1
|
Nir-Arad O, Shlomi DH, Israelstam A, Amit T, Manukovsky N, Fialkov AB, Kaminker I. The CW-EPR Capabilities of a Dual DNP/EPR Spectrometer Operating at 14 and 7 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 360:107635. [PMID: 38401475 DOI: 10.1016/j.jmr.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/24/2023] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
High-field electron paramagnetic resonance (EPR) measurements are indispensable for a better understanding of dynamic nuclear polarization (DNP), which relies on polarization transfer between electron and nuclear spins. DNP experiments are typically performed at high > 7 T magnetic fields and low ≤ 100 K temperatures, while EPR instrumentation capable of EPR measurements under these conditions is scarce. In this paper, we describe the CW EPR capabilities of a dual DNP/EPR spectrometer that is designed to carry out EPR experiments under "DNP conditions" at 14 and 7 T. In the first part, we present the design of this instrument, highlighting the choices made to allow for both DNP and EPR operations. The spectrometer uses a sweepable cryogen-free magnet with NMR-grade homogeneity, a closed-cycle cooling system, a quasi-optical induction mode bridge, and a superheterodyne receiver system. The probe design is optimized for low heat load and fast sample exchange under cryogenic conditions. The spectrometer can operate in frequency and field sweep modes, including wide field sweeps using the main coil of the magnet. In the second part, we present EPR spectra acquired over a wide range of samples and operating conditions, illustrating the CW EPR capabilities of the instrument.
Collapse
Affiliation(s)
- Orit Nir-Arad
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - David H Shlomi
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Israelstam
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tomer Amit
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nurit Manukovsky
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexander B Fialkov
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ilia Kaminker
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
2
|
Pham P, Mandal R, Qi C, Hilty C. Interfacing Liquid State Hyperpolarization Methods with NMR Instrumentation. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100052. [PMID: 35530721 PMCID: PMC9070690 DOI: 10.1016/j.jmro.2022.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advances in liquid state hyperpolarization methods have enabled new applications of high-resolution NMR spectroscopy. Utilizing strong signal enhancements from hyperpolarization allows performing NMR spectroscopy at low concentration, or with high time resolution. Making use of the high, but rapidly decaying hyperpolarization in the liquid state requires new techniques to interface hyperpolarization equipment with liquid state NMR spectrometers. This article highlights rapid injection, high resolution NMR spectroscopy with hyperpolarization produced by the techniques of dissolution dynamic nuclear polarization (D-DNP) and para-hydrogen induced polarization (PHIP). These are popular, albeit not the only methods to produce high polarization levels for liquid samples. Gas and liquid driven sample injection techniques are compatible with both of these hyperpolarization methods. The rapid sample injection techniques are combined with adapted NMR experiments working in a single, or small number of scans. They expand the application of liquid state hyperpolarization to spins with comparably short relaxation times, provide enhanced control over sample conditions, and allow for mixing experiments to study reactions in real time.
Collapse
|
3
|
Aghelnejad B, Bodenhausen G, Marhabaie S. A Low-Temperature Broadband NMR Probe for Multinuclear Cross-Polarization. Chemphyschem 2019; 20:2830-2835. [PMID: 31502395 DOI: 10.1002/cphc.201900723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 11/08/2022]
Abstract
Dissolution dynamic nuclear polarization (D-DNP) probes are usually designed for one or at most two specific nuclei. Investigation of multiple nuclei usually requires manufacturing a number of costly probes. In addition, changing the probe is a time-consuming process since a system that works at low temperature (usually between 1.2 and 4.2 K) must be warmed up, thus increasing the risks of contamination. Here, an efficient apparatus is described for D-DNP designed not only for microwave-enhanced direct observation of a wide range of nuclei S such as 1 H, 13 C, 2 H, 23 Na, and 17 O, but also for cross-polarization (CP) from I=1 H to such S nuclei. Unlike most conventional designs, the tuning and matching circuits are partly immersed in superfluid helium at temperatures down to 1.2 K. Intense radio-frequency (RF) fields with amplitudes on the order of 50 kHz or better can be applied simultaneously to both nuclei I and S using RF amplifiers with powers on the order of 90 and 80 W, respectively, without significant losses of liquid helium. The system can operate at temperatures over a wide range between 1.2 and 300 K.
Collapse
Affiliation(s)
- Behdad Aghelnejad
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.,Bruker Biospin SAS, F-67160, Wissembourg, France
| | - Geoffrey Bodenhausen
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Sina Marhabaie
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.,Current address: IFSTTAR, Université Paris-Est UPEMLV, Marne-la-Vallée, France
| |
Collapse
|
4
|
Jähnig F, Himmler A, Kwiatkowski G, Däpp A, Hunkeler A, Kozerke S, Ernst M. A spin-thermodynamic approach to characterize spin dynamics in TEMPO-based samples for dissolution DNP at 7 T field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 303:91-104. [PMID: 31030064 DOI: 10.1016/j.jmr.2019.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
The spin dynamics of dissolution DNP samples consisting of 4.5 M [13C]urea in a mixture of (1/1)Vol glycerol/water using 4-Oxo-TEMPO as a radical was investigated. We analyzed the DNP dynamics as function of radical concentration at 7 T and 3.4 T static magnetic field as well as function of deuteration of the solvent matrix at the high field. The spin dynamics could be reproduced in all cases, at least qualitatively, by a thermodynamic model based on spin temperatures of the nuclear Zeeman baths and an electron non-Zeeman (dipolar) bath. We find, however, that at high field (7 T) and low radical concentrations (25 mM) the nuclear spins do not reach the same spin temperature indicating a weak coupling of the two baths. At higher radical concentrations, as well as for all radical concentrations at low field (3.4 T), the two nuclear Zeeman baths reach the same spin temperature within experimental errors. Additionally, the spin system was prepared with different initial conditions. For these cases, the thermodynamic model was able to predict the time evolution of the system well. While the DNP profiles do not give clear indications to a specific polarization transfer mechanism, at high field (7 T) increased coupling is seen. The EPR line shapes cannot clarify this in absence of ELDOR type experiments, nevertheless DNP profiles and dynamics under frequency-modulated microwave irradiation illustrate the expected increase in coupling between electrons with increasing radical concentration.
Collapse
Affiliation(s)
- Fabian Jähnig
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Aaron Himmler
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Grzegorz Kwiatkowski
- Institute for Biomedical Engineering, University and ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - Alexander Däpp
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Andreas Hunkeler
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|
5
|
Jähnig F, Kwiatkowski G, Ernst M. Conceptual and instrumental progress in dissolution DNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:22-29. [PMID: 26920827 DOI: 10.1016/j.jmr.2015.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 05/15/2023]
Abstract
We discuss conceptual and instrumental progress in dissolution DNP since its introduction in 2003. In our view there are three critical steps in the dissolution DNP process: (i) The achievable polarization level in a sample. (ii) The time required to build up the polarization. (iii) The transfer of the sample to the measurement system with minimum loss of polarization. In this review we describe in detail these steps and the different methodological and instrumental implementations, which have been proposed to optimize them.
Collapse
Affiliation(s)
- Fabian Jähnig
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Grzegorz Kwiatkowski
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland; Institute for Biomedical Engineering, University and ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|