1
|
Nagasawa H, Ogawa S, Kashihara W, Isozaki T, Hirata K, Ishiuchi SI, Fujii M, Suzuki T. Conformational preference of 2-(4-methoxyphenyl)ethanol studied by supersonic jet spectroscopy: Intramolecular OH/π interaction. J Chem Phys 2024; 160:024303. [PMID: 38189621 DOI: 10.1063/5.0184664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
A π-type hydrogen bonding between the OH group and the π electron is a crucial factor for the conformational preference of the molecular structure with a flexible group. However, the information on the effect of the substituent on the OH/π interaction is insufficient. The laser-induced fluorescence (LIF) excitation, the dispersed fluorescence (DF), the IR-UV hole-burning, and the IR dip spectra of jet-cooled 2-(4-methoxyphenyl)ethanol were measured for the first time. Almost all bands observed in the spectral region of 35 550-36 500 cm-1 in the LIF excitation spectrum were successfully assigned with the DF and the IR-UV hole-burning spectra coupled with the quantum chemical calculation at M06-2x/6-311G and MP2/6-311G levels. Five conformers were found in the LIF excitation spectrum. The most stable conformer was Ggπ, and the second most stable conformer was Ggπ' (the trans rotamer of the methoxy group for Ggπ). Ggπ and Ggπ' had the OH group directed toward the π electron system of the benzene ring. The OH stretching frequency of Ggπ/Ggπ' of MPE in the IR dip spectra was red-shifted against that of Ggπ of phenylethanol, indicating that the introduction of the methoxy group would enhance the intramolecular OH/π interaction. In addition, the torsional vibration between the benzene ring and the side chain (-CH2CH2OH) (mode 63) was observed in the DF spectra of the Ggπ-00 and Ggπ'-00 band excitation, but their intensities were rather different, resulting from the different orientation of the OH group for each conformer toward the π electron system. The methoxy group would increase the negative charge on the benzene ring and would enhance the intramolecular OH/π interaction through the electrostatic interaction.
Collapse
Affiliation(s)
- Hironari Nagasawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258, Japan
| | - Sakuya Ogawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258, Japan
| | - Wataru Kashihara
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258, Japan
| | - Tasuku Isozaki
- Division of Natural Sciences, College of Arts and Sciences, J. F. Oberlin University, 3758 Tokiwa-machi, Machida, Tokyo 194-0294, Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Tadashi Suzuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
2
|
Panwaria P, Das A. Modulation of n → π* Interaction in the Complexes of p-Substituted Pyridines with Aldehydes: A Theoretical Study. J Phys Chem A 2023. [PMID: 37463490 DOI: 10.1021/acs.jpca.3c03103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
n → π* interaction is analogous to the hydrogen bond in terms of the delocalization of the electron density between the two orbitals. Studies on the intermolecular complexes stabilized by the n → π* interaction are scarce in the literature. Herein, we have studied intermolecular N···C═O n → π* interactions in the complexes of p-substituted pyridines (p-R-Py) with formaldehyde (HCHO), formyl chloride (HCOCl), and acetaldehyde (CH3CHO) using quantum chemistry calculations. We have shown that the strength of the n → π* interaction can be modulated by varying the electronic substituents at the donor and acceptor sites in the complexes. Variation of the substituents at the para position of the pyridine ring from the electron-withdrawing groups (EWGs) to the electron-donating groups (EDGs) results in a systematic increase in the strength of the n → π* interaction. The strength of this interaction is also modulated by tuning the electron density toward the carbonyl bond by substituting the hydrogen atom of HCHO with the methyl and chloro groups. The modulation of this interaction due to the electronic substitutions at the n → π* donor and acceptor sites in the complexes is monitored by probing the relevant geometrical parameters, binding energies, C═O frequency redshift, NBO energies, and electron density for this interaction derived from QTAIM and NCI index analyses. Energy decomposition analysis reveals that the electrostatic interaction dominates the binding energies of these complexes, while the charge transfer interaction, which is representative of the n → π* interaction, also has a significant contribution to these.
Collapse
Affiliation(s)
- Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
3
|
Panwaria P, Das A. Effect of Substituents on the Intramolecular n→π* Interaction in 3-[2-(Dimethylamino) phenyl] propanal: A Computational Study. J Phys Chem A 2023; 127:3339-3346. [PMID: 37036493 DOI: 10.1021/acs.jpca.2c08641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
n→π* non-covalent interaction (NCI) and hydrogen bond have similarity in terms of delocalization of the electron density between the two orbitals involved in the interaction. Hydrogen bond (X-H···Y) involves delocalization of the lone pair electrons (n) on the Y atom into the σ* orbital of the X-H bond. In contrast, the n→π* interaction deals with delocalizing the lone pair electrons (n) on the N, O, or S atom into the π* orbital of a C═O group or aromatic ring. Herein, we have shown a resemblance of this weak n→π* interaction with the relatively stronger hydrogen bond in terms of folding the side chains in flexible molecules. This work reports the study of folding of the flexible side-chain in 3-[2-(dimethylamino) phenyl] propanal (DMAPhP) through a N···C═O n→π* interaction using various computational approaches such as NBO, QTAIM, and NCI analyses. The folding of the molecule by the n→π* interaction observed in this study is found to be similar to that present in the secondary structures of peptides or proteins through hydrogen bonding interactions. Interestingly, the stabilization of the global minimum conformer of DMAPhP by the n→π* interaction demonstrates the importance of this NCI in providing conformational preferences in molecular systems. Another important finding of this study is that the theoretical redshift obtained in the C═O stretching frequency of the most stable conformer of the DMAPhP is contributed mostly by the n→π* interaction as the C═O group is not involved in hyperconjugation with any neighboring heteroatom, which is a common phenomenon in any ester or amide. We have also demonstrated here that the strength of the intramolecular n→π* interaction can be modulated by varying the electronic substituents at the para position of the donor group involved in the interaction.
Collapse
Affiliation(s)
- Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
4
|
Benassi E, Vaganova T, Malykhin E, Gatilov Y, Nurtay L, Fan H. Intermolecular interactions in the crystalline structure of some polyhalogenated Di- And triamino Pyridines: Spectroscopical perspectives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121632. [PMID: 35868054 DOI: 10.1016/j.saa.2022.121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Supramolecular synthon is identified as a unit and provides important structural and energetic information in the study of organic crystals. However, the direct estimation of the supramolecular interaction remains challenging. In the present work six polyhalogenated di- or triamino pyridines were synthesised, their crystalline structure was characterised, and corresponding supramolecular synthons were studied using a combination of quantum mechanical calculations and FT-IR and Raman spectroscopy. Some distinctive features were identified especially for three vibrational normal modes (RNMs) related to the pyridine ring (viz. RNM1, RNM3 and RNM7) in the vibrational spectra (FT-IR and Raman) of the solid samples, which are due to the supramolecular interactions, hydrogen bond (hb) in particular, according to the quantum mechanical calculations. The comparison between the IR and Raman spectra of experimental and simulated results indicates that the adjacent intermolecular hydrogen bonds between two same molecules extensively exist in the solid samples. Moreover, some quantitative correlation was established among the dimerisation energies for hb dimers (hb1 dimers for compounds 1 and 2), the ring structure defined by the distribution of the substituents and quantitative characteristics of the vibrational spectra, for instance, the splitting magnitudes for RNM3(2) in IR spectra and the peak gap between RNM1 and RNM2 in Raman spectra.
Collapse
Affiliation(s)
- Enrico Benassi
- Novosibirsk State University, Pirogova ul. 2, Novosibirsk, 630090, Russia.
| | - Tamara Vaganova
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentyev Prospekt 9, Novosibirsk, 630090, Russia
| | - Evgenij Malykhin
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentyev Prospekt 9, Novosibirsk, 630090, Russia
| | - Yurij Gatilov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentyev Prospekt 9, Novosibirsk, 630090, Russia
| | - Lazzat Nurtay
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr 53, Nursultan, 010000, Kazakhstan
| | - Haiyan Fan
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr 53, Nursultan, 010000, Kazakhstan
| |
Collapse
|
5
|
Kundu A, Sen S, Patwari GN. Π-Stacking in Heterodimers of Propargylbenzene with (Fluoro)phenylacetylenes. ACS OMEGA 2021; 6:17720-17725. [PMID: 34278157 PMCID: PMC8280671 DOI: 10.1021/acsomega.1c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The heterodimers of propargylbenzene (PrBz) with phenylacetylene (PHA) and monosubstituted fluorophenylacetylenes (FPHAs) were investigated using electronic and vibrational spectroscopic methods. The vibrational spectra in the acetylenic C-H stretching region show a marginal shift (0-4 cm-1) upon dimer formation, which suggests minimal perturbation of the acetylenic group. The M06-2X/aug-cc-pVDZ calculations indicate that the π-stacked structures are the most stable, followed by other structures. In general, structures incorporating aromatic C-H···π interactions are much higher in energy. The appearance of the spectra and the energy considerations clearly indicate the preference for the π-stacked structures. Furthermore, the observed trend in the stabilization energies for heterodimers with the three FPHAs is inversely proportional to the dipole moments of FPHAs. On the other hand, the absence of any clear trends in the electrostatic component of the interaction energy is attributed to the presence of the methylene group in PrBz.
Collapse
Affiliation(s)
| | - Saumik Sen
- Department of Chemistry, Indian
Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - G. Naresh Patwari
- Department of Chemistry, Indian
Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Bhattacharyya S, Ghosh S, Wategaonkar S. O-H stretching frequency red shifts do not correlate with the dissociation energies in the dimethylether and dimethylsulfide complexes of phenol derivatives. Phys Chem Chem Phys 2021; 23:5718-5739. [PMID: 33662068 DOI: 10.1039/d0cp01589j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this perspective, we present a comprehensive report on the spectroscopic and computational investigations of the hydrogen bonded (H-bonded) complexes of Me2O and Me2S with seven para-substituted H-bond donor phenols. The salient finding was that although the dissociation energies, D0, of the Me2O complexes were consistently higher than those of the analogous Me2S complexes, the red-shifts in phenolic O-H frequencies, Δν(O-H), showed the exactly opposite trend. This is in contravention of the general perception that the red shift in the X-H stretching frequency in the X-HY hydrogen bonded complexes is a reliable indicator of H-bond strength (D0), a concept popularly known as the Badger-Bauer rule. This is also in contrast to the trend reported for the H-bonded complexes of H2S/H2O with several para substituted phenols of different pKa values wherein the oxygen centered hydrogen bonded (OCHB) complexes consistently showed higher Δν(O-H) and D0 compared to those of the analogous sulfur centered hydrogen bonded (SCHB) complexes. Our effort was to understand these intriguing observations based on the spectroscopic investigations of 1 : 1 complexes in combination with a variety of high level quantum chemical calculations. Ab initio calculations at the MP2 level and the DFT calculations using various dispersion corrected density functionals (including DFT-D3) were performed on counterpoise corrected surfaces to compute the dissociation energy, D0, of the H-bonded complexes. The importance of anharmonic frequency computations is underscored as they were able to correctly reproduce the observed trend in the relative OH frequency shifts unlike the harmonic frequency computations. We have attempted to find a unified correlation that would globally fit the observed red shifts in the O-H frequency with the H-bonding strength for the four bases, namely, H2S, H2O, Me2O, and Me2S, in this set of H-bond donors. It was found that the proton affinity normalized Δν(O-H) values scale very well with the H-bond strength.
Collapse
Affiliation(s)
- Surjendu Bhattacharyya
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| | - Sanat Ghosh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| | - Sanjay Wategaonkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| |
Collapse
|
7
|
Mishra KK, Borish K, Singh G, Panwaria P, Metya S, Madhusudhan MS, Das A. Observation of an Unusually Large IR Red-Shift in an Unconventional S-H···S Hydrogen-Bond. J Phys Chem Lett 2021; 12:1228-1235. [PMID: 33492971 DOI: 10.1021/acs.jpclett.0c03183] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The S-H···S non-covalent interaction is generally known as an extremely unconventional weak hydrogen-bond in the literature. The present gas-phase spectroscopic investigation shows that the S-H···S hydrogen-bond can be as strong as any conventional hydrogen-bond in terms of the IR red-shift in the stretching frequency of the hydrogen-bond donor group. Herein, the strength of the S-H···S hydrogen-bond has been determined by measuring the red-shift (∼150 cm-1) of the S-H stretching frequency in a model complex of 2-chlorothiophenol and dimethyl sulfide using isolated gas-phase IR spectroscopy coupled with quantum chemistry calculations. The observation of an unusually large IR red-shift in the S-H···S hydrogen-bond is explained in terms of the presence of a significant amount of charge-transfer interactions in addition to the usual electrostatic interactions. The existence of ∼750 S-H···S interactions between the cysteine and methionine residues in 642 protein structures determined from an extensive Protein Data Bank analysis also indicates that this interaction is important for the structures of proteins.
Collapse
Affiliation(s)
- Kamal K Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Kshetrimayum Borish
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Gulzar Singh
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Surajit Metya
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - M S Madhusudhan
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| |
Collapse
|
8
|
Uchida M, Shimizu T, Shibutani R, Matsumoto Y, Ishikawa H. A comprehensive infrared spectroscopic and theoretical study on phenol-ethyldimethylsilane dihydrogen-bonded clusters in the S 0 and S 1 states. J Chem Phys 2020; 153:104305. [PMID: 32933300 DOI: 10.1063/5.0019755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To investigate microscopic characters of Si-H⋯H-O type dihydrogen bonds, we observed OH and SiH stretch bands in both the S0 and S1 states of phenol-ethyldimethylsilane (PhOH-EDMS) clusters by infrared (IR)-ultraviolet (UV) and UV-IR double resonance spectroscopies. Density functional theory (DFT) calculations and energy decomposition analysis were also performed. Structures of two isomers identified were unambiguously determined through the analysis of IR spectra and DFT calculations. To discuss the strength of dihydrogen bond in various systems, we performed theoretical calculations on clusters of EDMS with several acidic molecules in addition to PhOH. It was revealed that charge-transfer interaction energies from a bonding σ orbital of SiH bond to an anti-bonding σ* orbital of OH bond well reflect strengths of dihydrogen bonds. Additionally, it was found that the red shift of SiH stretch frequencies can be used as a crude measure of the strength of dihydrogen bonds. Relationship between the red shifts of OH/SiH stretch frequencies and various electrostatic components of the interaction energy was examined. In the S1 state, large increases in red shifts were observed for both the OH and SiH stretch frequencies. Since the EDMS moiety is not associated with the electronic excitation in a cluster, the strength of dihydrogen bonds in the S1 and S0 states was able to be directly compared based on the red shifts of the SiH stretch bands. A significant increase in the red shift of SiH stretch frequency indicates a strengthening of the dihydrogen bonds during the electronic excitation of the PhOH moiety.
Collapse
Affiliation(s)
- Masaaki Uchida
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| | - Takutoshi Shimizu
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| | - Ryo Shibutani
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| | - Yoshiteru Matsumoto
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Haruki Ishikawa
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| |
Collapse
|
9
|
Mondal SI, Dey A, Patwari GN. Hydrogen-Bonded Complexes of Fluorophenylacetylenes: To Fluoresce or Not? Chemphyschem 2020; 21:1711-1717. [PMID: 32459021 DOI: 10.1002/cphc.202000306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Indexed: 11/08/2022]
Abstract
The hydrogen-bonded complexes of fluorophenylacetylenesexhibit unusual and interesting fluorescence turn ON/OFF behaviour following excitation to 1 ππ* (S1 ) state. The fluorescence switching behaviour can be realized by (i) "change in the intermolecular structure, (ii) change in the position of fluorine substitution and (iii) change in the hydrogen bonding partner or a combination thereof. Experiments indicate that the ≡C-H⋅⋅⋅X (X=O, N) hydrogen bonding with the acetylenic group plays a pivotal role in this switching behaviour. Intriguingly, weaker ≡C-H⋅⋅⋅X hydrogen bonding leads to fluorescence OFF state, which is turned ON by stronger hydrogen bonding. The observed fluorescence this switching behaviour is rationalized on the basis of a phenomenological model which suggests a coupling between the initially excited S1 state and a dark Sn state in the Franck-Condon region with limited window controlled by the ≡C-H⋅⋅⋅X hydrogen bonding as a crucial parameter. Such fluorescence switching behaviour in hydrogen-bonded complexes is unprecedented and these intriguing results hopefully will stimulate theoreticians to test 'state of the art' theories to explain these observations in a consistent manner.
Collapse
Affiliation(s)
- Sohidul Islam Mondal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Arghya Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
10
|
Boda M, Patwari GN. Internal electric fields in methanol [MeOH] 2-6 clusters. Phys Chem Chem Phys 2020; 22:10917-10923. [PMID: 32373804 DOI: 10.1039/c9cp04571f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water and methanol are well known solvents showing cooperative hydrogen bonding, however the differences in the hydrogen bonding pattern in water and methanol are due to the presence of the methyl group in methanol. The presence of the methyl group leads to formation of C-HO hydrogen bonds apart from the usual O-HO hydrogen bonds. The electric fields evaluated along the hydrogen bonded donor OH and CH groups reveal that the C-HO hydrogen bonds can significantly influence the structure and energetics (by about 20%) of methanol clusters. A linear Stark effect was observed on the hydrogen bonded OH groups in methanol clusters with a Stark tuning rate of 3.1 cm-1 (MV cm-1)-1 as an average behaviour. Furthermore, the Stark tuning of the OH oscillators in methanol depends on their hydrogen bonding environment wherein molecules with the DAA motif show higher rates than the rest. The present work suggests that the OH group of methanol has higher sensitivity as a vibrational probe relative to the OH group of water.
Collapse
Affiliation(s)
- Manjusha Boda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | |
Collapse
|
11
|
Mishra KK, Singh SK, Kumar S, Singh G, Sarkar B, Madhusudhan MS, Das A. Water-Mediated Selenium Hydrogen-Bonding in Proteins: PDB Analysis and Gas-Phase Spectroscopy of Model Complexes. J Phys Chem A 2019; 123:5995-6002. [PMID: 31268326 DOI: 10.1021/acs.jpca.9b04159] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-resolution X-ray crystallography and two-dimensional NMR studies demonstrate that water-mediated conventional hydrogen-bonding interactions (N-H···N, O-H···N, etc.) bridging two or more amino acid residues contribute to the stability of proteins and protein-ligand complexes. In this work, we have investigated single water-mediated selenium hydrogen-bonding interactions (unconventional hydrogen-bonding) between amino acid residues in proteins through extensive protein data bank (PDB) analysis coupled with gas-phase spectroscopy and quantum chemical calculation of a model complex consisting of indole, dimethyl selenide, and water. Here, indole and dimethyl selenide represent the amino acid residues tryptophan and selenomethionine, respectively. The current investigation demonstrates that the most stable structure of the model complex observed in the IR spectroscopy mimics single water-mediated selenium hydrogen-bonded structural motifs present in the crystal structures of proteins. The present work establishes that water-mediated Se hydrogen-bonding interactions are ubiquitous in proteins and the number of these interactions observed in the PDB is more than that of direct Se hydrogen-bonds present there.
Collapse
Affiliation(s)
| | | | | | | | - Biplab Sarkar
- Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| | | | | |
Collapse
|
12
|
Karir G, Lüttschwager NOB, Suhm MA. Phenylacetylene as a gas phase sliding balance for solvating alcohols. Phys Chem Chem Phys 2019; 21:7831-7840. [PMID: 30933202 DOI: 10.1039/c9cp00435a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phenylacetylene offers two similarly attractive π binding sites to OH containing solvent molecules, the phenyl ring and the acetylenic triple bond. By systematically varying the solvent molecule and by methylating aromatic or acetylenic CH groups, the docking preference can be controlled. It ranges from almost exclusive acetylene docking to predominant phenyl docking, depending on how electron density is deposited into the conjugated system and how large the London dispersion interaction is. FTIR spectroscopy of supersonic jet expansions is used to observe the competitive docking preferences in phenylacetylene and some of its methylated derivatives. A new data evaluation procedure that estimates band strength uncertainties based on a Monte Carlo approach is introduced. We test how well two density functionals (B3LYP-D3 and M06-2X) in combination with a def2-TZVP basis set are able to describe the docking switch. B3LYP-D3 is slightly biased towards acetylenic hydrogen bond docking and M06-2X is strongly biased towards phenyl hydrogen bond docking. More accurate theoretical predictions are invited and some previous experimental assignments are questioned.
Collapse
Affiliation(s)
- Ginny Karir
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.
| | | | | |
Collapse
|
13
|
Sen S, Patwari GN. Electrostatics and Dispersion in X-H···Y (X = C, N, O; Y = N, O) Hydrogen Bonds and Their Role in X-H Vibrational Frequency Shifts. ACS OMEGA 2018; 3:18518-18527. [PMID: 31458423 PMCID: PMC6644087 DOI: 10.1021/acsomega.8b01802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/19/2018] [Indexed: 06/10/2023]
Abstract
The frequency shifts of donor stretching vibration in X-H···Y (X = C, N, O; Y = N, O) hydrogen-bonded complexes of phenylacetylene, indole, and phenol are linearly correlated with the electrostatic component of the interaction energy. This linear correlation suggests that the electrostatic component, which is the first-order perturbative correction to the stabilization energy, is essentially localized on the X-H group. The linear correlation suggests that the electrostatic tuning rate, which is a measure of the X-H oscillator to undergo shifts upon hydrogen bonding per unit increase in the electrostatic component of the stabilization energy, was found to be in the order of O-H > N-H > C-H. Interestingly, for each of the donor groups, viz., C-H, N-H, and O-H, the vibrational frequency shifts were inversely correlated to the dipole moment of the acceptor separately, which is counterintuitive vis-à-vis the electrostatic component. This implies that extrapolation to zero dipole moment of the acceptor will yield very large shifts in the hydrogen-bonded X-H stretching frequencies. The trends in the variation of the dispersion and exchange-repulsion components and the total interaction energy vis-à-vis frequency shifts of donor stretching vibration are similar for hydrogen-bonded complexes of phenylacetylene, indole, and phenol. Furthermore, it was observed that the vibrational frequency shifts of all of the complexes are linearly correlated with the charge transfer from the filled orbital of the hydrogen acceptor to the vacant antibonding (σ*) orbital of the X-H donor group on the basis of natural bonding orbital calculations.
Collapse
Affiliation(s)
| | - G. Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
14
|
Mishra KK, Singh SK, Ghosh P, Ghosh D, Das A. The nature of selenium hydrogen bonding: gas phase spectroscopy and quantum chemistry calculations. Phys Chem Chem Phys 2018; 19:24179-24187. [PMID: 28840208 DOI: 10.1039/c7cp05265k] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Subsequent to the recent re-definition of hydrogen bonding by the IUPAC committee, there has been a growing search for finding the presence of this ever interesting non-covalent interaction between a hydrogen atom in an X-H group and any other atom in the periodic table. In recent gas phase experiments, it has been observed that hydrogen bonding interactions involving S and Se are of similar strength to those with an O atom. However, there is no clear explanation for the unusual strength of this interaction in the case of hydrogen bond acceptors which are not conventional electronegative atoms. In this work, we have explored the nature of Se hydrogen bonding by studying indoledimethyl selenide (indmse) and phenoldimethyl selenide (phdmse) complexes using gas phase IR spectroscopy and quantum chemistry calculations. We have found through various energy decomposition analysis (EDA) methods and natural bond orbital (NBO) calculations that, along with electrostatics and polarization, charge transfer interactions are important to understand Se/S hydrogen bonding and there is a delicate balance between the various interactions that plays the crucial role rather than a single component of the interaction energy. An in-depth understanding of this type of non-covalent interaction has immense significance in biology as amino acids containing S and Se are widely present in proteins and hence hydrogen bonding interactions involving S and Se atoms contribute to the folding of proteins.
Collapse
Affiliation(s)
- Kamal K Mishra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune-411008, India.
| | | | | | | | | |
Collapse
|
15
|
Moore KB, Sadeghian K, Sherrill CD, Ochsenfeld C, Schaefer HF. C-H···O Hydrogen Bonding. The Prototypical Methane-Formaldehyde System: A Critical Assessment. J Chem Theory Comput 2017; 13:5379-5395. [PMID: 29039941 DOI: 10.1021/acs.jctc.7b00753] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Distinguishing the functionality of C-H···O hydrogen bonds (HBs) remains challenging, because their properties are difficult to quantify reliably. Herein, we present a study of the model methane-formaldehyde complex (MFC). Six stationary points on the MFC potential energy surface (PES) were obtained at the CCSD(T)/ANO2 level. The CCSDT(Q)/CBS interaction energies of the conformers range from only -1.12 kcal mol-1 to -0.33 kcal mol-1, denoting a very flat PES. Notably, only the lowest energy stationary point (MFC1) corresponds to a genuine minimum, whereas all other stationary points-including the previously studied ideal case of ae(C-H···O) = 180°-exhibit some degree of freedom that leads to MFC1. Despite the flat PES, we clearly see that the HB properties of MFC1 align with those of the prototypical water dimer O-H···O HB. Each HB property generally becomes less prominent in the higher-energy conformers. Only the MFC1 conformer prominently exhibits (1) elongated C-H donor bonds, (2) attractive C-H···O═C interactions, (3) n(O) → σ*(C-H) hyperconjugation, (4) critical points in the electron density from Bader's method and from the noncovalent interactions method, (5) positively charged donor hydrogen, and (6) downfield NMR chemical shifts and nonzero 2J(CM-HM···OF) coupling constants. Based on this research, some issues merit further study. The flat PES hinders reliable determinations of the HB-induced shifts of the C-H stretches; a similarly difficult challenge is observed for the experiment. The role of charge transfer in HBs remains an intriguing open question, although our BLW and NBO computations suggest that it is relevant to the C-H···O HB geometries. These issues notwithstanding, the prominence of the HB properties in MFC1 serves as clear evidence that the MFC is predominantly bound by a C-H···O HB.
Collapse
Affiliation(s)
- Kevin B Moore
- Center for Computational Quantum Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - Keyarash Sadeghian
- Department of Chemistry, Ludwig-Maximilians University (LMU) , Munich D-81377, Germany
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Christian Ochsenfeld
- Department of Chemistry, Ludwig-Maximilians University (LMU) , Munich D-81377, Germany
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
16
|
|
17
|
Mondal SI, Sen S, Hazra A, Patwari GN. π-Stacked Dimers of Fluorophenylacetylenes: Role of Dipole Moment. J Phys Chem A 2017; 121:3383-3391. [DOI: 10.1021/acs.jpca.7b00209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sohidul Islam Mondal
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Saumik Sen
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Anirban Hazra
- Department
of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - G. Naresh Patwari
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
18
|
Gopi R, Ramanathan N, Sundararajan K. Probing C-H⋯N interaction in acetylene-benzonitrile complex using matrix isolation infrared spectroscopy and DFT computations. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Błasiak B, Cho M. Vibrational solvatochromism. III. Rigorous treatment of the dispersion interaction contribution. J Chem Phys 2016; 143:164111. [PMID: 26520502 DOI: 10.1063/1.4934667] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A rigorous first principles theory of vibrational solvatochromism including the intermolecular dispersion interaction, which is based on the effective fragment potential method, is developed. The present theory is an extended version of our previous vibrational solvatochromism model that took into account the Coulomb, exchange-repulsion, and induction interactions. We show that the frequency shifts of the amide I mode of N-methylacetamide in H2O and CDCl3, when combined with molecular dynamics simulations, can be quantitatively reproduced by the theory, which indicates that the dispersion interaction contribution to the vibrational frequency shift is not always negligibly small. Nonetheless, the reason that the purely Coulombic interaction model for vibrational solvatochromism works well for describing amide I mode frequency shifts in polar solvents is because the electrostatic contribution is strong and highly sensitive to the relative orientation of surrounding solvent molecules, which is in stark contrast with polarization, dispersion, and exchange-repulsion contributions. It is believed that the theory presented and discussed here will be of great use in quantitatively describing vibrational solvatochromism and electrochromism of infrared probes in not just polar solvent environments but also in biopolymers such as proteins.
Collapse
Affiliation(s)
- Bartosz Błasiak
- Center of Molecular Spectroscopy and Dynamics, Institute of Basic Science (IBS), Seoul 136-701, South Korea and Department of Chemistry, Korea University, Seoul 136-701, South Korea
| | - Minhaeng Cho
- Center of Molecular Spectroscopy and Dynamics, Institute of Basic Science (IBS), Seoul 136-701, South Korea and Department of Chemistry, Korea University, Seoul 136-701, South Korea
| |
Collapse
|
20
|
Dey A, Mondal SI, Sen S, Patwari GN. Spectroscopic and Ab Initio Investigation of C−H⋅⋅⋅N Hydrogen-Bonded Complexes of Fluorophenylacetylenes: Frequency Shifts and Correlations. Chemphyschem 2016; 17:2509-15. [PMID: 27146197 DOI: 10.1002/cphc.201600343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Arghya Dey
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai - 400076 India
| | - Sohidul Islam Mondal
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai - 400076 India
| | - Saumik Sen
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai - 400076 India
| | - G. Naresh Patwari
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai - 400076 India
| |
Collapse
|
21
|
Banerjee P, Mukhopadhyay DP, Chakraborty T. On the origin of donor O-H bond weakening in phenol-water complexes. J Chem Phys 2016; 143:204306. [PMID: 26627958 DOI: 10.1063/1.4936208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Matrix isolation infrared spectroscopy has been used to investigate intermolecular interactions in a series of binary O-H⋯O hydrogen bonded phenol-water complexes where water is the common acceptor. The interaction at the binding site has been tuned by incorporating multiple fluorine substitutions at different aromatic ring sites of the phenol moiety. The spectral effects for the aforesaid chemical changes are manifested in the infrared spectra of the complexes as systematic increase in spectral shift of the phenolic O-H stretching fundamental (ΔνO-H). While νO-H bands of the monomers of all the fluorophenols appear within a very narrow frequency range, the increase in ΔνO-H of the complexes from phenol to pentafluorophenol is very large, nearly 90%. The observed values of ΔνO-H do not show a linear correlation with the total binding energies (ΔEb) of the complexes, expected according to Badger-Bauer rule. However, in the same ΔνO-H vs ΔEb plot, nice linear correlations are revealed if the complexes of ortho-fluorophenols are treated separately from their meta/para-substituted analogues. The observations imply that in spite of having the same binding site (O-H⋯O) and the same chemical identities (phenolic), the complexes of ortho and non-ortho fluorophenols do not belong, from the viewpoint of detailed molecular interactions, to a homologous series. Linear correlations of ΔνO-H are, however, observed with respect to the electrostatic component of ΔEb as well as the quantum mechanical charge transfer interaction energy (ECT). From quantitative viewpoint, the latter correlation along with the associated electronic structure parameters appears more satisfactory. It has also been noted that the observed ΔνO-H values of the complexes display a linear relationship with the aqueous phase pKa values of the respective phenol derivatives.
Collapse
Affiliation(s)
- Pujarini Banerjee
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Deb Pratim Mukhopadhyay
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Tapas Chakraborty
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
22
|
Khanh PN, Ngan VT, Hong Man NT, Ai Nhung NT, Chandra AK, Trung NT. An insight into Csp–H⋯π hydrogen bonds and stability of complexes formed by acetylene and its substituted derivatives with benzene and borazine. RSC Adv 2016. [DOI: 10.1039/c6ra21557b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Theoretical calculations at the MP2/aug-cc-pVDZ level are used to investigate the Csp–H⋯π interactions of C2HX (X = H, F, Cl, Br, CH3, NH2) with C6H6 and B3N3H6 molecules.
Collapse
Affiliation(s)
- Pham Ngoc Khanh
- Laboratory of Computational Chemistry and Modelling
- Department of Chemistry
- Quy Nhon University
- Vietnam
| | - Vu Thi Ngan
- Laboratory of Computational Chemistry and Modelling
- Department of Chemistry
- Quy Nhon University
- Vietnam
| | - Nguyen Thi Hong Man
- Laboratory of Computational Chemistry and Modelling
- Department of Chemistry
- Quy Nhon University
- Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry
- Hue University of Sciences – Hue University
- Hue City
- Vietnam
| | - Asit K. Chandra
- Department of Chemistry
- North-Eastern Hill University
- Shillong
- India
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling
- Department of Chemistry
- Quy Nhon University
- Vietnam
| |
Collapse
|
23
|
Thakur TS, Dubey R, Desiraju GR. Intermolecular atom-atom bonds in crystals - a chemical perspective. IUCRJ 2015; 2:159-60. [PMID: 25866650 PMCID: PMC4392408 DOI: 10.1107/s205225251500189x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/29/2015] [Indexed: 05/23/2023]
Abstract
Short atom-atom distances between molecules are almost always indicative of specific intermolecular bonding. These distances may be used to assess the significance of all hydrogen bonds, including the C-H⋯O and even weaker C-H⋯F varieties.
Collapse
Affiliation(s)
- Tejender S. Thakur
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - Ritesh Dubey
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Gautam R. Desiraju
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
24
|
Fournier JA, Wolke CT, Johnson CJ, McCoy AB, Johnson MA. Comparison of the local binding motifs in the imidazolium-based ionic liquids [EMIM][BF4] and [EMMIM][BF4] through cryogenic ion vibrational predissociation spectroscopy: Unraveling the roles of anharmonicity and intermolecular interactions. J Chem Phys 2015; 142:064306. [DOI: 10.1063/1.4907199] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joseph A. Fournier
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Conrad T. Wolke
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | | | - Anne B. McCoy
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mark A. Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|