1
|
Alghamdi WA, Alterary SS, Alarifi A, Ramu R, Khan MS, Afzal M. Exploring the interaction of curcumin with β-cyclodextrin and its binding with DNA: A combined spectroscopic and molecular docking study. Int J Biol Macromol 2024; 282:137238. [PMID: 39500426 DOI: 10.1016/j.ijbiomac.2024.137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
At present, a major effort in biophysical studies has been paid towards exploring the interactions and release of therapeutic payloads to the specific site leaving behind healthy cells unaffected and hence, lower the drug-induced toxicity. For the purpose, interaction of β-bound CUR with calf thymus DNA (ctDNA) has been examined intensely using a series of biophysical methods like absorption, steady state fluorescence emission, and circular dichroism together with molecular docking study. The experimental analysis divulge that CUR interacts with both β-CD (although with different molar ratio) and DNA. However, the binding affinity of CUR with the target (DNA) is higher than it does with the β-CD. When β-CD-carried (10 mM) CUR (μM) (inclusion complex) comes near DNA (15-372 μM), CUR gets out from β-CD's void and approaches to binds with the DNA. The relocation of the probe occurred due to competitive binding of the CUR between β-CD and the DNA. The present investigation may provide a simple yet probable route for the transfer of encapsulated therapeutic payload of β-CD to the most relevant biomolecular target DNA.
Collapse
Affiliation(s)
- Waad A Alghamdi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seham S Alterary
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alarifi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramith Ramu
- Department of Biotechnology & Bioinformatics School of Life Science, JSS Academy of Higher Education & Research (Deemed to be University) Sri Shivarathreeshwara Nagara, Mysuru, Karnataka 570015, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
2
|
pH tolerant metal ion controlled luminescence behaviour of supramolecular assembly and its application in bioimaging and supramolecular logic gate. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Unraveling pH-responsive contrasting supramolecular interaction of acridine orange with γ-Cyclodextrin. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Ipte PR, Manna S, Sahoo S, Satpati AK. Probing the interaction of anti-HIV drug Darunavir with dsDNA and HSA using electrochemical and spectroscopic measurements. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 56:1435-1444. [PMID: 34986753 DOI: 10.1080/10934529.2021.2008205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Investigation of electrochemical and spectroscopic characteristics of anti-human immunodeficiency virus (HIV) drug provides important information related to the efficacy of the drug in relation with its interaction with several important biomolecules. In the present investigation we have developed an electrochemical and spectroscopic method for the detection of anti-HIV drug Darunavir (DRV) using the carbon paste as the working electrode. The analytical method has generated the detection limit of 1.86 µM (S/N = 3). The electrochemical investigations have also been carried out for the exploration of the interaction of DRV with double stranded deoxyribose nucleic acid DNA (dsDNA) and human serum albumin (HSA). Electrochemical investigations were supported from the spectroscopic measurements in evaluating the interaction. The results obtained from voltammetric and spectroscopic experiments shows strong interaction between the drug and the macromolecules. It has been observed that DRV forms strong complexes with HSA and dsDNA with the formation constants of 2.7 × 104 and 4.2 × 104 M-1 respectively. The formation constants are varied with the pH of the solution, which leads to the assertion of the mechanism of the interaction between DRV and dsDNA.
Collapse
Affiliation(s)
- Priyanka R Ipte
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sudipa Manna
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Srikant Sahoo
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashis Kumar Satpati
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
5
|
Sayed M, Pal H. An overview from simple host-guest systems to progressively complex supramolecular assemblies. Phys Chem Chem Phys 2021; 23:26085-26107. [PMID: 34787121 DOI: 10.1039/d1cp03556h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular chemistry involving macrocyclic hosts is a highly interdisciplinary and fast-growing research field in chemistry, biochemistry, and materials science. Host-guest based supramolecular assemblies, as constructed through non-covalent interactions, are highly dynamic in nature, and can be tuned easily using their responses to various external stimuli, providing a convenient approach to achieve excellent functional materials. Macrocyclic hosts, particularly cyclodextrins, cucurbit[n]urils, and calix[n]arenes, which have unique features like possessing hydrophobic cavities of different sizes, along with hydrophilic external surfaces, which are also amenable towards easy derivatizations, are versatile cavitands or host molecules to encapsulate diverse guest molecules to form stable host-guest complexes with many unique structures and properties. Interestingly, host-guest complexes possessing amphiphilic properties can easily lead to the formation of various advanced supramolecular assemblies, like pseudorotaxanes, rotaxanes, polyrotaxanes, supramolecular polymers, micelles, vesicles, supramolecular nanostructures, and so on. Moreover, these supramolecular assemblies, with varied morphologies and responsiveness towards external stimuli, have immense potential for applications in nanotechnology, materials science, biosensors, drug delivery, analytical chemistry and biomedical sciences. In this perspective, we present a stimulating overview, discussing simple host-guest systems to complex supramolecular assemblies in a systematic manner, aiming to encourage future researchers in this fascinating area of supramolecular chemistry to develop advanced supramolecular materials with superior functionalities, for their deployment in diverse applied areas.
Collapse
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.,Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| |
Collapse
|
6
|
1′-hydroxy-2′-acetonaphthone: A simple fluorescence turn-on signaling probe with high selectivity and sensitivity for Al3+ in pure water. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Sayed M, Krishnamurthy B, Pal H. Unraveling the salt induced modulation in the photophysical behavior of acridine orange dye on its interaction with natural DNA. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Gong YP, Yang J, Fang JW, Li Q, Yu ZY, Guan A, Gong HY. A DNA small molecular probe with increasing K + concentration promoted selectivity. RSC Adv 2021; 11:15030-15035. [PMID: 35424063 PMCID: PMC8697834 DOI: 10.1039/d0ra06274j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/28/2021] [Indexed: 11/21/2022] Open
Abstract
DNA small molecular probe study was considered as a promising approach to achieve DNA related disease diagnosis. Most related reports were performed under specific salinity. Herein, 4-imino-3-(pyridin-2-yl)-4H-quinolizine-1-carbonitrile (IPQC) was generated via a facile procedure with high yield (85%). It is found that IPQC could act as a universal probe for most tested ssDNA, dsDNA and G4 DNA in low [K+] concentration (less than 20 mM). However, IPQC showed highly selective G4 DNA binding via UV-vis and fluorescence response in increasing [K+] (e.g., 150 mM) conditions. The ion atmosphere effects are instructive for DNA probe exploration. This provides guidance for the design, selection and optimization of the probes for target DNA sensing.
Collapse
Affiliation(s)
- Ya-Ping Gong
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China
- Institute of Chemistry, Chinese Academy of Sciences Zhongguancunbeiyijie 2 Beijing 100190 P. R. China
| | - Jian Yang
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 P. R. China
| | - Ji-Wang Fang
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 P. R. China
| | - Qian Li
- Institute of Chemistry, Chinese Academy of Sciences Zhongguancunbeiyijie 2 Beijing 100190 P. R. China
| | - Zhi-Yong Yu
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China
| | - Aijiao Guan
- Institute of Chemistry, Chinese Academy of Sciences Zhongguancunbeiyijie 2 Beijing 100190 P. R. China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 P. R. China
| |
Collapse
|
9
|
Ipte P, Sharma A, Pal H, Satpati A. Probing the interaction of ciprofloxacin with dsDNA: Electrochemical, spectro-electrochemical and AFM investigation. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Dutta Choudhury S, Pal H. Supramolecular and suprabiomolecular photochemistry: a perspective overview. Phys Chem Chem Phys 2021; 22:23433-23463. [PMID: 33112299 DOI: 10.1039/d0cp03981k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this perspective review article, we have attempted to bring out the important current trends of research in the areas of supramolecular and suprabiomolecular photochemistry. Since the spans of the subject areas are very vast, it is impossible to cover all the aspects within the limited space of this review article. Nevertheless, efforts have been made to assimilate the basic understanding of how supramolecular interactions can significantly change the photophysical and other related physiochemical properties of chromophoric dyes and drugs, which have enormous academic and practical implications. We have discussed with reference to relevant chemical systems where supramolecularly assisted modulations in the properties of chromophoric dyes and drugs can be used or have already been used in different areas like sensing, dye/drug stabilization, drug delivery, functional materials, and aqueous dye laser systems. In supramolecular assemblies, along with their conventional photophysical properties, the acid-base properties of prototropic dyes, as well as the excited state prototautomerization and related proton transfer behavior of proton donor/acceptor dye molecules, are also largely modulated due to supramolecular interactions, which are often reflected very explicitly through changes in their absorption and fluorescence characteristics, providing us many useful insights into these chemical systems and bringing out intriguing applications of such changes in different applied areas. Another interesting research area in supramolecular photochemistry is the excitation energy transfer from the donor to acceptor moieties in self-assembled systems which have immense importance in light harvesting applications, mimicking natural photosynthetic systems. In this review article, we have discussed varieties of these aspects, highlighting their academic and applied implications. We have tried to emphasize the progress made so far and thus to bring out future research perspectives in the subject areas concerned, which are anticipated to find many useful applications in areas like sensors, catalysis, electronic devices, pharmaceuticals, drug formulations, nanomedicine, light harvesting, and smart materials.
Collapse
Affiliation(s)
- Sharmistha Dutta Choudhury
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India. and Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai-400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai-400094, India and Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| |
Collapse
|
11
|
Parisi C, Fraix A, Guglielmo S, Spyrakis F, Rolando B, Lazzarato L, Fruttero R, Gasco A, Sortino S. DNA-Targeted NO Release Photoregulated by Green Light. Chemistry 2020; 26:13627-13633. [PMID: 32453464 DOI: 10.1002/chem.202001538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Indexed: 11/07/2022]
Abstract
A novel molecular hybrid has been designed and synthesized in which acridine orange (AO) is covalently linked to an N-nitrosoaniline derivative through an alkyl spacer. Photoexcitation of the AO antenna with the highly biocompatible green light results in intense fluorescence emission and triggers NO detachment from the N-nitroso appendage via an intramolecular electron transfer. The presence of the AO moiety encourages the binding with DNA through both external and partially intercalative fashions, depending on the DNA:molecular hybrid molar ratio. Importantly, this dual-mode binding interaction with the biopolymer does not preclude the NO photoreleasing performances of the molecular hybrid, permitting NO to be photogenerated nearby DNA with an efficiency similar to that of the free molecule. These properties make the presented compound an intriguing candidate for fundamental and potential applicative research studies where NO delivery in the DNA proximity precisely regulated by harmless green light is required.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| | - Stefano Guglielmo
- Department of Science and Drug Technology, University of Torino, Via Pietro Giuria 9, 10125, Torino, Italy
| | - Francesca Spyrakis
- Department of Science and Drug Technology, University of Torino, Via Pietro Giuria 9, 10125, Torino, Italy
| | - Barbara Rolando
- Department of Science and Drug Technology, University of Torino, Via Pietro Giuria 9, 10125, Torino, Italy
| | - Loretta Lazzarato
- Department of Science and Drug Technology, University of Torino, Via Pietro Giuria 9, 10125, Torino, Italy
| | - Roberta Fruttero
- Department of Science and Drug Technology, University of Torino, Via Pietro Giuria 9, 10125, Torino, Italy
| | - Alberto Gasco
- Department of Science and Drug Technology, University of Torino, Via Pietro Giuria 9, 10125, Torino, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| |
Collapse
|
12
|
Sayed M, Balayan J, Singh PK, Pal H. Modulation of excited-state photodynamics of ESIPT probe 1′-hydroxy-2′-acetonaphthone (HAN) on interaction with bovine serum albumin. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Gao B, Wang G, Li B, Wu L. Self-Inclusion and Dissociation of a Bridging β-Cyclodextrin Triplet. ACS OMEGA 2020; 5:8127-8136. [PMID: 32309722 PMCID: PMC7161068 DOI: 10.1021/acsomega.0c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
To understand the self-inclusion and the dissociation in a branched β-cyclodextrin (CD) system, we designed and synthesized a β-CD trimer in which each CD group is connected to one of bridging arms of a planar triphenylbenzene core through a CuAAC click reaction. Only one rather than two or all of the three host CDs was demonstrated to be in a self-including state in water, while no self-inclusion was observed to occur in dimethylsulfoxide (DMSO) via the characterization of 1H and NOESY NMR spectra. The configuration structures of the CD groups in the self-included state were evaluated, and the dissociation to free state in water was investigated under various conditions like heating, increased acidity, and discharging versus the addition of competitive guests. While raised temperature and increased acidity did not break the self-inclusion, two adamantane guest molecules were found to show capability in driving the equilibrium to get back to free state against the self-inclusion. The inclusion process of the added guests was believed to involve in the dissociation of the self-inclusion and the occupation of the guests in CD cavity. The results of host-guest interaction study indicated that the stable combination of guests was favorable for blocking the structural overturning of glucose toward trapping the bridging group into the cavity.
Collapse
|
14
|
Prasanth PA, Nantheeswaran P, Anbazhagan V, Senthilnathan R, Jothi A, Bhuvanesh NSP, Sannegowda LK, Mariappan M. The metal centre in salen-acridine dyad N2O2 ligand–metal complexes modulates DNA binding and photocleavage efficiency. NEW J CHEM 2020. [DOI: 10.1039/d0nj02035d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metal centre in a coordination complex modulates DNA binding.
Collapse
Affiliation(s)
| | | | - Veerappan Anbazhagan
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thirumalaisamudaram
- Thanjavur
- India
| | - Rajendran Senthilnathan
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thirumalaisamudaram
- Thanjavur
- India
| | - Arunachalam Jothi
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thirumalaisamudaram
- Thanjavur
- India
| | | | | | | |
Collapse
|
15
|
Sharma A, Sarkar A, Goswami D, Bhattacharyya A, Enderlein J, Kumbhakar M. Determining Metal Ion Complexation Kinetics with Fluorescent Ligands by Using Fluorescence Correlation Spectroscopy. Chemphyschem 2019; 20:2093-2102. [PMID: 31240810 DOI: 10.1002/cphc.201900517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Indexed: 11/08/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) has been extensively used to measure equilibrium binding constants (K) or association and dissociation rates in many reversible chemical reactions across chemistry and biology. For the majority of investigated reactions, the binding constant was on the order of ∼100 M-1 , with dissociation constants faster or equal to 103 s-1 , which ensured that enough association/dissociation events occur during the typical diffusion-determined transition time of molecules through the FCS detection volume. However, complexation reactions involving metal ions and chelating ligands exhibit equilibrium constants exceeding 104 M-1 . In the present paper, we explore the applicability of FCS for measuring reaction rates of such complexation reactions, and apply it to binding of iron, europium and uranyl ions to a fluorescent chelating ligand, calcein. For this purpose, we exploit the fact that the ligand fluorescence becomes strongly quenched after binding a metal ion, which results in strong intensity fluctuations that lead to a partial correlation decay in FCS. We also present measurements for the strongly radioactive ions of 241 Am3+ , where the extreme sensitivity of FCS allows us to work with sample concentrations and volumes that exhibit close to negligible radioactivity levels. A general discussion of the applicability of FCS to the investigation of metal-ligand binding reactions concludes our paper.
Collapse
Affiliation(s)
- Arjun Sharma
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Aranyak Sarkar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Dibakar Goswami
- Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India.,Bio-organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Arunasis Bhattacharyya
- Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India.,Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Manoj Kumbhakar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
16
|
Raut SY, Manne AS, Kalthur G, Jain S, Mutalik S. Cyclodextrins as Carriers in Targeted Delivery of Therapeutic Agents: Focused Review on Traditional and Inimitable Applications. Curr Pharm Des 2019; 25:444-454. [DOI: 10.2174/1381612825666190306163602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/25/2019] [Indexed: 11/22/2022]
Abstract
The objective of the article is to provide a comprehensive review on the application of cyclodextrin
complexation in the delivery of drugs, bioactive molecules or macromolecules, with more emphasis on targeted
drug delivery. Classically the cyclodextrins have been considered only as a means of improving the solubility of
drugs; however, many attempts have been made to use cyclodextrins as drug delivery carriers. The cyclodextrin
surface can be modified with various ligands for active targeting of drugs. It can also be passively targeted
through various triggering mechanisms like thermal, magnetic, pH dependent, light dependent, ultrasound, etc. A
comprehensive literature review has been done in the area of drug delivery using cyclodextrins. Applications of
inclusion complexes in the drug delivery through various routes with examples are discussed. This review focuses
on receptor mediated active targeting as well as stimuli responsive passive targeting of drugs/genes by using
cyclodextrins. The article provides a detailed insight of the use of cyclodextrins and their derivatives on the targeted
delivery of the drugs/genes.
Collapse
Affiliation(s)
- Sushil Y. Raut
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| | - Alekhya S.N. Manne
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| |
Collapse
|
17
|
Sayed M, Gubbala GK, Pal H. Contrasting interactions of DNA-intercalating dye acridine orange with hydroxypropyl derivatives of β-cyclodextrin and γ-cyclodextrin hosts. NEW J CHEM 2019. [DOI: 10.1039/c8nj04067b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study demonstrates contrasting binding interactions of acridine orange dye with HPβCD and HPγCD hosts, always illustrating fluoresence “turn on” in the case of HPβCD and showing an interesting fluorescence “off/on switching” in the case of the HPγCD host.
Collapse
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Ganesh K. Gubbala
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Haridas Pal
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| |
Collapse
|
18
|
Alok KT. Interaction of fatty acid-containing 9-aminoacridine derivative with surfactants and bio-surfactants: Synthesis and photophysical studies. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Sayed M, Panjwani S, Pal H. Sulfated β-Cyclodextrin Templated Assembly and Disassembly of Acridine Orange: Unraveling Contrasting Binding Mechanisms and Light Off/On Switching. ChemistrySelect 2018. [DOI: 10.1002/slct.201801563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| | - Shirin Panjwani
- Radiation & Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| | - Haridas Pal
- Radiation & Photochemistry Division; Bhabha Atomic Research Centre, Mumbai 400 085, India & Homi Bhabha National Institute, Anushaktinagar; Mumbai 400 094 India
| |
Collapse
|
20
|
Boraste DR, Chakraborty G, Ray AK, Shankarling GS, Pal H. Supramolecular host-guest interaction of antibiotic drug ciprofloxacin with cucurbit[7]uril macrocycle: Modulations in photophysical properties and enhanced photostability. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Spectroscopic, electrochemical and molecular docking study of the binding interaction of a small molecule 5H-naptho[2,1-f][1,2] oxathieaphine 2,2-dioxide with calf thymus DNA. Int J Biol Macromol 2017; 101:527-535. [DOI: 10.1016/j.ijbiomac.2017.03.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/24/2022]
|
22
|
Boraste DR, Chakraborty G, Ray AK, Shankarling GS, Pal H. pH-Responsive Interaction of Fluorogenic Antimalarial Drug Quinine with Macrocyclic Host Cucurbit[7]uril: Modulations in Photophysical and Acid-Base Properties. ChemistrySelect 2017. [DOI: 10.1002/slct.201700686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Deepak R. Boraste
- Department of Dyestuff Technology; Institute of Chemical Technology; Matunga Mumbai- 400019 India
| | - Goutam Chakraborty
- Laser & Plasma Technology Division, BARC; Mumbai- 400085 India & Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Alok K. Ray
- Laser & Plasma Technology Division, BARC; Mumbai- 400085 India & Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Ganapati S. Shankarling
- Department of Dyestuff Technology; Institute of Chemical Technology; Matunga Mumbai- 400019 India
| | - Haridas Pal
- Radiation & Photochemistry Division, BARC; Mumbai- 400085 India & Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
23
|
Kishimoto M, Kondo K, Akita M, Yoshizawa M. A pH-responsive molecular capsule with an acridine shell: catch and release of large hydrophobic compounds. Chem Commun (Camb) 2017; 53:1425-1428. [DOI: 10.1039/c6cc09094j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reversible assembly and disassembly of a supramolecular capsule bearing multiple acridine panels occur in water under neutral and acidic conditions, respectively. The pH-responsive capsule encapsulates various hydrophobic compounds in neutral water and subsequently releases them by simple acidification.
Collapse
Affiliation(s)
- Mai Kishimoto
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Kei Kondo
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|
24
|
Sayed M, Jha S, Pal H. Complexation induced aggregation and deaggregation of acridine orange with sulfobutylether-β-cyclodextrin. Phys Chem Chem Phys 2017; 19:24166-24178. [DOI: 10.1039/c7cp03135a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present study illustrates intriguing switching of multi-mode binding interactions of acridine orange dye with a sulfobutylether-β-cyclodextrin host.
Collapse
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Shruti Jha
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Haridas Pal
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| |
Collapse
|
25
|
Chovelon B, Fiore E, Faure P, Peyrin E, Ravelet C. A lifetime-sensitive fluorescence anisotropy probe for DNA-based bioassays: The case of SYBR Green. Biosens Bioelectron 2016; 90:140-145. [PMID: 27886600 DOI: 10.1016/j.bios.2016.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/01/2016] [Accepted: 11/20/2016] [Indexed: 12/12/2022]
Abstract
In standard steady-state fluorescence anisotropy (FA) DNA-based assays, the ligand binding to a given receptor is typically signalled by the rotational correlation time changes of the tracer. Herein, we report a radically different strategy that relies on the peculiar excited state lifetime features of the SYBR Green (SG) dye. This DNA-binding probe exhibits a drastically short lifetime in solution, leading to a high FA signal. Its complexation to oligonucleotides determines a singular and very large depolarization depending on the concerted effects of extreme lifetime enhancement and resonance energy homotransfer. On the basis of ligand-induced changes in the molar fractions of bound and free forms of SG, the approach provides an unprecedented means for the FA monitoring of the ligand binding to short DNA molecules, allowing the elaboration of a variety of intercalator displacement assays and label-free biosensors that involve diverse DNA structures (duplex, hairpin, G-quadruplex and single-stranded), ligand types (ion, small organic molecule and protein) and binding modes (intercalation, minor groove, allosteric switch). These findings open up promising avenues in the design of a new generation of FA assays.
Collapse
Affiliation(s)
- Benoit Chovelon
- University Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France; Département de Biochimie, Toxicologie et Pharmacologie, CHU de Grenoble site Nord - Institut de biologie et de pathologie, F-38041 Grenoble, France
| | - Emmanuelle Fiore
- University Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France
| | - Patrice Faure
- Département de Biochimie, Toxicologie et Pharmacologie, CHU de Grenoble site Nord - Institut de biologie et de pathologie, F-38041 Grenoble, France; University Grenoble Alpes, Laboratory of Hypoxy Physiopathology Study Inserm U1042, 38700 La Tronche, France
| | - Eric Peyrin
- University Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France.
| | - Corinne Ravelet
- University Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France.
| |
Collapse
|
26
|
Thakare SS, Chakraborty G, Krishnakumar P, Ray AK, Maity DK, Pal H, Sekar N. Supramolecularly Assisted Modulation of Optical Properties of BODIPY–Benzimidazole Conjugates. J Phys Chem B 2016; 120:11266-11278. [DOI: 10.1021/acs.jpcb.6b08429] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Dilip K. Maity
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | | | - Nagayan Sekar
- Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
27
|
Sayed M, Krishnamurthy B, Pal H. Unraveling multiple binding modes of acridine orange to DNA using a multispectroscopic approach. Phys Chem Chem Phys 2016; 18:24642-53. [PMID: 27545984 DOI: 10.1039/c6cp03716j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of acridine orange (AOH(+)) with calf thymus DNA (ct-DNA) under different dye-DNA conditions has been investigated in detail using multispectroscopic techniques, unraveling a number of hitherto unexplored intricacies of dye-DNA binding. The observed results intriguingly show contrasting binding features when low (2.4 μM) and significantly high (23 μM) dye concentrations are used. It is conclusively inferred from absorption, steady-state fluorescence, circular dichroism, fluorescence decay and anisotropy decay studies that at low [DNA] to [dye] ratio, especially with higher dye concentration, dimeric AOH(+) predominantly binds externally to DNA surfaces through electrostatic interactions. At sufficiently high [DNA] to [dye] ratios, however, the interaction intriguingly changes to monomeric AOH(+) bound to DNA, predominantly in the intercalative mode between DNA base pairs, with partly an electrostatic binding on DNA surfaces. With very low initial dye concentration, monomeric (AOH(+)) mostly binds to DNA through intercalative and electrostatic modes for most DNA to dye ratios. The present study demonstrates a systematic correlation of the striking changes in the photophysical properties of the dye upon multimode binding with DNA. The observed results are of great significance in understanding the fundamental insights of dye/drug binding to DNA hosts, of use in the design of effective therapeutic agents.
Collapse
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| | | | | |
Collapse
|
28
|
Sayed M, Shinde K, Shah R, Pal H. pH-Responsive Indicator Displacement Assay of Acetylcholine Based on Acridine-p-Sulfonatocalix[4]arene Supramolecular System: Fluorescence Off/On Switching and Reversible pKaShift. ChemistrySelect 2016. [DOI: 10.1002/slct.201600226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| | - Ketaki Shinde
- Radiation & Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| | - Ramesh Shah
- Radiation & Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| | - Haridas Pal
- Radiation & Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| |
Collapse
|
29
|
Kundu P, Ghosh S, Das S, Chattopadhyay N. Cyclodextrin induced controlled delivery of a biological photosensitizer from a nanocarrier to DNA. Phys Chem Chem Phys 2016; 18:3685-93. [DOI: 10.1039/c5cp06174a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Addition of β-cyclodextrin to the micelle bound phenosafranin in the presence of ctDNA leads to quantitative transfer of the fluorophore from the micelle to the DNA.
Collapse
Affiliation(s)
- Pronab Kundu
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Saptarshi Ghosh
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Sinjan Das
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | | |
Collapse
|
30
|
Pal K, Chandra F, Mallick S, Koner AL. pH dependent supramolecular recognition of dapoxyl sodium sulfonate with 2-hydroxypropyl β-cyclodextrin: an application towards food-additive formulation. NEW J CHEM 2016. [DOI: 10.1039/c5nj03415a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pH dependent host–guest complexation of dapoxyl sodium sulfonate (DSS), an intramolecular charge transfer dye, with 2-hydroxypropyl beta-cyclodextrin (HP-β-CD) has been investigated.
Collapse
Affiliation(s)
- Kaushik Pal
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| | - Falguni Chandra
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| | - Suman Mallick
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| | - Apurba L. Koner
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| |
Collapse
|
31
|
Radaram B, Levine M. Rationally Designed Supramolecular Organic Hosts for Benzo[a]pyrene Binding and Detection. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Gavvala K, Satpathi S, Hazra P. pH responsive translocation of an anticancer drug between cyclodextrin and DNA. RSC Adv 2015. [DOI: 10.1039/c5ra19839a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Herein, the pH triggered translocation of EPT in between γ-cyclodextrin and DNA is monitored using fluorescence switch of the drug.
Collapse
Affiliation(s)
- Krishna Gavvala
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune 411008
- India
| | - Sagar Satpathi
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune 411008
- India
| | - Partha Hazra
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune 411008
- India
| |
Collapse
|