1
|
Mohammadi A, Shafiee A. Quantum non-Markovianity, quantum coherence and extractable work in a general quantum process. Phys Chem Chem Phys 2024; 26:3990-3999. [PMID: 38224013 DOI: 10.1039/d3cp04528e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A key concept in quantum thermodynamics is extractable work, which specifies the maximum amount of work that can be extracted from a quantum system. Different quantities are used to measure extractable work, the most prevalent of which are ergotropy and the difference between the non-equilibrium and equilibrium quantum free energies. Using the latter, we investigate the evolution of extractable work when an open quantum system undergoes a general quantum process described by a completely-positive and trace-preserving dynamical map. We derive a fundamental equation of thermodynamics for such processes as a relation between the distinct sorts of energy change in such a way that the first and the second law of thermodynamics are combined. We then identify the contributions from the reversible and irreversible processes in this equation and demonstrate that they are respectively responsible for the evolution of heat and extractable work of the open quantum system. Furthermore, we show how this correspondence between irreversibility and extractable work has the potential to provide a clear explanation of how the quantum properties of a system affect its extractable work evolution. Specifically, we establish this by directly connecting the change in extractable work with the change in standard quantifiers of quantum non-Markovianity and quantum coherence during a general quantum process. We illustrate these results with two examples.
Collapse
Affiliation(s)
- Amin Mohammadi
- Research Group on Foundations of Quantum Theory and Information, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| | - Afshin Shafiee
- Research Group on Foundations of Quantum Theory and Information, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| |
Collapse
|
2
|
Fischer EW, Werther M, Bouakline F, Grossmann F, Saalfrank P. Non-Markovian Vibrational Relaxation Dynamics at Surfaces. J Chem Phys 2022; 156:214702. [DOI: 10.1063/5.0092836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrational dynamics of adsorbates near surfaces plays both an important role for applied surface science and as model lab for studying fundamental problems of open quantum systems. We employ a previously developed model for the relaxation of a D-Si-Si bending mode at a D:Si(100)-(2$\times$1) surface, induced by a ``bath' of more than $2000$ phonon modes [U. Lorenz, P. Saalfrank, Chem. Phys. {\bf 482}, 69 (2017)], to extend previous work along various directions. First, we use a Hierarchical Effective Mode (HEM) model [E.W. Fischer, F. Bouakline, M. Werther, P. Saalfrank, J. Chem. Phys. {\bf 153}, 064704 (2020)] to study relaxation of higher excited vibrational states than hitherto done, by solving a high-dimensional system-bath time-dependent Schr\"odinger equation (TDSE). In the HEM approach, (many) real bath modes are replaced by (much less) effective bath modes. Accordingly, we are able to examine scaling laws for vibrational relaxation lifetimes for a realistic surface science problem. Second, we compare the performance of the multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) approach with the recently developed coherent-state based multi-Davydov D2 {\it ansatz} [N. Zhou, Z. Huang, J. Zhu, V. Chernyak, Y. Zhao, {J. Chem. Phys.} {\bf 143}, 014113 (2015)]. Both approaches work well, with some computational advantages for the latter in the presented context. Third, we apply open-system density matrix theory in comparison with basically ``exact' solutions of the multi-mode TDSEs. Specifically, we use an open-system Liouville-von Neumann (LvN) equation treating vibration-phonon coupling as Markovian dissipation in Lindblad form to quantify effects beyond the Born-Markov approximation.
Collapse
Affiliation(s)
| | | | - Foudhil Bouakline
- Institute of Chemistry, Universität Potsdam Institut für Chemie, Germany
| | - Frank Grossmann
- Institute for Theoretical Physics, Technische Universität Dresden Fachrichtung Physik, Germany
| | - Peter Saalfrank
- Institut für Chemie, Universität Potsdam Institut für Chemie, Germany
| |
Collapse
|
3
|
Dudhe N, Sahoo PK, Benjamin C. Testing quantum speedups in exciton transport through a photosynthetic complex using quantum stochastic walks. Phys Chem Chem Phys 2022; 24:2601-2613. [PMID: 35029248 DOI: 10.1039/d1cp02727a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photosynthesis is a highly efficient process, nearly 100 percent of the red photons falling on the surface of leaves reach the reaction center and get transformed into energy. Most theoretical studies on photosynthetic complexes focus mainly on the Fenna-Matthews-Olson complex obtained from green-sulfur bacteria. Quantum coherence was speculated to play a significant role in this very efficient transport process. However, recent reports indicate quantum coherence via exciton transport may not be as relevant as coherence originating via vibronic processes to photosynthesis. Regardless of the origin, there has been a debate on whether quantum coherence results in any speedup of the exciton transport process. To address this we model exciton transport in FMO using a quantum stochastic walk (QSW) with only incoherence, pure dephasing and with both dephasing and incoherence. We find that the QSW model with pure dephasing leads to a substantial speedup in exciton transport as compared to a QSW model which includes both dephasing and incoherence and one which includes only incoherence, both of which experience slowdowns.
Collapse
Affiliation(s)
- Naini Dudhe
- School of Physical Sciences, National Institute of Science Education & Research, HBNI, Jatni-752050, India.
| | - Pratyush Kumar Sahoo
- Department of Physical Sciences, Indian Institute of Science Education & Research, Kolkata, India.
| | - Colin Benjamin
- School of Physical Sciences, National Institute of Science Education & Research, HBNI, Jatni-752050, India.
| |
Collapse
|
4
|
Wu D, Hu Z, Li J, Sun X. Forecasting nonadiabatic dynamics using hybrid convolutional neural network/long short-term memory network. J Chem Phys 2021; 155:224104. [PMID: 34911307 DOI: 10.1063/5.0073689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Modeling nonadiabatic dynamics in complex molecular or condensed-phase systems has been challenging, especially for the long-time dynamics. In this work, we propose a time series machine learning scheme based on the hybrid convolutional neural network/long short-term memory (CNN-LSTM) framework for predicting the long-time quantum behavior, given only the short-time dynamics. This scheme takes advantage of both the powerful local feature extraction ability of CNN and the long-term global sequential pattern recognition ability of LSTM. With feature fusion of individually trained CNN-LSTM models for the quantum population and coherence dynamics, the proposed scheme is shown to have high accuracy and robustness in predicting the linearized semiclassical and symmetrical quasiclassical mapping dynamics as well as the mixed quantum-classical Liouville dynamics of various spin-boson models with learning time up to 0.3 ps. Furthermore, if the hybrid network has learned the dynamics of a system, this knowledge is transferable that could significantly enhance the accuracy in predicting the dynamics of a similar system. The hybrid CNN-LSTM network is thus believed to have high predictive power in forecasting the nonadiabatic dynamics in realistic charge and energy transfer processes in photoinduced energy conversion.
Collapse
Affiliation(s)
- Daxin Wu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Zhubin Hu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Jiebo Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Institute of Medical Photonics, Beihang University, Beijing 100191, China
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| |
Collapse
|
5
|
Wei A, Lv S, Zhang Y, Xia C, Wang L. The configuration effect on the exciton dynamics of zinc chlorin aggregates. Phys Chem Chem Phys 2021; 23:25769-25775. [PMID: 34755738 DOI: 10.1039/d1cp03127a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Excitonic energy transfer among the zinc chlorin molecules is significant for the photovoltaic process because of their high sensitivities to harvesting sunlight. Zinc chlorin monomers and dimers can be synthesized experimentally, and they can form various self-assembled structures. Using the realistic parameters of zinc chlorin molecules, we assume that 20 molecules with J-, H- or J-H aggregation are arranged in a line and we investigate their dipole configuration effect on exciton dynamics. The expectation value approximation of operators is applied to derive the equations of motion of multi-exciton states. The temporal evolution of multi-exciton states is analyzed in the scheme of density matrix theory. Our simulations show that the inter-molecular coupling results in an exciton band and the wave-packet progressing excited by the resonant laser pulse exhibits attractive or repulsive behavior at the exciton level due to the dipole configuration effect. In the defined J-H coupling, the coherent wave-packet cannot overcome the configuration barrier to the no-excited part. The exciton dynamics revealed here might be helpful to better understand the energy transfer process in organic photovoltaic devices.
Collapse
Affiliation(s)
- An Wei
- Institute of Theoretical Physics, Department of Physics, University of Science and Technology, Beijing, Beijing 100083, China.
| | - Siyuan Lv
- Institute of Theoretical Physics, Department of Physics, University of Science and Technology, Beijing, Beijing 100083, China.
| | - Yuan Zhang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Caijuan Xia
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Luxia Wang
- Institute of Theoretical Physics, Department of Physics, University of Science and Technology, Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Ke Y, Zhao Y. Perturbation expansions of stochastic wavefunctions for open quantum systems. J Chem Phys 2017; 147:184103. [DOI: 10.1063/1.4996737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yaling Ke
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
7
|
Vaughan F, Linden N, Manby FR. How Markovian is exciton dynamics in purple bacteria? J Chem Phys 2017; 146:124113. [DOI: 10.1063/1.4978568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Felix Vaughan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Bristol Centre for Complexity Sciences, University of Bristol, 1–9 Old Park Hill, Bristol BS2 8BB, United Kingdom
| | - Noah Linden
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Frederick R. Manby
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|