1
|
Ooka K, Liu R, Arai M. The Wako-Saitô-Muñoz-Eaton Model for Predicting Protein Folding and Dynamics. Molecules 2022; 27:molecules27144460. [PMID: 35889332 PMCID: PMC9319528 DOI: 10.3390/molecules27144460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the recent advances in the prediction of protein structures by deep neutral networks, the elucidation of protein-folding mechanisms remains challenging. A promising theory for describing protein folding is a coarse-grained statistical mechanical model called the Wako-Saitô-Muñoz-Eaton (WSME) model. The model can calculate the free-energy landscapes of proteins based on a three-dimensional structure with low computational complexity, thereby providing a comprehensive understanding of the folding pathways and the structure and stability of the intermediates and transition states involved in the folding reaction. In this review, we summarize previous and recent studies on protein folding and dynamics performed using the WSME model and discuss future challenges and prospects. The WSME model successfully predicted the folding mechanisms of small single-domain proteins and the effects of amino-acid substitutions on protein stability and folding in a manner that was consistent with experimental results. Furthermore, extended versions of the WSME model were applied to predict the folding mechanisms of multi-domain proteins and the conformational changes associated with protein function. Thus, the WSME model may contribute significantly to solving the protein-folding problem and is expected to be useful for predicting protein folding, stability, and dynamics in basic research and in industrial and medical applications.
Collapse
Affiliation(s)
- Koji Ooka
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
- Komaba Organization for Educational Excellence, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Runjing Liu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
| | - Munehito Arai
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
- Correspondence:
| |
Collapse
|
2
|
Naganathan AN. Predicting and Simulating Mutational Effects on Protein Folding Kinetics. Methods Mol Biol 2022; 2376:373-386. [PMID: 34845621 DOI: 10.1007/978-1-0716-1716-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mutational perturbations of protein structures, i.e., phi-value analysis, are commonly employed to probe the extent of involvement of a particular residue in the rate-determining step(s) of folding. This generally involves the measurement of folding thermodynamic parameters and kinetic rate constants for the wild-type and mutant proteins. While computational approaches have been reasonably successful in understanding and predicting the effect of mutations on folding thermodynamics, it has been challenging to explore the same on kinetics due to confounding structural, energetic, and dynamic factors. Accordingly, the frequent observation of fractional phi-values (mean of ~0.3) has resisted a precise and consistent interpretation. Here, we describe how to construct, parameterize, and employ a simple one-dimensional free energy surface model that is grounded in the basic tenets of the energy landscape theory to predict and simulate the effect of mutations on folding kinetics. As a proof of principle, we simulate one-dimensional free energy profiles of 806 mutations from 24 different proteins employing just the experimental destabilization as input, reproduce the relative unfolding activation free energies with a correlation of 0.91, and show that the mean phi-value of 0.3 essentially corresponds to the extent of stabilization energy gained at the barrier top while folding.
Collapse
Affiliation(s)
- Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
3
|
Bhattacharjee K, Gopi S, Naganathan AN. A Disordered Loop Mediates Heterogeneous Unfolding of an Ordered Protein by Altering the Native Ensemble. J Phys Chem Lett 2020; 11:6749-6756. [PMID: 32787218 DOI: 10.1021/acs.jpclett.0c01848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The high flexibility of long disordered or partially structured loops in folded proteins allows for entropic stabilization of native ensembles. Destabilization of such loops could alter the native ensemble or promote alternate conformations within the native ensemble if the ordered regions themselves are held together weakly. This is particularly true of downhill folding systems that exhibit weak unfolding cooperativity. Here, we combine experimental and computational methods to probe the response of the native ensemble of a helical, downhill folding domain PDD, which harbors an 11-residue partially structured loop, to perturbations. Statistical mechanical modeling points to continuous structural changes on both temperature and mutational perturbations driven by entropic stabilization of partially structured conformations within the native ensemble. Long time-scale simulations of the wild-type protein and two mutants showcase a remarkable conformational switching behavior wherein the parallel helices in the wild-type protein sample an antiparallel orientation in the mutants, with the C-terminal helix and the loop connecting the helices displaying high flexibility, disorder, and non-native interactions. We validate these computational predictions via the anomalous fluorescence of a native tyrosine located at the interface of the helices. Our observations highlight the role of long loops in determining the unfolding mechanisms, sensitivity of the native ensembles to mutational perturbations and provide experimentally testable predictions that can be explored in even two-state folding systems.
Collapse
Affiliation(s)
- Kabita Bhattacharjee
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
4
|
Gopi S, Aranganathan A, Naganathan AN. Thermodynamics and folding landscapes of large proteins from a statistical mechanical model. Curr Res Struct Biol 2019; 1:6-12. [PMID: 34235463 PMCID: PMC8244504 DOI: 10.1016/j.crstbi.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/01/2023] Open
Abstract
Statistical mechanical models that afford an intermediate resolution between macroscopic chemical models and all-atom simulations have been successful in capturing folding behaviors of many small single-domain proteins. However, the applicability of one such successful approach, the Wako-Saitô-Muñoz-Eaton (WSME) model, is limited by the size of the protein as the number of conformations grows exponentially with protein length. In this work, we surmount this size limitation by introducing a novel approximation that treats stretches of 3 or 4 residues as blocks, thus reducing the phase space by nearly three orders of magnitude. The performance of the 'bWSME' model is validated by comparing the predictions for a globular enzyme (RNase H) and a repeat protein (IκBα), against experimental observables and the model without block approximation. Finally, as a proof of concept, we predict the free-energy surface of the 370-residue, multi-domain maltose binding protein and identify an intermediate in good agreement with single-molecule force-spectroscopy measurements. The bWSME model can thus be employed as a quantitative predictive tool to explore the conformational landscapes of large proteins, extract the structural features of putative intermediates, identify parallel folding paths, and thus aid in the interpretation of both ensemble and single-molecule experiments.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Akashnathan Aranganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
5
|
Narayan A, Bhattacharjee K, Naganathan AN. Thermally versus Chemically Denatured Protein States. Biochemistry 2019; 58:2519-2523. [PMID: 31083972 DOI: 10.1021/acs.biochem.9b00089] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein unfolding thermodynamic parameters are conventionally extracted from equilibrium thermal and chemical denaturation experiments. Despite decades of work, the degree of structure and the compactness of denatured states populated in these experiments are still open questions. Here, building on previous works, we show that thermally and chemically denatured protein states are distinct from the viewpoint of far-ultraviolet circular dichroism experiments that report on the local conformational status of peptide bonds. The differences identified are independent of protein length, structural class, or experimental conditions, highlighting the presence of two sub-ensembles within the denatured states. The sub-ensembles, UT and UD for thermally induced and denaturant-induced unfolded states, respectively, can exclusively exchange populations as a function of temperature at high chemical denaturant concentrations. Empirical analysis suggests that chemically denatured states are ∼50% more expanded than the thermally denatured chains of the same protein. Our observations hint that the strength of protein backbone-backbone interactions and identity versus backbone-solvent/co-solvent interactions determine the conformational distributions. We discuss the implications for protein folding mechanisms, the heterogeneity in relaxation rates, and folding diffusion coefficients.
Collapse
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Kabita Bhattacharjee
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
6
|
Entropic Control of an Excited Folded-Like Conformation in a Disordered Protein Ensemble. J Mol Biol 2018; 430:2688-2694. [PMID: 29885328 PMCID: PMC6166778 DOI: 10.1016/j.jmb.2018.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
Many intrinsically disordered proteins switch between unfolded and folded-like forms in the presence of their binding partner. The possibility of a pre-equilibrium between the two macrostates is challenging to discern given the complex conformational landscape. Here, we show that CytR, a disordered DNA-binding domain, samples a folded-like excited state in its native ensemble through equilibrium multi-probe spectroscopy, kinetics and an Ising-like statistical mechanical model. The population of the excited state increases upon stabilization of the native ensemble with an osmolyte, while decreasing with increasing temperatures. A conserved proline residue, the mutation of which weakens the binding affinity to the target promoter, is found to uniquely control the population of the minor excited state. Semi-quantitative statistical mechanical modeling reveals that the conformational diffusion coefficient of disordered CytR is an order of magnitude slower than the estimates from folded domains. The osmolyte and proline mutation smoothen and roughen up the landscape, respectively, apart from modulation of populations. Our work uncovers general strategies to probe for excited structured states in disordered ensembles, and to measure and modulate the roughness of the disordered landscapes, inter-conversion rates of species and their populations.
Collapse
|
7
|
Ferreiro DU, Komives EA, Wolynes PG. Frustration, function and folding. Curr Opin Struct Biol 2017; 48:68-73. [PMID: 29101782 DOI: 10.1016/j.sbi.2017.09.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023]
Abstract
Natural protein molecules are exceptional polymers. Encoded in apparently random strings of amino-acids, these objects perform clear physical tasks that are rare to find by simple chance. Accurate folding, specific binding, powerful catalysis, are examples of basic chemical activities that the great majority of polypeptides do not display, and are thought to be the outcome of the natural history of proteins. Function, a concept genuine to Biology, is at the core of evolution and often conflicts with the physical constraints. Locating the frustration between discrepant goals in a recurrent system leads to fundamental insights about the chances and necessities that shape the encoding of biological information.
Collapse
Affiliation(s)
- Diego U Ferreiro
- Protein Physiology Lab, FCEyN-Universidad de Buenos Aires, IQUIBICEN/CONICET, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Chemistry, Rice University, Houston, TX, USA; Department of Physics, Rice University, Houston, TX, USA; Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
8
|
Wong KY, Xu Y, Xu L. Pitfall in Free-Energy Simulations on Simplest Systems. ChemistrySelect 2017. [DOI: 10.1002/slct.201601160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kin-Yiu Wong
- Department of Physics; High Performance Cluster Computing Centre; Institute of Computational and Theoretical Studies; Hong Kong Baptist University; 224 Waterloo Road Kowloon Tong Hong Kong
- Institute of Research and Continuing Education; Hong Kong Baptist University (Shenzhen); Shenzhen China
| | - Yuqing Xu
- Department of Physics; High Performance Cluster Computing Centre; Institute of Computational and Theoretical Studies; Hong Kong Baptist University; 224 Waterloo Road Kowloon Tong Hong Kong
- Institute of Research and Continuing Education; Hong Kong Baptist University (Shenzhen); Shenzhen China
| | - Liang Xu
- Department of Physics; High Performance Cluster Computing Centre; Institute of Computational and Theoretical Studies; Hong Kong Baptist University; 224 Waterloo Road Kowloon Tong Hong Kong
| |
Collapse
|
9
|
Narayan A, Campos LA, Bhatia S, Fushman D, Naganathan AN. Graded Structural Polymorphism in a Bacterial Thermosensor Protein. J Am Chem Soc 2017; 139:792-802. [DOI: 10.1021/jacs.6b10608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai 600036, India
| | - Luis A. Campos
- National Biotechnology Center, Consejo Superior
de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sandhya Bhatia
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, Bangalore 560065, India
| | - David Fushman
- Department
of Chemistry and Biochemistry, Center for Biomolecular Structure and
Organization, University of Maryland, College Park, Maryland 20742, United States
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai 600036, India
| |
Collapse
|
10
|
Gopi S, Singh A, Suresh S, Paul S, Ranu S, Naganathan AN. Toward a quantitative description of microscopic pathway heterogeneity in protein folding. Phys Chem Chem Phys 2017; 19:20891-20903. [DOI: 10.1039/c7cp03011h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimentally consistent statistical modeling of protein folding thermodynamics reveals unprecedented complexity with numerous parallel folding routes in five different proteins.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biotechnology
- Bhupat & Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Animesh Singh
- Department of Computer Science and Engineering
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | | | - Suvadip Paul
- Department of Computer Science and Engineering
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Sayan Ranu
- Department of Computer Science and Engineering
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Athi N. Naganathan
- Department of Biotechnology
- Bhupat & Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600036
- India
| |
Collapse
|
11
|
Gopi S, Rajasekaran N, Singh A, Ranu S, Naganathan AN. Energetic and topological determinants of a phosphorylation-induced disorder-to-order protein conformational switch. Phys Chem Chem Phys 2016; 17:27264-9. [PMID: 26421497 DOI: 10.1039/c5cp04765j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show that the phosphorylation of 4E-BP2 acts as a triggering event to shape its folding-function landscape that is delicately balanced between conflicting favorable energetics and intrinsically unfavorable topological connectivity. We further provide first evidence that the fitness landscapes of proteins at the threshold of disorder can differ considerably from ordered domains.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | | | | | |
Collapse
|
12
|
Faraj SE, González-Lebrero RM, Roman EA, Santos J. Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region. Sci Rep 2016; 6:20782. [PMID: 26856628 PMCID: PMC4746760 DOI: 10.1038/srep20782] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 11/30/2022] Open
Abstract
The aim of this study is to investigate the folding reaction of human frataxin, whose deficiency causes the neurodegenerative disease Friedreich's Ataxia (FRDA). The characterization of different conformational states would provide knowledge about how frataxin can be stabilized without altering its functionality. Wild-type human frataxin and a set of mutants, including two highly destabilized FRDA-associated variants were studied by urea-induced folding/unfolding in a rapid mixing device and followed by circular dichroism. The analysis clearly indicates the existence of an intermediate state (I) in the folding route with significant secondary structure content but relatively low compactness, compared with the native ensemble. However, at high NaCl concentrations I-state gains substantial compaction, and the unfolding barrier is strongly affected, revealing the importance of electrostatics in the folding mechanism. The role of the C-terminal region (CTR), the key determinant of frataxin stability, was also studied. Simulations consistently with experiments revealed that this stretch is essentially unstructured, in the most compact transition state ensemble (TSE2). The complete truncation of the CTR drastically destabilizes the native state without altering TSE2. Results presented here shed light on the folding mechanism of frataxin, opening the possibility of mutating it to generate hyperstable variants without altering their folding kinetics.
Collapse
Affiliation(s)
- Santiago E. Faraj
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| | - Rodolfo M. González-Lebrero
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| | - Ernesto A. Roman
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| | - Javier Santos
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| |
Collapse
|
13
|
Using the folding landscapes of proteins to understand protein function. Curr Opin Struct Biol 2016; 36:67-74. [PMID: 26812092 DOI: 10.1016/j.sbi.2016.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/31/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022]
Abstract
Proteins fold on a biologically-relevant timescale because of a funnel-shaped energy landscape. This landscape is sculpted through evolution by selecting amino-acid sequences that stabilize native interactions while suppressing stable non-native interactions that occur during folding. However, there is strong evolutionary selection for functional residues and these cannot be chosen to optimize folding. Their presence impacts the folding energy landscape in a variety of ways. Here, we survey the effects of functional residues on folding by providing several examples. We then review how such effects can be detected computationally and be used as assays for protein function. Overall, an understanding of how functional residues modulate folding should provide insights into the design of natural proteins and their homeostasis.
Collapse
|
14
|
Sugita M, Matsuoka M, Kikuchi T. Topological and sequence information predict that foldons organize a partially overlapped and hierarchical structure. Proteins 2015; 83:1900-13. [PMID: 26248725 DOI: 10.1002/prot.24874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/23/2015] [Accepted: 07/29/2015] [Indexed: 11/09/2022]
Abstract
It has been suggested that proteins have substructures, called foldons, which can cooperatively fold into the native structure. However, several prior investigations define foldons in various ways, citing different foldon characteristics, thereby making the concept of a foldon ambiguous. In this study, we perform a Gō model simulation and analyze the characteristics of substructures that cooperatively fold into the native-like structure. Although some results do not agree well with the experimental evidence due to the simplicity of our coarse-grained model, our results strongly suggest that cooperatively folding units sometimes organize a partially overlapped and hierarchical structure. This view makes us easy to interpret some different proposal about the foldon as a difference of the hierarchical structure. On the basis of this finding, we present a new method to assign foldons and their hierarchy, using structural and sequence information. The results show that the foldons assigned by our method correspond to the intermediate structures identified by some experimental techniques. The new method makes it easy to predict whether a protein folds sequentially into the native structure or whether some foldons fold into the native structure in parallel.
Collapse
Affiliation(s)
- Masatake Sugita
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masanari Matsuoka
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|