1
|
Glyakina AV, Suvorina MY, Dovidchenko NV, Katina NS, Surin AK, Galzitskaya OV. Exploring Compactness and Dynamics of Apomyoglobin. Proteins 2024. [PMID: 39713842 DOI: 10.1002/prot.26786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) approach has become a valuable analytical complement to traditional methods. HDX-MS allows the identification of dynamic surfaces in proteins. We have shown that the introduction of various mutations into the amino acid sequence of whale apomyoglobin (apoMb) leads to a change in the number of exchangeable hydrogen atoms, which is associated with a change in its compactness in the native-like condition. Thus, amino acid substitutions V10A, A15S, P120G, and M131A result in an increase in the number of exchangeable hydrogen atoms at the native-like condition, while the mutant form A144S leads to a decrease in the number of exchangeable hydrogen atoms. This may be due to a decrease and increase in the compactness of apoMb structure compared to the wild-type apoMb, respectively. The L9F and L9E mutations did not affect the compactness of the molecule compared to the wild type. We have demonstrated that V10A and M131A substitutions lead to the maximum and large increase correspondently in the average number of exchangeable hydrogen atoms for deuterium, since these substitutions lead to the loss of contacts between important parts of myoglobin structure: helices A, G, and H, which are structured at the early stage of folding.
Collapse
Affiliation(s)
- Anna V Glyakina
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, the Branch of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Mariya Y Suvorina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Nikita V Dovidchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Natalya S Katina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Alexey K Surin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
2
|
Bronstein A, Marx A. Water stabilizes an alternate turn conformation in horse heart myoglobin. Sci Rep 2023; 13:6094. [PMID: 37055458 PMCID: PMC10102282 DOI: 10.1038/s41598-023-32821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Comparison of myoglobin structures reveals that protein isolated from horse heart consistently adopts an alternate turn conformation in comparison to its homologues. Analysis of hundreds of high-resolution structures discounts crystallization conditions or the surrounding amino acid protein environment as explaining this difference, that is also not captured by the AlphaFold prediction. Rather, a water molecule is identified as stabilizing the conformation in the horse heart structure, which immediately reverts to the whale conformation in molecular dynamics simulations excluding that structural water.
Collapse
Affiliation(s)
- Alex Bronstein
- Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ailie Marx
- Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
3
|
Scrima R, Agriesti F, Pacelli C, Piccoli C, Pucci P, Amoresano A, Cela O, Nappi L, Tataranni T, Mori G, Formisano P, Capitanio N. Myoglobin expression by alternative transcript in different mesenchymal stem cells compartments. Stem Cell Res Ther 2022; 13:209. [PMID: 35598009 PMCID: PMC9123686 DOI: 10.1186/s13287-022-02880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metabolic phenotype of stem cells is increasingly recognized as a hallmark of their pluripotency with mitochondrial and oxygen-related metabolism playing a not completely defined role in this context. In a previous study, we reported the ectopic expression of myoglobin (MB) in bone marrow-derived hematopoietic stem/progenitor cells. Here, we have extended the analysis to mesenchymal stem cells (MSCs) isolated from different tissues. METHODS MSCs were isolated from human placental membrane, mammary adipose tissue and dental pulp and subjected to RT-PCR, Western blotting and mass spectrometry to investigate the expression of MB. A combination of metabolic flux analysis and cyto-imaging was used to profile the metabolic phenotype and the mitochondria dynamics in the different MSCs. RESULTS As for the hematopoietic stem/progenitor cells, the expression of Mb was largely driven by an alternative transcript with the protein occurring both in the monomer and in the dimer forms as confirmed by mass spectrometry analysis. Comparing the metabolic fluxes between neonatal placental membrane-derived and adult mammary adipose tissue-derived MSCs, we showed a significantly more active bioenergetics profile in the former that correlated with a larger co-localization of myoglobin with the mitochondrial compartment. Differences in the structure of the mitochondrial network as well as in the expression of factors controlling the organelle dynamics were also observed between neonatal and adult mesenchymal stem cells. Finally, the expression of myoglobin was found to be strongly reduced following osteogenic differentiation of dental pulp-derived MSCs, while it was upregulated following reprogramming of human fibroblasts to induce pluripotent stem cells. CONCLUSIONS Ectopic expression of myoglobin in tissues other than muscle raises the question of understanding its function therein. Properties in addition to the canonical oxygen storage/delivery have been uncovered. Finding of Mb expressed via an alternative gene transcript in the context of different stem cells with metabolic phenotypes, its loss during differentiation and recovery in iPSCs suggest a hitherto unappreciated role of Mb in controlling the balance between aerobic metabolism and pluripotency. Understanding how Mb contributes through modulation of the mitochondrial physiology to the stem cell biology paves the way to novel perspectives in regenerative medicine as well as in cancer stem cell therapy.
Collapse
Affiliation(s)
- Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Francesca Agriesti
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.,Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pietro Pucci
- CEINGE Advanced Biotechnology and Department of Chemical Sciences, University of Napoli Federico II, Naples, Italy
| | - Angela Amoresano
- CEINGE Advanced Biotechnology and Department of Chemical Sciences, University of Napoli Federico II, Naples, Italy
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigi Nappi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Tiziana Tataranni
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
4
|
SAXS Reveals the Stabilization Effects of Modified Sugars on Model Proteins. Life (Basel) 2022; 12:life12010123. [PMID: 35054516 PMCID: PMC8778440 DOI: 10.3390/life12010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Many proteins are usually not stable under different stresses, such as temperature and pH variations, mechanical stresses, high concentrations, and high saline contents, and their transport is always difficult, because they need to be maintained in a cold regime, which is costly and very challenging to achieve in remote areas of the world. For this reason, it is extremely important to find stabilizing agents that are able to preserve and protect proteins against denaturation. In the present work, we investigate, by extensively using synchrotron small-angle X-ray scattering experiments, the stabilization effect of five different sugar-derived compounds developed at ExtremoChem on two model proteins: myoglobin and insulin. The data analysis, based on a novel method that combines structural and thermodynamic features, has provided details about the physical-chemical processes that regulate the stability of these proteins in the presence of stabilizing compounds. The results clearly show that some modified sugars exert a greater stabilizing effect than others, being able to maintain the active forms of proteins at temperatures higher than those in which proteins, in the absence of stabilizers, reach denatured states.
Collapse
|
5
|
Terse VL, Gosavi S. The Molecular Mechanism of Domain Swapping of the C-Terminal Domain of the SARS-Coronavirus Main Protease. Biophys J 2020; 120:504-516. [PMID: 33359834 PMCID: PMC7837137 DOI: 10.1016/j.bpj.2020.11.2277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
In three-dimensional domain swapping, two protein monomers exchange a part of their structures to form an intertwined homodimer, whose subunits resemble the monomer. Several viral proteins domain swap to increase their structural complexity or functional avidity. The main protease (Mpro) of the severe acute respiratory syndrome (SARS) coronavirus proteolyzes viral polyproteins and has been a target for anti-SARS drug design. Domain swapping in the α-helical C-terminal domain of Mpro (MproC) locks Mpro into a hyperactive octameric form that is hypothesized to promote the early stages of viral replication. However, in the absence of a complete molecular understanding of the mechanism of domain swapping, investigations into the biological relevance of this octameric Mpro have stalled. Isolated MproC can exist as a monomer or a domain-swapped dimer. Here, we investigate the mechanism of domain swapping of MproC using coarse-grained structure-based models and molecular dynamics simulations. Our simulations recapitulate several experimental features of MproC folding. Further, we find that a contact between a tryptophan in the MproC domain-swapping hinge and an arginine elsewhere forms early during folding, modulates the folding route, and promotes domain swapping to the native structure. An examination of the sequence and the structure of the tryptophan containing hinge loop shows that it has a propensity to form multiple secondary structures and contacts, indicating that it could be stabilized into either the monomer- or dimer-promoting conformations by mutations or ligand binding. Finally, because all residues in the tryptophan loop are identical in SARS-CoV and SARS-CoV-2, mutations that modulate domain swapping may provide insights into the role of octameric Mpro in the early-stage viral replication of both viruses.
Collapse
Affiliation(s)
- Vishram L Terse
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
6
|
Cahyono RN, Yamanaka M, Nagao S, Shibata N, Higuchi Y, Hirota S. 3D domain swapping of azurin from Alcaligenes xylosoxidans. Metallomics 2020; 12:337-345. [PMID: 31956880 DOI: 10.1039/c9mt00255c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein oligomers have gained interest, owing to their increased knowledge in cells and promising utilization for future materials. Various proteins have been shown to 3D domain swap, but there has been no domain swapping report on a blue copper protein. Here, we found that azurin from Alcaligenes xylosoxidans oligomerizes by the procedure of 2,2,2-trifluoroethanol addition to Cu(i)-azurin at pH 5.0, lyophilization, and dissolution at pH 7.0, whereas it slightly oligomerizes when using Cu(ii)-azurin. The amount of high order oligomers increased with the addition of Cu(ii) ions to the dissolution process of a similar procedure for apoazurin, indicating that Cu(ii) ions enhance azurin oligomerization. The ratio of the absorbance at 460 nm to that at ∼620 nm of the azurin dimer (Abs460/Abs618 = 0.113) was higher than that of the monomer (Abs460/Abs622 = 0.067) and the EPR A‖ value of the dimer (5.85 mT) was slightly smaller than that of the monomer (5.95 mT), indicating a slightly more rhombic copper coordination for the dimer. The redox potential of the azurin dimer was 342 ± 5 mV vs. NHE, which was 50 mV higher than that of the monomer. According to X-ray crystal analysis, the azurin dimer exhibited a domain-swapped structure, where the N-terminal region containing three β-strands was exchanged between protomers. The copper coordination structure was tetrahedrally distorted in the azurin dimer, similar to that in the monomer; however, the Cu-O(Gly45) bond length was longer for the dimer (monomer, 2.46-2.59 Å; dimer, 2.98-3.25 Å). These results open the door for designing oligomers of blue copper proteins by domain swapping.
Collapse
Affiliation(s)
- Robby Noor Cahyono
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan. and Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Satoshi Nagao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Naoki Shibata
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
7
|
Hirota S. Oligomerization of cytochrome c, myoglobin, and related heme proteins by 3D domain swapping. J Inorg Biochem 2019; 194:170-179. [DOI: 10.1016/j.jinorgbio.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
|
8
|
Zhang Y, Cao Z, Xia F. Construction of ultra-coarse-grained model of protein with a Gō-like potential. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Mascarenhas NM, Gosavi S. Understanding protein domain-swapping using structure-based models of protein folding. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 128:113-120. [PMID: 27867057 PMCID: PMC7127520 DOI: 10.1016/j.pbiomolbio.2016.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/05/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023]
Abstract
In domain-swapping, two or more identical protein monomers exchange structural elements and fold into dimers or multimers whose units are structurally similar to the original monomer. Domain-swapping is of biotechnological interest because inhibiting domain-swapping can reduce disease-causing fibrillar protein aggregation. To achieve such inhibition, it is important to understand both the energetics that stabilize the domain-swapped structure and the protein dynamics that enable the swapping. Structure-based models (SBMs) encode the folded structure of the protein in their potential energy functions. SBMs have been successfully used to understand diverse aspects of monomer folding. Symmetrized SBMs model interactions between two identical protein chains using only intra-monomer interactions. Molecular dynamics simulations of such symmetrized SBMs have been used to correctly predict the domain-swapped structure and to understand the mechanism of domain-swapping. Here, we review such models and illustrate that monomer topology determines key aspects of domain-swapping. However, in some proteins, specifics of local energetic interactions modulate domain-swapping and these need to be added to the symmetrized SBMs. We then summarize some general principles of the mechanism of domain-swapping that emerge from the symmetrized SBM simulations. Finally, using our own results, we explore how symmetrized SBMs could be used to design domain-swapping in proteins.
Collapse
Affiliation(s)
- Nahren Manuel Mascarenhas
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
| |
Collapse
|
10
|
Mascarenhas NM, Gosavi S. Protein Domain-Swapping Can Be a Consequence of Functional Residues. J Phys Chem B 2016; 120:6929-38. [PMID: 27331242 DOI: 10.1021/acs.jpcb.6b03968] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monomer topology has been implicated in domain-swapping, a potential first step on the route to disease-causing protein aggregation. Despite having the same topology (β1-α1-β2-β3-β4-β5), the cysteine protease inhibitor stefin-B domain swaps more readily than a single-chain variant of the heterodimeric sweet protein monellin (scMn). Here, we computationally study the folding of stefin-B and scMn in order to understand the molecular basis for the difference in their domain-swapping propensities. In agreement with experiments, our structure-based simulations show that scMn folds cooperatively without the population of an intermediate while stefin-B populates an equilibrium intermediate state. Since the simulation intermediate has only one domain structured (β3-β4-β5), it can directly lead to domain-swapping. Using computational variants of stefin-B, we show that the population of this intermediate is caused by regions of stefin-B that have been implicated in protease inhibition. We also find that the protease-binding regions are located on two structural elements and localized in space. In contrast, the residues that contribute to the sweetness of monellin are not localized to a few structural elements but are distributed over the protein fold. We conclude that the distributed functional residues of monellin do not induce large local perturbations in the protein structure, eliminating the formation of folding intermediates and in turn domain-swapping. On the other hand, the localized protease-binding regions of stefin-B promote the formation of a folding intermediate which can lead to domain-swapping. Thus, domain-swapping can be a direct consequence of the constraints that function imposes on the protein structure.
Collapse
Affiliation(s)
- Nahren Manuel Mascarenhas
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore 560065, India
| |
Collapse
|
11
|
Tian P, Best RB. Structural Determinants of Misfolding in Multidomain Proteins. PLoS Comput Biol 2016; 12:e1004933. [PMID: 27163669 PMCID: PMC4862688 DOI: 10.1371/journal.pcbi.1004933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
Recent single molecule experiments, using either atomic force microscopy (AFM) or Förster resonance energy transfer (FRET) have shown that multidomain proteins containing tandem repeats may form stable misfolded structures. Topology-based simulation models have been used successfully to generate models for these structures with domain-swapped features, fully consistent with the available data. However, it is also known that some multidomain protein folds exhibit no evidence for misfolding, even when adjacent domains have identical sequences. Here we pose the question: what factors influence the propensity of a given fold to undergo domain-swapped misfolding? Using a coarse-grained simulation model, we can reproduce the known propensities of multidomain proteins to form domain-swapped misfolds, where data is available. Contrary to what might be naively expected based on the previously described misfolding mechanism, we find that the extent of misfolding is not determined by the relative folding rates or barrier heights for forming the domains present in the initial intermediates leading to folded or misfolded structures. Instead, it appears that the propensity is more closely related to the relative stability of the domains present in folded and misfolded intermediates. We show that these findings can be rationalized if the folded and misfolded domains are part of the same folding funnel, with commitment to one structure or the other occurring only at a relatively late stage of folding. Nonetheless, the results are still fully consistent with the kinetic models previously proposed to explain misfolding, with a specific interpretation of the observed rate coefficients. Finally, we investigate the relation between interdomain linker length and misfolding, and propose a simple alchemical model to predict the propensity for domain-swapped misfolding of multidomain proteins.
Collapse
Affiliation(s)
- Pengfei Tian
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
12
|
Hayashi Y, Yamanaka M, Nagao S, Komori H, Higuchi Y, Hirota S. Domain swapping oligomerization of thermostable c-type cytochrome in E. coli cells. Sci Rep 2016; 6:19334. [PMID: 26838805 PMCID: PMC4738263 DOI: 10.1038/srep19334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023] Open
Abstract
Knowledge on domain swapping in vitro is increasing, but domain swapping may not occur regularly in vivo, and its information in cells is limited. Herein, we show that domain-swapped oligomers of a thermostable c-type cytochrome, Hydrogenobacter thermophilus cyt c552, are formed in E. coli which expresses cyt c552. The region containing the N-terminal α-helix and heme was domain-swapped between protomers in the dimer formed in E. coli. The amount of cyt c552 oligomers increased in E. coli as the cyt c552 concentration was increased, whereas that of high-order oligomers decreased in the order of decrease in protein stability, indicating that domain swapping decreases in cells when the protein stability decreases. Apo cyt c552 was detected in the cyt c552 oligomer formed in E. coli, but not in that of the A5F/M11V/Y32F/Y41E/I76V mutant. The cyt c552 oligomer containing its apo protein may form at the periplasm, since the apo protein detected by mass measurements did not contain the signal peptide. These results show that domain-swapped cyt c552 oligomers were formed in E. coli, owing to the stability of the transient oligomer containing the apo protein before heme attachment. This is an indication that exceedingly stable proteins may have disadvantages forming domain-swapped oligomers in cells.
Collapse
Affiliation(s)
- Yugo Hayashi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hirofumi Komori
- Faculty of Education, Kagawa University, 1-1 Saiwai, Takamatsu, Kagawa 760-8522, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.,RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
13
|
He E, Ren W, Wang J, Li W, Wang W. Effects of heme binding on myoglobin folding: Coarse grained molecular simulations. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633615500595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Many proteins contain cofactors, such as heme, ATP and metal ions. Binding of cofactors is not only essential for their biological functions, but also can reshape the intrinsic energy landscape of protein molecules and modulate the folding and stability. However, the molecular mechanism of cofactor coupled protein folding is not well understood. In this work, we study the cofactor coupled folding of myoglobin, which is a typical cofactor (heme) containing protein, by performing molecular dynamics simulations with a structure-based protein model developed based on the energy landscape theory. We showed that the heme binding increases the stability of the myoglobin. More importantly, the heme binding tends to increase the protein folding cooperativity, and switch the folding process from a “three-state” mechanism to a “two-state” mechanism. We also showed that the folding pathways of the myoglobin can be modulated by the heme binding. By performing comparative simulations, we revealed that the above effects of heme binding are resulted from the heme induced folding of F-helix, which is otherwise unstructured at apo state, and the heme mediated contacting interactions around the heme binding site. The simulation results are consistent with available experimental data, and provide insights into the molecular mechanism of the effects of cofactor binding on the protein folding and stability.
Collapse
Affiliation(s)
- Erbin He
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University Nanjing, 210093, P. R. China
| | - Weitong Ren
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University Nanjing, 210093, P. R. China
| | - Jun Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University Nanjing, 210093, P. R. China
| | - Wenfei Li
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University Nanjing, 210093, P. R. China
| | - Wei Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University Nanjing, 210093, P. R. China
| |
Collapse
|
14
|
Miyamoto T, Kuribayashi M, Nagao S, Shomura Y, Higuchi Y, Hirota S. Domain-swapped cytochrome cb562 dimer and its nanocage encapsulating a Zn-SO 4 cluster in the internal cavity. Chem Sci 2015; 6:7336-7342. [PMID: 28791095 PMCID: PMC5519777 DOI: 10.1039/c5sc02428e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023] Open
Abstract
Three domain-swapped cytochrome cb562 dimers formed a unique cage structure with a Zn–SO4 cluster inside the cavity.
Protein nanostructures have been gaining in interest, along with developments in new methods for construction of novel nanostructures. We have previously shown that c-type cytochromes and myoglobin form oligomers by domain swapping. Herein, we show that a four-helix bundle protein cyt cb562, with the cyt b562 heme attached to the protein moiety by two Cys residues insertion, forms a domain-swapped dimer. Dimeric cyt cb562 did not dissociate to monomers at 4 °C, whereas dimeric cyt b562 dissociated under the same conditions, showing that heme attachment to the protein moiety stabilizes the domain-swapped structure. According to X-ray crystallographic analysis of dimeric cyt cb562, the two helices in the N-terminal region of one protomer interacted with the other two helices in the C-terminal region of the other protomer, where Lys51–Asp54 served as a hinge loop. The heme coordination structure of the dimer was similar to that of the monomer. In the crystal, three domain-swapped cyt cb562 dimers formed a unique cage structure with a Zn–SO4 cluster inside the cavity. The Zn–SO4 cluster consisted of fifteen Zn2+ and seven SO42– ions, whereas six additional Zn2+ ions were detected inside the cavity. The cage structure was stabilized by coordination of the amino acid side chains of the dimers to the Zn2+ ions and connection of two four-helix bundle units through the conformation-adjustable hinge loop. These results show that domain swapping can be applied in the construction of unique protein nanostructures.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Mai Kuribayashi
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Satoshi Nagao
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Yasuhito Shomura
- Graduate School of Science and Engineering , Ibaraki University , 4-12-1, Nakanarusawa , Hitachi , Ibaraki 316-8511 , Japan
| | - Yoshiki Higuchi
- Department of Life Science , Graduate School of Life Science , University of Hyogo , 3-2-1 Koto, Kamigori-cho, Ako-gun , Hyogo 678-1297 , Japan.,RIKEN SPring-8 Center , 1-1-1 Koto, Sayo-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Shun Hirota
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| |
Collapse
|