1
|
Navarro L, Garcia-Duran A, Cirera J. Tuning the spin-crossover properties of [Fe 2] metal-organic cages. Dalton Trans 2024; 53:14592-14601. [PMID: 39082965 DOI: 10.1039/d4dt01213e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A computational study on the interplay between ligand functionalization and guest effects on the transition temperature (T1/2) in the [Fe2(L1R)3]@X (L1 = 1,3-bis-(3-(pyridin-2-yl)-1H-pyrazol-5-yl)benzene, X = H-, F-, Cl-, Br-, I- and [BF4]-, R = H, F, or CH3) family of metal-organic cages (MOCs) is presented. Our results indicate that ligand functionalization with electron-donating or electron-withdrawing groups can significantly impact the T1/2 as expected, while the guest effect in lowering the T1/2 has a linear correlation with the increasing guest size. More importantly, small guests can move away from the center of the cavity, thus enhancing the two-step characteristic of the transition. All the data can be understood by analyzing the underlying electronic structure of the studied systems in terms of the relevant d-based molecular orbitals. These results can help in the rational design of new MOCs that can operate as sensors at specific temperatures, thus accelerating the discovery of new SCO devices with tailored properties.
Collapse
Affiliation(s)
- Laia Navarro
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
| | - Arnau Garcia-Duran
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
| | - Jordi Cirera
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Obloy LM, El-Khoury PZ, Tarnovsky AN. Excited-State-Selective Ultrafast Relaxation Dynamics and Photoisomerization of trans-4,4'-Azopyridine. J Phys Chem Lett 2022; 13:10863-10870. [PMID: 36384033 DOI: 10.1021/acs.jpclett.2c02523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excited-state dynamics of trans-4,4'-azopyridine in ethanol is studied using femtosecond transient absorption with 30 fs temporal resolution. Exciting the system at three different wavelengths, 460 and 290 (275) nm, to access the S1 nπ* and S2 ππ* electronic states, respectively, reveals a 195 cm-1 vibrational coherence, which suggests that the same mode is active in both nπ* and ππ* relaxation channels. Following S1-excitation, relaxation proceeds via a nonrotational pathway, where a fraction of the nπ* population is trapped in a planar minimum (lifetime, 2.1 ps), while the remaining population travels further to a second shallow minimum (lifetime, 300 fs) prior to decay into the ground state. Population of the S2 state leads to 30 fs nonrotational relaxation with a concurrent buildup of nπ* population and nearly simultaneous formation of hot ground-state species. An increase in the cis-isomer quantum yield upon ππ* versus nπ* excitation is observed, which is opposite to trans-azobenzene.
Collapse
Affiliation(s)
- Laura M Obloy
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Alexander N Tarnovsky
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
3
|
Mamardashvili G, Kaigorodova E, Lebedev I, Mamardashvili N. Axial complexes of Sn(IV)-tetra(4-sulfophenyl)porphyrin with azorubine in aqueous media: Fluorescent probes of local viscosity and pH indicators. J Mol Liq 2022; 366:120277. [DOI: 10.1016/j.molliq.2022.120277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Wellm V, Näther C, Herges R. Molecular Spin State Switching and Photochromism in the Red and Near Infrared with Ni(II) Chlorin and Ni(II) Bacteriochlorin. J Org Chem 2021; 86:9503-9514. [PMID: 34181424 DOI: 10.1021/acs.joc.1c00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecules or ions are either paramagnetic (unpaired electrons) or diamagnetic (all electrons are paired). Switching between the two states under ambient conditions was considered a typical solid state phenomenon and has been termed spin crossover. The first single-molecule spin state switches operated with light in solution were developed a decade ago and offer a number of technical applications that are not accessible to solid state systems. Magnetic switching in biological environments, however, requires water solubility, and for in vivo applications, switching wavelengths within the bio-optical window (650-950 nm) are needed. We now present molecular spin state switches that are water-soluble and switchable in the far-red and near-infrared region. At the same time, they are photochromic compounds with excellent photophysical properties. trans-cis isomerization is induced with 505 nm radiation, and cis-trans conversion with 620 or 720 nm radiation. The metastable cis isomers are stable at room temperature for at least several weeks. The detailed mechanism of this surprising and unprecedented long wavelength photoisomerization of azobenzenes is still under investigation.
Collapse
Affiliation(s)
- Vanessa Wellm
- Otto Diels-Institute of Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, Kiel D-24118, Germany
| | - Christian Näther
- Institute of Inorganic Chemistry, University of Kiel, Max-Eyth-Straße 2, Kiel D-24118, Germany
| | - Rainer Herges
- Otto Diels-Institute of Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, Kiel D-24118, Germany
| |
Collapse
|
5
|
Montenegro-Pohlhammer N, Sánchez-de-Armas R, Calzado CJ, Borges-Martínez M, Cárdenas-Jirón G. A photo-induced spin crossover based molecular switch and spin filter operating at room temperature. Dalton Trans 2021; 50:6578-6587. [PMID: 33899067 DOI: 10.1039/d1dt00078k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since Venkataramani et al. (Science, 2011, 331(6016), 445-448) reported reversible, room-temperature light-induced spin crossover in Ni-porphyrin functionalized with a phenylazopyridine ligand (NiTPP-PAPy), this complex has attracted the attention of many researchers due to its potential applications in molecular-based devices. In this work, we perform a detailed study, by means of DFT and WFT methodologies, focused on the deposition of NiTP-PAPy over an Au(111) surface, followed by DFT-NEGF calculations employing a gold surface and the tip of an STM as electrodes, in order to probe the deposited complex's transport properties. Our DFT calculations show that not only the metalled porphyrin is strongly adsorbed on the surface, in both the high (HS) and low spin (LS) configurations, but also, and more importantly, photoinduced switching is preserved upon adsorption, a fact that is also confirmed through WFT and TD-DFT calculations. Moreover, our DFT-NEGF calculations indicate that the current passing through the molecular junction-like systems is much higher in the HS configuration than in the LS one, along with the fact that the current calculated in the ferromagnetic junction is highly spin-polarized. These remarkable transport properties suggest that the complex could be used as a component in molecular switches based on the total current passing through the system, modulated by light irradiation, spin filters due to the spin polarization of the carriers in the HS configuration, or even in two-step rectifiers combining the two features mentioned above, all of these operating at room temperature, giving to this complex the potential to be an active element in all kinds of future spintronic devices.
Collapse
Affiliation(s)
- Nicolás Montenegro-Pohlhammer
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), 9170022, Santiago, Chile.
| | | | | | | | | |
Collapse
|
6
|
Qamar OA, Cong C, Ma H. Solid state mononuclear divalent nickel spin crossover complexes. Dalton Trans 2020; 49:17106-17114. [PMID: 33205805 DOI: 10.1039/d0dt03421e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin crossover complexes containing 3d4-3d7 transition metal ions with tunable electronic configurations in appropriate ligand field environments have been extensively investigated. In contrast, the development of 3d8 divalent nickel complexes displaying such a spin crossover behavior is far behind. The increasing number of X-ray single crystal structures along with magnetic evidence and thermodynamic equilibrium indicate that bistable divalent nickel complexes are gradually recognized to be a formal member of the "spin crossover family". Unfortunately, the rarity of nickel spin crossover complexes is occasionally mentioned. This Perspective article highlights examples of mononuclear 3d8 nickel spin crossover complexes in dynamic rearrangements with characterized solid state structures from the viewpoint of types of ligands utilized.
Collapse
Affiliation(s)
- Obaid Ali Qamar
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 21186, China.
| | | | | |
Collapse
|
7
|
Roy Chowdhury S, Mishra S. Light-Induced Spin Crossover in an Intermediate-Spin Penta-Coordinated Iron(III) Complex. J Phys Chem A 2019; 123:9883-9892. [PMID: 31663743 DOI: 10.1021/acs.jpca.9b06490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
(PMe3)2FeCl3 is an Fe(III) complex that exists in the intermediate-spin ground state in a distorted trigonal bipyramidal geometry. An electronic state with high-spin configuration lies in close vicinity to the ground state, making it a potential spin crossover candidate. A mechanistic account of the spin crossover from the lowest quartet state (Q0) to the lowest sextet state (S1) of this complex is provided by exploring both thermal and light-induced pathways. The presence of a large barrier between the two spin states suggests a possible thermal spin crossover at a rather high temperature. The light-induced spin crossover is investigated by employing complete active space self-consistent field calculations together with dynamic correlation and spin-orbit coupling for the lowest seven quartet and lowest five sextet states. The system in the Q0 state upon light absorption is excited to the optically bright Q4 LMCT state. By following minimum energy pathways along the electronic states, two light-induced pathways for spin crossover are identified. From the Q4 state, the system can photo-regenerate the ground intermediate-spin state (Q0) through an internal conversion of Q4/Q3 followed by Q3/S1 and S1/Q0 intersystem crossings. In an alternate route, through Q4/S2 intersystem crossing followed by S2/S1 internal conversion, the system can complete the spin crossover from the Q0 to S1 state.
Collapse
Affiliation(s)
- Sabyasachi Roy Chowdhury
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| | - Sabyashachi Mishra
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| |
Collapse
|
8
|
Cirera J, Ruiz E. Computational Modeling of Transition Temperatures in Spin-Crossover Systems. COMMENT INORG CHEM 2019. [DOI: 10.1080/02603594.2019.1608967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jordi Cirera
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Light-induced spin transitions in Ni(II)-based macrocyclic-ligand complexes: A DFT study. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Roy Chowdhury S, Mishra S. Ab initioinvestigation of magnetic anisotropy in intermediate spin iron(iii) complexes. J Chem Phys 2018; 149:234302. [DOI: 10.1063/1.5050037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
11
|
Cirera J, Via-Nadal M, Ruiz E. Benchmarking Density Functional Methods for Calculation of State Energies of First Row Spin-Crossover Molecules. Inorg Chem 2018; 57:14097-14105. [DOI: 10.1021/acs.inorgchem.8b01821] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jordi Cirera
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Mireia Via-Nadal
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Casellas J, Alcover-Fortuny G, de Graaf C, Reguero M. Phenylazopyridine as Switch in Photochemical Reactions. A Detailed Computational Description of the Mechanism of Its Photoisomerization. MATERIALS 2017; 10:ma10121342. [PMID: 29168765 PMCID: PMC5744277 DOI: 10.3390/ma10121342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 01/03/2023]
Abstract
Azo compounds are organic photochromic systems that have the possibility of switching between cis and trans isomers under irradiation. The different photochemical properties of these isomers make azo compounds into good light-triggered switches, and their significantly different geometries make them very interesting as components in molecular engines or mechanical switches. For instance, azo ligands are used in coordination complexes to trigger photoresponsive properties. The light-induced trans-to-cis isomerization of phenylazopyridine (PAPy) plays a fundamental role in the room-temperature switchable spin crossover of Ni-porphyrin derivatives. In this work, we present a computational study developed at the SA-CASSCF/CASPT2 level (State Averaged Complete Active Space Self Consistent Field/CAS second order Perturbation Theory) to elucidate the mechanism, up to now unknown, of the cis-trans photoisomerization of 3-PAPy. We have analyzed the possible reaction pathways along its lowest excited states, generated by excitation of one or two electrons from the lone pairs of the N atoms of the azo group (nazoπ*² and nazo²π*² states), from a π delocalized molecular orbital (ππ* state), or from the lone pair of the N atom of the pyridine moiety (npyπ* state). Our results show that the mechanism proceeds mainly along the rotation coordinate in both the nazoπ* and ππ* excited states, although the nazo²π*² state can also be populated temporarily, while the npyπ* does not intervene in the reaction. For rotationally constrained systems, accessible paths to reach the cis minimum along planar geometries have also been located, again on the nazoπ* and ππ* potential energy surfaces, while the nazo²π*² and npyπ* states are not involved in the reaction. The relative energies of the different paths differ from those found for azobenzene in a previous work, so our results predict some differences between the reactivities of both compounds.
Collapse
Affiliation(s)
- Josep Casellas
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Carrer Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Gerard Alcover-Fortuny
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Carrer Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Coen de Graaf
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Carrer Marcel·lí Domingo 1, 43007 Tarragona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Mar Reguero
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Carrer Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| |
Collapse
|
13
|
Dommaschk M, Peters M, Gutzeit F, Schütt C, Näther C, Sönnichsen FD, Tiwari S, Riedel C, Boretius S, Herges R. Photoswitchable Magnetic Resonance Imaging Contrast by Improved Light-Driven Coordination-Induced Spin State Switch. J Am Chem Soc 2015; 137:7552-5. [PMID: 25914182 DOI: 10.1021/jacs.5b00929] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present a fully reversible and highly efficient on-off photoswitching of magnetic resonance imaging (MRI) contrast with green (500 nm) and violet-blue (435 nm) light. The contrast change is based on intramolecular light-driven coordination-induced spin state switch (LD-CISSS), performed with azopyridine-substituted Ni-porphyrins. The relaxation time of the solvent protons in 3 mM solutions of the azoporphyrins in DMSO was switched between 3.5 and 1.7 s. The relaxivity of the contrast agent changes by a factor of 6.7. No fatigue or side reaction was observed, even after >100,000 switching cycles in air at room temperature. Electron-donating substituents at the pyridine improve the LD-CISSS in two ways: better photostationary states are achieved, and intramolecular binding is enhanced.
Collapse
Affiliation(s)
- Marcel Dommaschk
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Morten Peters
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Florian Gutzeit
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Christian Schütt
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Christian Näther
- ‡Institut für Anorganische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 6/7, 24098 Kiel, Germany
| | - Frank D Sönnichsen
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| | - Sanjay Tiwari
- §Clinic for Radiology and Neuroradiology, Arnold Heller Straße 3, 24105 Kiel, Germany
| | - Christian Riedel
- §Clinic for Radiology and Neuroradiology, Arnold Heller Straße 3, 24105 Kiel, Germany
| | - Susann Boretius
- §Clinic for Radiology and Neuroradiology, Arnold Heller Straße 3, 24105 Kiel, Germany
| | - Rainer Herges
- †Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, Otto-Hahn-Platz 4, 24098 Kiel, Germany
| |
Collapse
|