1
|
Dias J, Correia D, Costa C, Botelho G, Vilas-Vilela J, Lanceros-Mendez S. Thermal degradation behavior of ionic liquid/ fluorinated polymer composites: Effect of polymer type and ionic liquid anion and cation. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Kashin AS, Ananikov VP. Monitoring chemical reactions in liquid media using electron microscopy. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0133-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Karimi M, Abdolrahimi S, Pazuki G. Bioconjugation of enzyme with silica microparticles: a promising platform for α-amylase partitioning. RSC Adv 2019; 9:18217-18221. [PMID: 35515231 PMCID: PMC9064637 DOI: 10.1039/c9ra02342a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/25/2019] [Indexed: 12/05/2022] Open
Abstract
Here, we report the implementation of α-amylase conjugated silica microparticles for improvement of α-amylase partitioning in a PEG-organic salt-based aqueous two phase system. A direct reduction method was employed for the synthesis of silica microparticles with simultaneous introduction of α-amylase. In this context, we synthesized three different silica α-amylase conjugated microparticles with variation of tetraethyl orthosilicate concentration, and thus the effect of final particle size and enzyme loading on partitioning was also studied. The partition coefficient ratio of α-amylase to Si:α-amylase of 2.186 : 21.701 validated an almost tenfold increase in separation. The microscopic structure of the system was thoroughly investigated in order to understand the extraction mechanism and any possible denaturation. Improved partition coefficients can be interpreted by the formation of α-amylase-silica-PEG carriers. Furthermore, circular dichroism (CD) spectra validated partial unfolding of the enzyme.
Collapse
Affiliation(s)
- Maryam Karimi
- Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Shiva Abdolrahimi
- Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Gholamreza Pazuki
- Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
4
|
McQueen L, Lai D. Ionic Liquid Aqueous Two-Phase Systems From a Pharmaceutical Perspective. Front Chem 2019; 7:135. [PMID: 30931300 PMCID: PMC6428778 DOI: 10.3389/fchem.2019.00135] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/21/2019] [Indexed: 12/30/2022] Open
Abstract
Aqueous Two-Phase Systems (ATPSs) have been extensively studied for their ability to simultaneously separate and purify active pharmaceutical ingredients (APIs) and key intermediates with high yields and high purity. Depending on the ATPS composition, it can be adapted for the separation and purification of cells, nucleic acids, proteins, antibodies, and small molecules. This method has been shown to be scalable, allowing it to be used in the milliliter scale for early drug development to thousands of liters in manufacture for commercial supply. The benefits of ATPS in pharmaceutical separations is increasingly being recognized and investigated by larger pharmaceutical companies. ATPSs use identical instrumentation and similar methodology, therefore a change from traditional methods has a theoretical low barrier of adoption. The cost of typical components used to form an ATPS at large scale, particularly that of polymer-polymer systems, is the primary challenge to widespread use across industry. However, there are a few polymer-salt examples where the increase in yield at commercial scale justifies the cost of using ATPSs for macromolecule purification. More recently, Ionic Liquids (ILs) have been used for ATPS separations that is more sustainable as a solvent, and more economical than polymers often used in ATPSs for small molecule applications. Such IL-ATPSs still retain much of the attractive characteristics such as customizable chemical and physical properties, stability, safety, and most importantly, can provide higher yield separations of organic compounds, and efficient solvent recycling to lower financial and environmental costs of large scale manufacturing.
Collapse
Affiliation(s)
- Lisa McQueen
- Drug Product Design and Development, GlaxoSmithKline, Collegeville, PA, United States
| | - David Lai
- Product and Process Engineering, GlaxoSmithKline, Collegeville, PA, United States.,Advanced Manufacturing Technologies, GlaxoSmithKline, Collegeville, PA, United States
| |
Collapse
|
5
|
|
6
|
|
7
|
Soares RRG, Silva DFC, Fernandes P, Azevedo AM, Chu V, Conde JP, Aires-Barros MR. Miniaturization of aqueous two-phase extraction for biological applications: From micro-tubes to microchannels. Biotechnol J 2016; 11:1498-1512. [PMID: 27624685 DOI: 10.1002/biot.201600356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/26/2023]
Abstract
Aqueous two-phase extraction (ATPE) is a biocompatible liquid-liquid (L-L) separation technique that has been under research for several decades towards the purification of biomolecules, ranging from small metabolites to large animal cells. More recently, with the emergence of rapid-prototyping techniques for fabrication of microfluidic structures with intricate designs, ATPE gained an expanded range of applications utilizing physical phenomena occurring exclusively at the microscale. Today, research is being carried simultaneously in two different volume ranges, mL-scale (microtubes) and nL-scale (microchannels). The objective of this review is to give insight into the state of the art at both microtube and microchannel-scale and to analyze whether miniaturization is currently a competing or divergent technology in a field of applications including bioseparation, bioanalytics, enhanced fermentation processes, catalysis, high-throughput screening and physical/chemical compartmentalization. From our perspective, both approaches are worthy of investigation and, depending on the application, it is likely that either (i) one of the approaches will eventually become obsolete in particular research areas such as purification at the preparative scale or high-throughput screening applications; or (ii) both approaches will function as complementing techniques within the bioanalytics field.
Collapse
Affiliation(s)
- Ruben R G Soares
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel F C Silva
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Azevedo
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - M Raquel Aires-Barros
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Tan ZJ, Wang CY, Yang ZZ, Yi YJ, Wang HY, Zhou WL, Li FF. Ionic Liquid-Based Ultrasonic-Assisted Extraction of Secoisolariciresinol Diglucoside from Flaxseed (Linum usitatissimum L.) with Further Purification by an Aqueous Two-Phase System. Molecules 2015; 20:17929-43. [PMID: 26437389 PMCID: PMC6332368 DOI: 10.3390/molecules201017929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 11/16/2022] Open
Abstract
In this work, a two-step extraction methodology of ionic liquid-based ultrasonic-assisted extraction (IL-UAE) and ionic liquid-based aqueous two-phase system (IL-ATPS) was developed for the extraction and purification of secoisolariciresinol diglucoside (SDG) from flaxseed. In the IL-UAE step, several kinds of ILs were investigated as the extractants, to identify the IL that affords the optimum extraction yield. The extraction conditions such as IL concentration, ultrasonic irradiation time, and liquid–solid ratio were optimized using response surface methodology (RSM). In the IL-ATPS step, ATPS formed by adding kosmotropic salts to the IL extract was used for further separation and purification of SDG. The most influential parameters (type and concentration of salt, temperature, and pH) were investigated to obtain the optimum extraction efficiency. The maximum extraction efficiency was 93.35% under the optimal conditions of 45.86% (w/w) IL and 8.27% (w/w) Na2SO4 at 22 °C and pH 11.0. Thus, the combination of IL-UAE and IL-ATPS makes up a simple and effective methodology for the extraction and purification of SDG. This process is also expected to be highly useful for the extraction and purification of bioactive compounds from other important medicinal plants.
Collapse
Affiliation(s)
- Zhi-Jian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Chao-Yun Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Zi-Zhen Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Yong-Jian Yi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Hong-Ying Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Wan-Lai Zhou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Fen-Fang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
9
|
Vahidnia M, Pazuki G, Abdolrahimi S. Impact of polyethylene glycol as additive on the formation and extraction behavior of ionic-liquid based aqueous two-phase system. AIChE J 2015. [DOI: 10.1002/aic.15035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohammad Vahidnia
- Chemical Engineering Dept.; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Gholamreza Pazuki
- Chemical Engineering Dept.; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Shiva Abdolrahimi
- Chemical Engineering Dept.; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| |
Collapse
|
10
|
Luís A, Dinis TBV, Passos H, Taha M, Freire MG. Good's buffers as novel phase-forming components of ionic-liquid-based aqueous biphasic systems. Biochem Eng J 2015; 101:142-149. [PMID: 26435687 DOI: 10.1016/j.bej.2015.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aiming at the development of self-buffering and benign extraction/separation processes, this work reports a novel class of aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and organic biological buffers (Good's buffers, GBs). A large array of ILs and GBs was investigated, revealing than only the more hydrophobic and fluorinated ILs are able to form ABS. For these systems, the phase diagrams, tie-lines, tie-line lengths, and critical points were determined at 25 °C. The ABS were then evaluated as alternative liquid-liquid extraction strategies for two amino acids (L-phenylalanine and L-tryptophan). The single-step extraction efficiencies for the GB-rich phase range between 22.4 and 100.0 % (complete extraction). Contrarily to the most conventional IL-salt ABS, in most of the systems investigated, the amino acids preferentially migrate for the most biocompatible and hydrophilic GB-rich phase. Remarkably, in two of the studied ABS, L-phenylalanine completely partitions to the GB-rich phase while L-tryptophan shows a preferential affinity for the opposite phase. These results show that the extraction efficiencies of similar amino acids can be tailored by the design of the chemical structures of the phase-forming components, creating thus new possibilities for the use of IL-based ABS in biotechnological separations.
Collapse
Affiliation(s)
- Andreia Luís
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa B V Dinis
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Passos
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mohamed Taha
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|