1
|
Kottsov SY, Kopitsa GP, Baranchikov AE, Pavlova AA, Khamova TV, Badulina AO, Gorshkova YE, Selivanov NA, Simonenko NP, Nikiforova ME, Ivanov VK. Structural Insight into Ionogels: A Case Study of 1-Methyl-3-octyl-imidazolium Tetrafluoroborate Confined in Aerosil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23962-23972. [PMID: 39475052 DOI: 10.1021/acs.langmuir.4c03162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Ionogels were obtained by impregnating Aerosil A380 with 1-methyl-3-octyl-imidazolium tetrafluoroborate (OMIM BF4) ionic liquid (IL). The IL content of the ionogels varied from 16.3 to 79.9 mol %. There was evidence of the confinement of the IL in silica in the shift and broadening of the BF4- 19F NMR signal and in the noticeable (∼50 °C) decrease in the temperature of IL decomposition. For both the ionogels and the pure IL, the frequencies of IR vibrations were different, providing further evidence of the confinement effect. An analysis of textural characteristics revealed that, upon its addition to Aerosil, the IL sequentially adsorbed in the micropores, mesopores and interparticle space. SAXS measurements showed that, in the confined IL, the size of nonpolar correlations substantially increased, from 21.5 Å in the bare IL to 25.6 Å in the ionogel containing 28.1 mol % IL. Unexpectedly, for the ionogel with the lowest IL content (16.3 mol %), no nonpolar correlations were observed, indicating the strong distortion of the structure of the confined ionic liquid. To the best of the authors' knowledge, this is the first report on regular changes in nonpolar correlations in ionic liquids upon confinement in a porous solid. These structural correlations can easily be tuned by simply changing the IL content in the ionogel material.
Collapse
Affiliation(s)
- Sergei Yu Kottsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
| | - Gennady P Kopitsa
- Petersburg Nuclear Physics Institute NRC KI, Orlova rosha 1, 188300 Gatchina, Leningrad District, Russia
- Grebenshchikov Institute of Silicate Chemistry PNPI NRC KI, Adm. Makarova emb., 2, 199155 St. Petersburg, Russia
| | - Alexander E Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
| | - Alina A Pavlova
- Petersburg Nuclear Physics Institute NRC KI, Orlova rosha 1, 188300 Gatchina, Leningrad District, Russia
| | - Tamara V Khamova
- Grebenshchikov Institute of Silicate Chemistry PNPI NRC KI, Adm. Makarova emb., 2, 199155 St. Petersburg, Russia
| | - Alexandra O Badulina
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
- Faculty of Materials Science, Lomonosov Moscow State University, Leninskye Gory, 1, building 73, 119991 Moscow, Russia
| | - Yulia E Gorshkova
- Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna, Russia
- Institute of Physics, Kazan Federal University, Kremlyovskaya Street 16a, 420008 Kazan, Russia
| | - Nikita A Selivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
| | - Nikolay P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
| | - Marina E Nikiforova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
| | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, Vavilova st., 7, 117312 Moscow, Russia
| |
Collapse
|
2
|
Hessling J, Lange M, Schönhoff M. Confinement-enhanced Li + ion dynamics in an ionic liquid-based electrolyte in porous material. Phys Chem Chem Phys 2023; 25:23510-23518. [PMID: 37646481 DOI: 10.1039/d3cp02901h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
While Ionic Liquids (IL) are promising liquid electrolyte components for Li-ion batteries due to their high electrochemical stability and low volatility and flammability, unfavorable Lithium-anion clusters lead to poor Li+ transport properties such as low transference numbers. A confinement of ILs in nanoporous materials could overcome these problems, based on altered structural and dynamic properties of the confined ILs. We investigate the coordination and the Li+ dynamics in an IL/Li-salt mixture of 1-butyl-1-methylpyrrolidinium bis(trifluormethyl-sulfonyl)imide (Pyr14TFSA) and LiTFSA and reveal in how far the confinement has positive or negative effects on ion clustering in the electrolyte. To this end, the electrolyte is confined in mesoporous silica SBA-15 (pore diameter 8 nm or 4 nm) or the metal-organic framework (MOF) ZIF-8 (pore diameter 1.16 nm). Raman spectra elucidate the Li-anion coordination and the interaction of the ions with the walls. Temperature-dependent 7Li spin relaxation rates, analyzed within the model of Bloembergen, Purcell and Pound (BPP), allow statements on the local Li+ environment, the local Li+ dynamics and its activation. In the SBA-15 materials the Li+ coordination is unchanged with persisting Li-TFSA clusters. Furthermore, the local dynamics of Li+ is reduced upon confinement, as expected due to geometrical restrictions. At the same time, however, both structural and dynamic parameters do not show a pronounced dependence on the pore size. Surprisingly, upon confinement in ZIF-8 Li+ displays faster local dynamics and a more asymmetric environment in comparison to the bulk electrolyte. The enhanced dynamics is accompanied by a reduced coordination to TFSA-, suggesting the breakup of Li-TFSA clusters. Differences between the porous materials are attributed to the nature of the wall surface, as Raman spectra suggest that in SBA-15 the TFSA- ion is preferentially interacting with the pore walls, whereas in ZIF-8 the Pyr14+ ion is immobilized by the pore walls. These results demonstrate a strong influence of internal interfaces on IL structure and dynamics and bear potential for further tailoring ion dynamics.
Collapse
Affiliation(s)
- Janis Hessling
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, D-48149 Münster, Germany.
| | - Martin Lange
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, D-48149 Münster, Germany
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, D-48149 Münster, Germany.
| |
Collapse
|
3
|
Chen WQ, Jivkov AP, Sedighi M. Thermo-Osmosis in Charged Nanochannels: Effects of Surface Charge and Ionic Strength. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37428544 PMCID: PMC10360061 DOI: 10.1021/acsami.3c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Thermo-osmosis refers to fluid migration due to the temperature gradient. The mechanistic understanding of thermo-osmosis in charged nano-porous media is still incomplete, while it is important for several environmental and energy applications, such as low-grade waste heat recovery, wastewater recovery, fuel cells, and nuclear waste storage. This paper presents results from a series of molecular dynamics simulations of thermo-osmosis in charged silica nanochannels that advance the understanding of the phenomenon. Simulations with pure water and water with dissolved NaCl are considered. First, the effect of surface charge on the sign and magnitude of the thermo-osmotic coefficient is quantified. This effect was found to be mainly linked to the structural modifications of an aqueous electrical double layer (EDL) caused by the nanoconfinement and surface charges. In addition, the results illustrate that the surface charges reduce the self-diffusivity and thermo-osmosis of interfacial liquid. The thermo-osmosis was found to change direction when the surface charge density exceeds -0.03C · m-2. It was found that the thermo-osmotic flow and self-diffusivity increase with the concentration of NaCl. The fluxes of solvent and solute are decoupled by considering the Ludwig-Soret effect of NaCl ions to identify the main mechanisms controlling the behavior. In addition to the advance in microscopic quantification and mechanistic understanding of thermo-osmosis, the work provides approaches to investigate a broader category of coupled heat and mass transfer problems in nanoscale space.
Collapse
Affiliation(s)
- Wei Qiang Chen
- School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Andrey P Jivkov
- School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Majid Sedighi
- School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
4
|
Jia Y, Shi F, Li H, Yan Z, Xu J, Gao J, Wu X, Li Y, Wang J, Zhang B. Facile Ionization of the Nanochannels of Lamellar Membranes for Stable Ionic Liquid Immobilization and Efficient CO 2 Separation. ACS NANO 2022; 16:14379-14389. [PMID: 36095242 DOI: 10.1021/acsnano.2c04670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) lamellar membranes, with highly ordered nanochannels between the adjacent layers, have revealed potential application prospects in various fields. To separate gases with similar kinetic diameters, intercalation of a functional liquid, especially an ionic liquid (IL), into 2D lamellar membranes is proved to be an efficient method due to the capacity of imparting solubility-based separation and sealing undesired defects. Stable immobilization of a high content of liquid is challenging but extremely required to achieve and maintain high separation performance. Herein, we describe the intercalation of a typical IL, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), into the ionized nanochannels of sulfonated MXene lamellar membranes, where the sulfonate groups are anchored onto MXene nanosheets through a facile method based on metal-catechol chelating chemistry. Thanks to the intrinsic benefits of MXene as building blocks and the decorated sulfonate groups, the optimal membrane possesses adequate interlayer spacing (∼1.8 nm) and high IL uptake (∼47 wt %) and therefore presents a CO2 permeance of 519 GPU and a CO2/N2 selectivity of 210, outperforming the previously reported liquid-immobilized lamellar membranes. Moreover, the IL loss rate of the membrane within 7 days at elevated pressure (5 bar) is measured to be significantly decreased (from 43.2 to 9.0 wt %) after growing sulfonate groups on the nanochannel walls, demonstrating the excellent IL storage stability.
Collapse
Affiliation(s)
- Youyu Jia
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Feng Shi
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Hongying Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhikun Yan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jiwei Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jiale Gao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Xiaoli Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yifan Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
5
|
An R, Laaksonen A, Wu M, Zhu Y, Shah FU, Lu X, Ji X. Atomic force microscopy probing interactions and microstructures of ionic liquids at solid surfaces. NANOSCALE 2022; 14:11098-11128. [PMID: 35876154 DOI: 10.1039/d2nr02812c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionic liquids (ILs) are room temperature molten salts that possess preeminent physicochemical properties and have shown great potential in many applications. However, the use of ILs in surface-dependent processes, e.g. energy storage, is hindered by the lack of a systematic understanding of the IL interfacial microstructure. ILs on the solid surface display rich ordering, arising from coulombic, van der Waals, solvophobic interactions, etc., all giving near-surface ILs distinct microstructures. Therefore, it is highly important to clarify the interactions of ILs with solid surfaces at the nanoscale to understand the microstructure and mechanism, providing quantitative structure-property relationships. Atomic force microscopy (AFM) opens a surface-sensitive way to probe the interaction force of ILs with solid surfaces in the layers from sub-nanometers to micrometers. Herein, this review showcases the recent progress of AFM in probing interactions and microstructures of ILs at solid interfaces, and the influence of IL characteristics, surface properties and external stimuli is thereafter discussed. Finally, a summary and perspectives are established, in which, the necessities of the quantification of IL-solid interactions at the molecular level, the development of in situ techniques closely coupled with AFM for probing IL-solid interfaces, and the combination of experiments and simulations are argued.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700469, Romania
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Muqiu Wu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yudan Zhu
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
| |
Collapse
|
6
|
Wei Y, Dai Z, Dong Y, Filippov A, Ji X, Laaksonen A, Shah FU, An R, Fuchs H. Molecular interactions of ionic liquids with SiO 2 surfaces determined from colloid probe atomic force microscopy. Phys Chem Chem Phys 2022; 24:12808-12815. [PMID: 35593233 DOI: 10.1039/d2cp00483f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ionic liquids (ILs) interact strongly with many different types of solid surfaces in a wide range of applications, e.g. lubrication, energy storage and conversion, etc. However, due to the nearly immeasurable large number of potential ILs available, identifying the appropriate ILs for specific solid interfaces with desirable properties is a challenge. Theoretical studies are highly useful for effective development of design and applications of these complex molecular systems. However, obtaining reliable force field models and interaction parameters is highly demanding. In this work, we apply a new methodology by deriving the interaction parameters directly from the experimental data, determined by colloid probe atomic force microscopy (CP-AFM). The reliability of the derived interaction parameters is tested by performing molecular dynamics simulations to calculate translational self-diffusion coefficients and comparing them with those obtained from NMR diffusometry.
Collapse
Affiliation(s)
- Yudi Wei
- Herbert Gleiter Institute of Nanoscience, Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Zhongyang Dai
- High Performance Computing Department, National Supercomputing Center in Shenzhen, Shenzhen 518055, Guangdong, P. R. China
| | - Yihui Dong
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Andrei Filippov
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden.,Medical and Biological Physics, Kazan State Medical University, 420012 Kazan, Russia
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.,Division of Physical Chemistry, Department of Materials and Environmental chemistry, Arrhenius Laboratory, Stockholm University, Stockholm 10691, Sweden.,Center of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni" Institute of Macromolecular Chemistry, Iasi 700469, Romania.,State Key Laboratory of Materials Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Rong An
- Herbert Gleiter Institute of Nanoscience, Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Harald Fuchs
- Herbert Gleiter Institute of Nanoscience, Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China. .,Center for Nanotechnology (CeNTech), Institute of Physics, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
7
|
Li L, Lin J, Fu F, Dai Z, Zhou G, Yang Z. Molecular-Level Understanding of Surface Roughness Boosting Segregation Behavior at the ZIF-8/Ionic Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4175-4187. [PMID: 35349284 DOI: 10.1021/acs.langmuir.1c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we perform a series of classical molecular dynamics simulations for two different [HEMIM][DCA] and [BMIM][BF4] ionic liquids (ILs) on the ZIF-8 surface to explore the interfacial properties of metal-organic framework (MOFs)/IL composite materials at the molecular level. Our simulation results reveal that the interfacial structures of anions and cations on the ZIF-8 surface are dominated by the surface roughness due to the steric hindrance, which is extremely different from the driving mechanism based on solid-ion interactions of ILs on flat solid surfaces. At the ZIF-8/IL interfaces, the open sodalite (SOD) cages of the ZIF-8 surface can block most of the large-size cations outside and significantly boost the segregation behavior of anions and cations. In comparison with the [BMIM][BF4] IL, the [HEMIM][DCA] IL has much more anions entering into the open SOD cages owing to the combination of stronger ZIF-8-[DCA]- interactions and more ordered arrangement of [DCA]- anions on the ZIF-8 surface. Furthermore, more and stronger ZIF-8-[BF4]- hydrogen bonds (HBs) are found to exist on the cage edges than the ZIF-8-[DCA]- HBs, further preventing [BF4]- anions from entering into SOD cages. By more detailed analyses, we find that the hydrophobic interaction has an important influence on the interfacial structures of the side chains of [HEMIM]+ and [BMIM]+ cations, while the π-π stacking interaction plays a key role in determining the interfacial structures of the imidazolium rings of both cations. Our simulation results in this work provide a molecular-level understanding of the underlying driving mechanism on segregation behavior at the ZIF-8/IL interfaces.
Collapse
Affiliation(s)
- Li Li
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jie Lin
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Fangjia Fu
- School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhongyang Dai
- National Supercomputing Center in Shenzhen, Shenzhen 518055, People's Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
8
|
Jin G, Song X, Gao Q, Zhang Y, Chen Y, Lu X, Zhu Y. Molecular Understanding of the Solid Interface-Induced Microstructures of 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Gas Absorption. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guangzheng Jin
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xinyao Song
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qingwei Gao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yumeng Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yifeng Chen
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiaohua Lu
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yudan Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
9
|
Skelton R, Jones RE. Computational Study of the Structure and Transport in Pyrrolidinium-Li-TFSI-Silica Ionogels. J Phys Chem B 2021; 125:13003-13014. [PMID: 34787426 DOI: 10.1021/acs.jpcb.1c07439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ionogels (IGs) are a unique class of composite materials with attributes that make them promising materials for applications in electrochemical energy storage. Due to the solid porous matrix that confines the ionic liquid (IL) in the IG, they can be used as self-supporting electrolytes. Furthermore, interactions of the IL with the porous matrix can have beneficial effects on transport, such as lowering the freezing/glass transition temperature of the conducting IL. In this work, we employ molecular dynamics simulations to investigate the influence of the porous morphology and solid volume fraction on ionic conductivity and Li+ diffusivity using a representative 0.5 M Li-bis(trifluoromethane)sulfonimide (TFSI)-pyrrolidinium (Pyr1.3) IL confined in a nanoporous silica matrix. The effect of the morphology of the confining matrix is compared using the pure IL as a baseline. We find that the tracer and collective Li+ diffusion and ionic conductivity of all the model IGs have significantly lower temperature dependence than the corresponding pure IL. In general, low-silica IGs with wide pores displayed the best transport properties at high temperatures, but the trends with the morphology for the nested set of transport coefficients we examined changed as the collective behavior of the Li+ ions and the molecular IL components were considered. Remarkably, some of the model IGs displayed better transport properties on a volume of fluid basis at low temperatures than the constituent IL. These trends were tied to structural changes revealed by the radial distribution functions of the IL components and the silica surface, including a decreasing Li+ adsorption peak of the surface silica indicating a change in the relative contributions of bulk-like and surface-like transport in the confined IL.
Collapse
Affiliation(s)
- R Skelton
- Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, United States
| | - R E Jones
- Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, United States
| |
Collapse
|
10
|
Skelton R, Jones RE. Effects of Strain Rate and Temperature on the Mechanical Properties of Simulated Silica Ionogels. J Phys Chem B 2021; 125:8659-8671. [PMID: 34286997 DOI: 10.1021/acs.jpcb.1c04564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ionogels are hybrid materials formed by impregnating the pore space of a solid matrix with a conducting ionic liquid. By combining the properties of both component materials, ionogels can act as self-supporting electrolytes in Li batteries. In this study, molecular dynamics simulations are used to investigate the dependence of mechanical properties of silica ionogels on solid fraction, temperature, and pore width. Comparisons are made with corresponding aerogels. We find that the solid matrix fraction increases the moduli and strength of the ionogel. This varies nonlinearly with temperature and strain rate, according to the contribution of the viscous ionic liquid to resisting deformation. Owing to the temperature and strain sensitivity of the ionic liquid viscosity, the mechanical properties approach a linear mixing law at high temperature and low strain rates. The median pore width of the solid matrix plays a complex role, with its influence varying qualitatively with deformation mode. Narrower pores increase the relevant elastic modulus under shear and uniaxial compression but reduce the modulus obtained under uniaxial tension. Conversely, shear and tensile strength are increased by narrowing the pore width. All of these pore size effects become more pronounced as the silica fraction increases. Pore size effects, similar to the effects of temperature and strain rate, are linked to the ease of fluid redistribution within the pore space during deformation-induced changes in the geometry of the pores.
Collapse
Affiliation(s)
- R Skelton
- Sandia National Laboratories, Livermore, California 94550, United States
| | - R E Jones
- Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
11
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Wu B, Breen JP, Xing X, Fayer MD. Controlling the Dynamics of Ionic Liquid Thin Films via Multilayer Surface Functionalization. J Am Chem Soc 2020; 142:9482-9492. [PMID: 32349470 DOI: 10.1021/jacs.0c03044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The structural dynamics of planar thin films of an ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimNTf2) as a function of surface charge density and thickness were investigated using two-dimensional infrared (2D IR) spectroscopy. The films were made by spin coating a methanol solution of the IL on silica substrates that were functionalized with alkyl chains containing head groups that mimic the IL cation. The thicknesses of the ionic liquid films ranged from ∼50 to ∼250 nm. The dynamics of the films are slower than those in the bulk IL, becoming increasingly slow as the films become thinner. Control of the dynamics of the IL films can be achieved by adjusting the charge density on substrates through multilayer network surface functionalization. The charge density of the surface (number of positively charged groups in the network bound to the surface per unit area) is controlled by the duration of the functionalization reaction. As the charge density is increased, the IL dynamics become slower. For comparison, the surface was functionalized with three different neutral groups. Dynamics of the IL films on the functionalized neutral surfaces are faster than on any of the ionic surfaces but still slower than the bulk IL, even for the thickest films. These results can have implications in applications that employ ILs that have electrodes, such as batteries, as the electrode surface charge density will influence properties like diffusion close to the surface.
Collapse
Affiliation(s)
- Boning Wu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - John P Breen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiangyu Xing
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Sun C, Zhao W, Zhang H, Feng G. Molecular insight into structures of monocationic and dicationic ionic liquids in mica slits. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1678773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Chen Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wei Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huanhuan Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Nano Interface Centre for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
14
|
Marcinkowska R, Konieczna K, Marcinkowski Ł, Namieśnik J, Kloskowski A. Application of ionic liquids in microextraction techniques: Current trends and future perspectives. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Dai Z, You Y, Zhu Y, Wang S, Zhu W, Lu X. Atomistic Insights into the Layered Microstructure and Time-Dependent Stability of [BMIM][PF 6] Confined within the Meso-Slit of Carbon. J Phys Chem B 2019; 123:6857-6869. [PMID: 31322891 DOI: 10.1021/acs.jpcb.9b02682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clarifying the microstructures and time-dependent stability of ionic liquids (ILs) within the confinement of the meso-slit of carbon is the first step to understand the intrinsic synergy effect between ILs and a promising mesoporous carbon electrode. In this work, we adopted molecular dynamics to systematically investigate the behavior of [BMIM][PF6] in the 2.8 nm-wide meso-slit of carbon. The confined ILs formed a pronounced layered spatial distribution and can be divided into three distinct regions, namely, com-, sub-, and cen-layer, according to valley coordinates in the number density profiles. In the com-layer region, the imidazolium rings of ILs possess two dominant orientations, namely, "parallel" and "tilted standing". The rotation ability of all the ions is highly restrained. In the sub-layer and cen-layer regions, a part of the [BMIM] imidazolium ring has a preferred "tilted standing" orientation. The [BMIM] cations are still in a rotational restrain state and show a preferred rotation motion along the x-y plane. The hydrogen bond between [BMIM] cations and [PF6] anions play a crucial role in determining the confined multilayered spatial distribution and distinctive orientation properties of ILs.
Collapse
Affiliation(s)
- Zhongyang Dai
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , 30# Puzhu South Road , Nanjing 211816 , P.R. China
| | - Yajing You
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , 30# Puzhu South Road , Nanjing 211816 , P.R. China
| | - Yudan Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , 30# Puzhu South Road , Nanjing 211816 , P.R. China
| | - Shanshan Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , 30# Puzhu South Road , Nanjing 211816 , P.R. China
| | - Wei Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , 30# Puzhu South Road , Nanjing 211816 , P.R. China
| | - Xiaohua Lu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , 30# Puzhu South Road , Nanjing 211816 , P.R. China
| |
Collapse
|
16
|
Khan MS, Karatrantos AV, Ohba T, Cai Q. The effect of different organic solvents and anion salts on sodium ion storage in cylindrical carbon nanopores. Phys Chem Chem Phys 2019; 21:22722-22731. [DOI: 10.1039/c9cp03332g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article fully atomistic Molecular Dynamics simulations were employed to study the behaviour of electrolyte salts and different organic solvents in cylindrical carbon nanotubes, in order to reveal the storage mechanism.
Collapse
Affiliation(s)
- M. S. Khan
- Graduate School of Science
- Chiba University
- Inage
- Japan
| | - A. V. Karatrantos
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford GU2 7XH
- UK
- Luxemburg Institute of Science and Technology
| | - T. Ohba
- Graduate School of Science
- Chiba University
- Inage
- Japan
| | - Q. Cai
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford GU2 7XH
- UK
| |
Collapse
|
17
|
Gong X, Wang B, Kozbial A, Li L. From Molecular Arrangement to Macroscopic Wetting of Ionic Liquids on the Mica Surface: Effect of Humidity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12167-12173. [PMID: 30230344 DOI: 10.1021/acs.langmuir.8b02450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To optimize the wetting performance of ionic liquids (ILs) on solid surfaces, which is important in catalysis, lubrication, and energy storage, it is critical to control the molecular arrangement of ILs at the IL/solid interface. Here, we report our experimental results, showing that tuning humidity is a facile and effective approach manipulating the molecular arrangement and thus controlling the macroscopic wettability of ILs on the mica surface. Fourier transform infrared spectroscopy, contact angle testing, and atomic force microscopy results showed that with the increase of humidity, more water adsorbs on the mica surface, which dissolves and mobilizes K+ on the mica. As a result, the cations of ILs occupy the empty spot left by the K+ and initiate the layering of ILs. The water-enabled ion exchange and IL layering processes result in not only the decrease of the IL contact angle on the mica but also the time-dependent contact angle. The finding here potentially provides a new dimension tailoring the performance of ILs at the IL/solid interface.
Collapse
Affiliation(s)
- Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures , Wuhan University of Technology , Wuhan 430070 , China
- Department of Chemical & Petroleum Engineering, Swanson School of Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Bingchen Wang
- Department of Chemical & Petroleum Engineering, Swanson School of Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Andrew Kozbial
- Department of Chemical & Petroleum Engineering, Swanson School of Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Lei Li
- Department of Chemical & Petroleum Engineering, Swanson School of Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
18
|
Liu Z, Prowald A, Höfft O, Li G, Lahiri A, Endres F. An Ionic Liquid-Surface Functionalized Polystyrene Spheres Hybrid Electrolyte for Rechargeable Zinc/Conductive Polymer Batteries. ChemElectroChem 2018. [DOI: 10.1002/celc.201800805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhen Liu
- Institute of Electrochemistry; Clausthal University of Technology; Arnold-Sommerfeld-Strasse 6 38678 Clausthal-Zellerfeld Germany
| | - Alexandra Prowald
- Institute of Electrochemistry; Clausthal University of Technology; Arnold-Sommerfeld-Strasse 6 38678 Clausthal-Zellerfeld Germany
| | - Oliver Höfft
- Institute of Electrochemistry; Clausthal University of Technology; Arnold-Sommerfeld-Strasse 6 38678 Clausthal-Zellerfeld Germany
| | - Guozhu Li
- Institute of Electrochemistry; Clausthal University of Technology; Arnold-Sommerfeld-Strasse 6 38678 Clausthal-Zellerfeld Germany
| | - Abhishek Lahiri
- Institute of Electrochemistry; Clausthal University of Technology; Arnold-Sommerfeld-Strasse 6 38678 Clausthal-Zellerfeld Germany
| | - Frank Endres
- Institute of Electrochemistry; Clausthal University of Technology; Arnold-Sommerfeld-Strasse 6 38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
19
|
Wang YL. Competitive Microstructures Versus Cooperative Dynamics of Hydrogen Bonding and π-Type Stacking Interactions in Imidazolium Bis(oxalato)borate Ionic Liquids. J Phys Chem B 2018; 122:6570-6585. [DOI: 10.1021/acs.jpcb.8b02899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong-Lei Wang
- Department of Chemistry, Stanford University,
Stanford, California 94305, United States
| |
Collapse
|
20
|
Karatrantos A, Khan S, Ohba T, Cai Q. The effect of different organic solvents on sodium ion storage in carbon nanopores. Phys Chem Chem Phys 2018; 20:6307-6315. [DOI: 10.1039/c7cp04878e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GCMC atomistic simulation to study the coupled effects of nanoporous hard carbon and different organic solvents on Na ion storage.
Collapse
Affiliation(s)
- Argyrios Karatrantos
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford GU2 7XH
- UK
- Luxembourg Institute of Science and Technology
| | - Sharif Khan
- Graduate School of Science
- Chiba University
- Inage
- Japan
| | - Tomonori Ohba
- Graduate School of Science
- Chiba University
- Inage
- Japan
| | - Qiong Cai
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford GU2 7XH
- UK
| |
Collapse
|
21
|
Wang YL, Li B, Sarman S, Laaksonen A. Microstructures and dynamics of tetraalkylphosphonium chloride ionic liquids. J Chem Phys 2017; 147:224502. [DOI: 10.1063/1.4995003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Bin Li
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Sten Sarman
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
22
|
A battery-supercapacitor hybrid device composed of metallic zinc, a biodegradable ionic liquid electrolyte and graphite. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3725-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Lalitha M, Lakshmipathi S. Interface energetics of [Emim] + [X] − and [Bmim] + [X] − (X = BF 4 , Cl, PF 6 , TfO, Tf 2 N) based ionic liquids on graphene, defective graphene, and graphyne surfaces. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Wang YL, Golets M, Li B, Sarman S, Laaksonen A. Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4976-4987. [PMID: 28099800 DOI: 10.1021/acsami.6b14429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P6,6,6,14][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P6,6,6,14] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P6,6,6,14] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P6,6,6,14][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P6,6,6,14] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm2), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P6,6,6,14] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Mikhail Golets
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Bin Li
- Theoretical Chemistry, Chemical Center, Lund University , P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sten Sarman
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
25
|
Affiliation(s)
- Shiguo Zhang
- College
of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Center for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis & Selective Oxidation, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000 Lanzhou, China
| | - Jiaheng Zhang
- School
of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yan Zhang
- College
of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Youquan Deng
- Center for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis & Selective Oxidation, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000 Lanzhou, China
| |
Collapse
|
26
|
Abedini A, Ludwig T, Zhang Z, Turner CH. Molecular Dynamics Simulation of Bismuth Telluride Exfoliation Mechanisms in Different Ionic Liquid Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9982-9992. [PMID: 27622940 DOI: 10.1021/acs.langmuir.6b02663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bismuth telluride (Bi2Te3) is a well-known thermoelectric material with potential applications in several different emerging technologies. The bulk structure is composed of stacks of quintuple sheets (with weak interactions between neighboring sheets), and the performance of the material can be significantly enhanced if exfoliated into two-dimensional nanosheets. In this study, eight different imidazolium-based ionic liquids are evaluated as solvents for the exfoliation and dispersion of Bi2Te3 at temperatures ranging from 350 to 550 K. Three distinct exfoliation mechanisms are evaluated (pulling, shearing, and peeling) using steered molecular dynamics simulations, and we predict that the peeling mechanism is thermodynamically the most favorable route. Furthermore, the [Tf2N-]-based ionic liquids are particularly effective at enhancing the exfoliation, and this performance can be correlated to the unique molecular-level solvation structures developed at the Bi2Te3 surfaces. This information helps provide insight into the molecular origins of exfoliation and solvation involving Bi2Te3 (and possibly other layered chalcogenide materials) and ionic liquid solvents.
Collapse
Affiliation(s)
- Asghar Abedini
- Department of Chemical and Biological Engineering, The University of Alabama , Box 870203, Tuscaloosa, Alabama 35487, United States
| | - Thomas Ludwig
- Department of Chemical and Biological Engineering, The University of Alabama , Box 870203, Tuscaloosa, Alabama 35487, United States
| | - Zhongtao Zhang
- Department of Chemical and Biological Engineering, The University of Alabama , Box 870203, Tuscaloosa, Alabama 35487, United States
| | - C Heath Turner
- Department of Chemical and Biological Engineering, The University of Alabama , Box 870203, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
27
|
Taherian F, Leroy F, Heim LO, Bonaccurso E, van der Vegt NFA. Mechanism for Asymmetric Nanoscale Electrowetting of an Ionic Liquid on Graphene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:140-150. [PMID: 26652691 DOI: 10.1021/acs.langmuir.5b04161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The electrowetting behavior of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) confined between two oppositely charged graphene layers is investigated using molecular dynamics simulations. By introducing charges on the surface, counterions are attracted to the surface and co-ions are repelled from it, leading to the reduction of the solid-liquid interfacial free energy and consequently the contact angle. Recently, we have shown that changes in the contact angle upon charging the surface are asymmetric with respect to surface polarity and opposite to the changes in the solid-liquid interfacial free energy. In this work, the asymmetry of the solid-liquid interfacial free energy is shown to originate from differences in structural organization of the ions at the interface, with positively polarized surfaces inducing a more favorable electrostatic arrangement of the ions. Analysis of the liquid structure in the vicinity of the three phase contact line, however, shows that the ion size asymmetry, together with differences in orientational ordering of the cations on oppositely polarized surfaces, instead leads to enhanced spreading on the negatively polarized surfaces, resulting in a corresponding contact angle asymmetry.
Collapse
Affiliation(s)
- Fereshte Taherian
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt , Alarich-Weiss-Straße 10, D-64287 Darmstadt, Germany
| | - Frédéric Leroy
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt , Alarich-Weiss-Straße 10, D-64287 Darmstadt, Germany
| | - Lars-Oliver Heim
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt , Alarich-Weiss-Straße 10, D-64287 Darmstadt, Germany
| | - Elmar Bonaccurso
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt , Alarich-Weiss-Straße 10, D-64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt , Alarich-Weiss-Straße 10, D-64287 Darmstadt, Germany
| |
Collapse
|
28
|
Jiang F, Li C, Guo X, Fu H, Wu G, Chen S. Crystallization and temperature-dependent structure deflection of C 6mimBr ionic liquid intercalated in LAPONITE®. RSC Adv 2016. [DOI: 10.1039/c6ra18618a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The physicochemical properties of large molecules confined in nanopores are expected to be different from those of the bulk.
Collapse
Affiliation(s)
- Fangling Jiang
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Cheng Li
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Xiaojing Guo
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Haiying Fu
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Shimou Chen
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
29
|
Ori G, Massobrio C, Pradel A, Ribes M, Coasne B. Structure and Dynamics of Ionic Liquids Confined in Amorphous Porous Chalcogenides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6742-6751. [PMID: 26030830 DOI: 10.1021/acs.langmuir.5b00982] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Besides the abundant literature on ionic liquids in porous silica and carbon, the confinement of such intriguing liquids in porous chalcogenides has received very little attention. Here, molecular simulation is employed to study the structural and dynamical properties of a typical ionic liquid confined in a realistic molecular model of amorphous chalcogenide with various pore sizes and surface chemistries. Using molecular dynamics in the isobaric-isothermal (NPT) ensemble, we consider confinement conditions relevant to real samples. Both the structure and self-dynamics of the confined phase are found to depend on the surface-to-volume ratio of the host confining material. Consequently, most properties of the confined ionic liquid can be written as a linear combination of surface and bulk-like contributions, arising from the ions in contact with the surface and the ions in the pore center, respectively. On the other hand, collective dynamical properties such as the ionic conductivity remain close to their bulk counterpart and almost insensitive to pore size and surface chemistry. These results, which are in fair agreement with available experimental data, provide a basis for the development of novel applications using hybrid organic-inorganic solids consisting of ionic liquids confined in porous chalcogenides.
Collapse
Affiliation(s)
- Guido Ori
- †Institut Charles Gerhardt Montpellier, CNRS-UMR 5253, ENSCM, Université Montpellier, Place Eugène Bataillon 34095 Montpellier Cedex 5, France
- ‡Multiscale Materials Science for Energy and Environment 2, UMI 3466 CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- §Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg and CNRS UMR 7504, 23 rue du Loess, F-67034 Strasbourg Cedex 2, France
| | - Carlo Massobrio
- §Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg and CNRS UMR 7504, 23 rue du Loess, F-67034 Strasbourg Cedex 2, France
| | - Annie Pradel
- †Institut Charles Gerhardt Montpellier, CNRS-UMR 5253, ENSCM, Université Montpellier, Place Eugène Bataillon 34095 Montpellier Cedex 5, France
| | - Michel Ribes
- †Institut Charles Gerhardt Montpellier, CNRS-UMR 5253, ENSCM, Université Montpellier, Place Eugène Bataillon 34095 Montpellier Cedex 5, France
| | - Benoit Coasne
- †Institut Charles Gerhardt Montpellier, CNRS-UMR 5253, ENSCM, Université Montpellier, Place Eugène Bataillon 34095 Montpellier Cedex 5, France
- ‡Multiscale Materials Science for Energy and Environment 2, UMI 3466 CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- ⊥Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| |
Collapse
|
30
|
Affiliation(s)
- Robert Hayes
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| | - Gregory G. Warr
- School
of Chemistry, The University of Sydney, NSW 2006, Sydney, Australia
| | - Rob Atkin
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| |
Collapse
|
31
|
Wang YL, Sarman S, Glavatskih S, Antzutkin ON, Rutland MW, Laaksonen A. Atomistic Insight into Tetraalkylphosphonium-Bis(oxalato)borate Ionic Liquid/Water Mixtures. I. Local Microscopic Structure. J Phys Chem B 2015; 119:5251-64. [DOI: 10.1021/acs.jpcb.5b00667] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sergei Glavatskih
- System
and Component Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Mechanical
Construction and Production, Ghent University, B-9000 Ghent, Belgium
| | - Oleg N. Antzutkin
- Chemistry
of Interfaces, Luleå University of Technology, SE-971 87 Luleå, Sweden
- Department
of Physics, Warwick University, CV4 7AL Coventry, United Kingdom
| | - Mark W. Rutland
- Surface and
Corrosion Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Chemistry,
Materials and Surfaces, SP Technical Research Institute of Sweden, SE-114
86 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Stellenbosch
Institute of Advanced Study (STIAS), Wallenberg Research Centre, Stellenbosch University, Marais Street, Stellenbosch 7600, South Africa
| |
Collapse
|
32
|
Ludwig T, Guo L, McCrary P, Zhang Z, Gordon H, Quan H, Stanton M, Frazier RM, Rogers RD, Wang HT, Turner CH. Mechanism of bismuth telluride exfoliation in an ionic liquid solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3644-3652. [PMID: 25760309 DOI: 10.1021/acs.langmuir.5b00239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bismuth telluride (Bi2Te3) is a well-known thermoelectric material that has a layered crystal structure. Exfoliating Bi2Te3 to produce two-dimensional (2D) nanosheets is extremely important because the exfoliated nanosheets possess unique properties, which can potentially revolutionize several material technologies such as thermoelectrics, heterogeneous catalysts, and infrared detectors. In this work, ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) is used to exfoliate Bi2Te3 nanoplatelets. In both experiments and in molecular dynamics (MD) simulations, the Bi2Te3 nanoplatelets yield a stable dispersion of 2D nanosheets in the IL solvent, and our MD simulations provide molecular-level insight into the kinetics and thermodynamics of the exfoliation process. An analysis of the dynamics of Bi2Te3 during exfoliation indicates that the relative translation (sliding apart) of adjacent layers caused by IL-induced forces plays an important role in the process. Moreover, an evaluation of the MD trajectories and electrostatic interactions indicates that the [C4mim](+) cation is primarily responsible for initiating Bi2Te3 layer sliding and separation, while the Cl(-) anion is less active. Overall, our combined experimental and computational investigation highlights the effectiveness of IL-assisted exfoliation, and the underlying molecular-level insights should accelerate the development of future exfoliation techniques for producing 2D chalcogenide materials.
Collapse
Affiliation(s)
| | | | | | | | - Haley Gordon
- ⊥Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- #St. Mary's College, Notre Dame, Indiana 46556, United States
| | | | - Michael Stanton
- ∇Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | |
Collapse
|
33
|
Federici Canova F, Mizukami M, Imamura T, Kurihara K, Shluger AL. Structural stability and polarisation of ionic liquid films on silica surfaces. Phys Chem Chem Phys 2015; 17:17661-9. [DOI: 10.1039/c5cp02299a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using molecular dynamics simulations, we studied the structure of [BMIM][NTF2] and [BMIM][BF4] liquid films on hydroxylated silica surfaces. The results pointed out that the main features of the solid–liquid interface were present on both crystalline and amorphous silica, and how these determine their electrostatic properties.
Collapse
Affiliation(s)
| | - Masashi Mizukami
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Aoba-ku
- Japan
| | - Takako Imamura
- Advanced Institute for Materials Research
- Tohoku University
- Aoba-ku
- Japan
| | - Kazue Kurihara
- Advanced Institute for Materials Research
- Tohoku University
- Aoba-ku
- Japan
- Institute of Multidisciplinary Research for Advanced Materials
| | - Alexander L. Shluger
- Advanced Institute for Materials Research
- Tohoku University
- Aoba-ku
- Japan
- Department of Physics and Astronomy and the London Centre for Nanotechnology
| |
Collapse
|