all radical concentrations at low field (3.4 T), the two nuclear Zeeman baths reach the same spin temperature within experimental errors. Additionally, the spin system was prepared with different initial conditions. For these cases, the thermodynamic model was able to predict the time evolution of the system well. While the DNP profiles do not give clear indications to a specific polarization transfer mechanism, at high field (7 T) increased coupling is seen. The EPR line shapes cannot clarify this in absence of ELDOR type experiments, nevertheless DNP profiles and dynamics under frequency-modulated microwave irradiation illustrate the expected increase in coupling between electrons with increasing radical concentration.
Collapse
Affiliation(s)
- Fabian Jähnig
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Aaron Himmler
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Grzegorz Kwiatkowski
- Institute for Biomedical Engineering, University and ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - Alexander Däpp
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Andreas Hunkeler
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|
5
|
Caracciolo F, Charlaftis E, Melone L, Carretta P. Molecular Dynamics and Hyperpolarization Performance of Deuterated β-Cyclodextrins. J Phys Chem B 2019; 123:3731-3737. [DOI: 10.1021/acs.jpcb.9b01857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering G. Natta, Politecnico di Milano, 20133 Milano, Italy
| | - Pietro Carretta
- Department of Physics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
A new hyperpolarized 13C ketone body probe reveals an increase in acetoacetate utilization in the diabetic rat heart. Sci Rep 2019; 9:5532. [PMID: 30940842 PMCID: PMC6445118 DOI: 10.1038/s41598-019-39378-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/17/2019] [Indexed: 12/27/2022] Open
Abstract
Emerging studies have recently shown the potential importance of ketone bodies in cardio-metabolic health. However, techniques to determine myocardial ketone body utilization in vivo are lacking. In this work, we developed a novel method to assess myocardial ketone body utilization in vivo using hyperpolarized [3-13C]acetoacetate and investigated the alterations in myocardial ketone body metabolism in diabetic rats. Within a minute upon injection of [3-13C]acetoacetate, the production of [5-13C]glutamate and [1-13C] acetylcarnitine can be observed real time in vivo. In diabetic rats, the production of [5-13C]glutamate was elevated compared to controls, while [1-13C]acetylcarnitine was not different. This suggests an increase in ketone body utilization in the diabetic heart, with the produced acetyl-CoA channelled into the tricarboxylic acid cycle. This observation was corroborated by an increase activity of succinyl-CoA:3-ketoacid-CoA transferase (SCOT) activity, the rate-limiting enzyme of ketone body utilization, in the diabetic heart. The increased ketone body oxidation in the diabetic hearts correlated with cardiac hypertrophy and dysfunction, suggesting a potential coupling between ketone body metabolism and cardiac function. Hyperpolarized [3-13C]acetoacetate is a new probe with potential for non-invasive and real time monitoring of myocardial ketone body oxidation in vivo, which offers a powerful tool to follow disease progression or therapeutic interventions.
Collapse
|
7
|
Flori A, Giovannetti G, Santarelli MF, Aquaro GD, De Marchi D, Burchielli S, Frijia F, Positano V, Landini L, Menichetti L. Biomolecular imaging of 13C-butyrate with dissolution-DNP: Polarization enhancement and formulation for in vivo studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:153-160. [PMID: 29597071 DOI: 10.1016/j.saa.2018.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/19/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Magnetic Resonance Spectroscopy of hyperpolarized isotopically enriched molecules facilitates the non-invasive real-time investigation of in vivo tissue metabolism in the time-frame of a few minutes; this opens up a new avenue in the development of biomolecular probes. Dissolution Dynamic Nuclear Polarization is a hyperpolarization technique yielding a more than four orders of magnitude increase in the 13C polarization for in vivo Magnetic Resonance Spectroscopy studies. As reported in several studies, the dissolution Dynamic Nuclear Polarization polarization performance relies on the chemico-physical properties of the sample. In this study, we describe and quantify the effects of the different sample components on the dissolution Dynamic Nuclear Polarization performance of [1-13C]butyrate. In particular, we focus on the polarization enhancement provided by the incremental addition of the glassy agent dimethyl sulfoxide and gadolinium chelate to the formulation. Finally, preliminary results obtained after injection in healthy rats are also reported, showing the feasibility of an in vivo Magnetic Resonance Spectroscopy study with hyperpolarized [1-13C]butyrate using a 3T clinical set-up.
Collapse
Affiliation(s)
- Alessandra Flori
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Giulio Giovannetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | | | | | | | | | | | | | - Luigi Landini
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy; Department of Electronic Engineering, University of Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy; Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
8
|
Caracciolo F, Paioni AL, Filibian M, Melone L, Carretta P. Proton and Carbon-13 Dynamic Nuclear Polarization of Methylated β-Cyclodextrins. J Phys Chem B 2018; 122:1836-1845. [PMID: 29350528 DOI: 10.1021/acs.jpcb.7b11950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1H and 13C dynamic nuclear polarizations have been studied in 13C-enriched β-cyclodextrins doped with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl free radical. 1H and 13C polarizations raised above 7.5 and 7%, respectively, and for both nuclear species, the transfer of polarization from the electron spins appears to be consistent with a thermal mixing scenario for a concentration of 9 13C nuclei per molecule. When the concentration is increased to 21 13C nuclei per molecule, a decrease in the spin-lattice relaxation and polarization buildup rates is observed. This reduction is associated with the bottleneck effect induced by the decrease in the number of electron spins per nucleus when both the nuclear spin-lattice relaxation and the polarization occur through the electron non-Zeeman reservoir. 13C nuclear spin-lattice relaxation has been studied in the 1.8-340 K range, and the effects of internal molecular motions and of the free radicals on the relaxation are discussed. 13C hyperpolarization performances and room-temperature spin-lattice relaxation times show that these are promising materials for future biomedical applications.
Collapse
Affiliation(s)
| | - Alessandra Lucini Paioni
- Department of Physics, University of Pavia , 27100 Pavia, Italy.,NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marta Filibian
- Department of Physics, University of Pavia , 27100 Pavia, Italy
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering G. Natta, Politecnico di Milano , 20133 Milano, Italy
| | - Pietro Carretta
- Department of Physics, University of Pavia , 27100 Pavia, Italy
| |
Collapse
|
9
|
Caracciolo F, Carretta P, Filibian M, Melone L. Dynamic Nuclear Polarization of β-Cyclodextrin Macromolecules. J Phys Chem B 2017; 121:2584-2593. [PMID: 28260385 DOI: 10.1021/acs.jpcb.7b00836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1H dynamic nuclear polarization and nuclear spin-lattice relaxation rates have been studied in amorphous complexes of β-cyclodextrins doped with different concentrations of the TEMPO radical. Nuclear polarization increased up to 10% in the optimal case, with a behavior of the buildup rate (1/TPOL) and of the nuclear spin-lattice relaxation rate (1/T1n) consistent with a thermal mixing regime. The temperature dependence of 1/T1n and its increase with the radical concentration indicate a relaxation process arising from the modulation of the electron-nucleus coupling by the glassy dynamics. The high-temperature relaxation is driven by molecular motions, and 1/T1n was studied at room temperature in liquid solutions for dilution levels close to the ones typically used for in vivo studies.
Collapse
Affiliation(s)
- Filippo Caracciolo
- Department of Physics, University of Pavia , Via Bassi 6, 27100 Pavia, Italy
| | - Pietro Carretta
- Department of Physics, University of Pavia , Via Bassi 6, 27100 Pavia, Italy
| | - Marta Filibian
- Department of Physics, University of Pavia , Via Bassi 6, 27100 Pavia, Italy
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering G. Natta, Politecnico of Milano , Piazza Leonardo da Vinci 32, 20133 Milano, Italy.,E-campus University , Via Isimbardi 10, 22060 Novedrate, Como, Italy
| |
Collapse
|
10
|
Chen H, Maryasov AG, Rogozhnikova OY, Trukhin DV, Tormyshev VM, Bowman MK. Electron spin dynamics and spin-lattice relaxation of trityl radicals in frozen solutions. Phys Chem Chem Phys 2016; 18:24954-65. [PMID: 27560644 PMCID: PMC5482570 DOI: 10.1039/c6cp02649d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron spin-lattice relaxation of two trityl radicals, d24-OX063 and Finland trityl, were studied under conditions relevant to their use in dissolution dynamic nuclear polarization (DNP). The dependence of relaxation kinetics on temperature up to 100 K and on concentration up to 60 mM was obtained at X- and W-bands (0.35 and 3.5 Tesla, respectively). The relaxation is quite similar at both bands and for both trityl radicals. At concentrations typical for DNP, relaxation is mediated by excitation transfer and spin-diffusion to fast-relaxing centers identified as triads of trityl radicals that spontaneously form in the frozen samples. These centers relax by an Orbach-Aminov mechanism and determine the relaxation, saturation and electron spin dynamics during DNP.
Collapse
Affiliation(s)
- Hanjiao Chen
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Filibian M, Elisei E, Colombo Serra S, Rosso A, Tedoldi F, Cesàro A, Carretta P. Nuclear magnetic resonance studies of DNP-ready trehalose obtained by solid state mechanochemical amorphization. Phys Chem Chem Phys 2016; 18:16912-20. [PMID: 27282123 DOI: 10.1039/c6cp00914j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
(1)H nuclear spin-lattice relaxation and Dynamic Nuclear Polarization (DNP) have been studied in amorphous samples of trehalose sugar doped with TEMPO radicals by means of mechanical milling, in the 1.6-4.2 K temperature range. The radical concentration was varied between 0.34 and 0.81%. The highest polarization of 15% at 1.6 K, observed in the sample with concentration 0.50%, is of the same order of magnitude of that reported in standard frozen solutions with TEMPO. The temperature and concentration dependence of the spin-lattice relaxation rate 1/T1, dominated by the coupling with the electron spins, were found to follow power laws with an exponent close to 3 in all samples. The observed proportionality between 1/T1 and the polarization rate 1/Tpol, with a coefficient related to the electron polarization, is consistent with the presence of Thermal Mixing (TM) and a good contact between the nuclear and the electron spins. At high electron concentration additional relaxation channels causing a decrease in the nuclear polarization must be considered. These results provide further support for a more extensive use of amorphous DNP-ready samples, obtained by means of comilling, in dissolution DNP experiments and possibly for in vivo metabolic imaging.
Collapse
Affiliation(s)
- M Filibian
- Department of Physics, University of Pavia-CNISM, Via Bassi 6, 27100 Pavia, Italy.
| | - E Elisei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy and UMET, Unité Matériaux et Transformations, CNRS, Univ. Lille, F-59000 Lille, France
| | - S Colombo Serra
- Bracco Research Center, Bracco Imaging S.p.A., Via, Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | - A Rosso
- Laboratoire de Physique Théorique et Modèles Statistiques (UMR CNRS 8626), Université Paris-Sud, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - F Tedoldi
- Bracco Research Center, Bracco Imaging S.p.A., Via, Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | - A Cesàro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy and Elettra Sincrotrone Trieste, Area Science Park, I-34149 Trieste, Italy
| | - P Carretta
- Department of Physics, University of Pavia-CNISM, Via Bassi 6, 27100 Pavia, Italy.
| |
Collapse
|
12
|
Comment A. Dissolution DNP for in vivo preclinical studies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:39-48. [PMID: 26920829 DOI: 10.1016/j.jmr.2015.12.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
The tremendous polarization enhancement afforded by dissolution dynamic nuclear polarization (DNP) can be taken advantage of to perform preclinical in vivo molecular and metabolic imaging. Following the injection of molecules that are hyperpolarized via dissolution DNP, real-time measurements of their biodistribution and metabolic conversion can be recorded. This technology therefore provides a unique and invaluable tool for probing cellular metabolism in vivo in animal models in a noninvasive manner. It gives the opportunity to follow and evaluate disease progression and treatment response without requiring ex vivo destructive tissue assays. Although its considerable potential has now been widely recognized, hyperpolarized magnetic resonance by dissolution DNP remains a challenging method to implement for routine in vivo preclinical measurements. The aim of this article is to provide an overview of the current state-of-the-art technology for preclinical applications and the challenges that need to be addressed to promote it and allow its wider dissemination in the near future.
Collapse
Affiliation(s)
- Arnaud Comment
- General Electric Healthcare, Pollards Wood, Nightingales Lane, Chalfont St Giles, Buckinghamshire HP8 4SP, United Kingdom; Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
13
|
Caracciolo F, Filibian M, Carretta P, Rosso A, De Luca A. Evidence of spin-temperature in dynamic nuclear polarization: an exact computation of the EPR spectrum. Phys Chem Chem Phys 2016; 18:25655-25662. [DOI: 10.1039/c6cp05047f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show the validity of the spin-temperature approach for typical radical concentration used in dissolution DNP protocols.
Collapse
Affiliation(s)
| | - Marta Filibian
- University of Pavia
- Department of Physics
- 27100-Pavia
- Italy
| | | | - Alberto Rosso
- LPTMS
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 91405 Orsay
| | - Andrea De Luca
- LPTMS
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 91405 Orsay
| |
Collapse
|
14
|
De Luca A, Rosso A. Dynamic Nuclear Polarization and the Paradox of Quantum Thermalization. PHYSICAL REVIEW LETTERS 2015; 115:080401. [PMID: 26340169 DOI: 10.1103/physrevlett.115.080401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Indexed: 06/05/2023]
Abstract
Dynamic nuclear polarization (DNP) is to date the most effective technique to increase the nuclear polarization opening disruptive perspectives for medical applications. In a DNP setting, the interacting spin system is quasi-isolated and brought out of equilibrium by microwave irradiation. Here we show that the resulting stationary state strongly depends on the ergodicity properties of the spin many-body eigenstates. In particular, the dipolar interactions compete with the disorder induced by local magnetic fields resulting in two distinct dynamical phases: while for weak interaction, only a small enhancement of polarization is observed, for strong interactions the spins collectively equilibrate to an extremely low effective temperature that boosts DNP efficiency. We argue that these two phases are intimately related to the problem of thermalization in closed quantum systems where a many-body localization transition can occur varying the strength of the interactions.
Collapse
Affiliation(s)
- Andrea De Luca
- Laboratoire de Physique Théorique et Modèles Statistiques (UMR CNRS 8626), Université Paris-Sud, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - Alberto Rosso
- Laboratoire de Physique Théorique et Modèles Statistiques (UMR CNRS 8626), Université Paris-Sud, Bât. 100, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| |
Collapse
|