1
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
2
|
Chen L, Chen Z, Wang W, Chen C, Kuboi Y, Zhang C, Li C, Zhang S. Interwoven Trimeric Cage-Catenanes with Topological Chirality. J Am Chem Soc 2024. [PMID: 39437416 DOI: 10.1021/jacs.4c10104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Catenanes have gained increasing attention for their unique features such as topological chirality. To date, the majority of works have focused on catenanes comprising monocyclic rings. Due to the lack of efficient synthetic strategy, catenanes of multiannulated monomers remain scarce. Here, we report the one-pot synthesis of an interwoven trimeric cage-catenane in high yield by dynamic imine condensation between diamine linkers of suitable length and trialdehyde panels in stoichiometry. The formation of cage-catenane is driven by the efficient 6-fold π-π stacking of panels. The monomeric cage and trimeric cage-catenane are interconvertible with reversible imine chemistry, with the latter thermodynamically being more favored. Using a topology-based statistical model, we first reveal that the formation probability of the interwoven catenane surpasses that of its chain-like isomer by 20%. When this pure mathematical model is refined by taking into account the strong template effect provided by the π-π stacking of aromatic panels, it shows that the interwoven structure emerges as the dominant species, almost ruling out the formation of the latter. Although composed of achiral cage monomers, the topological chirality of the interwoven trimeric catenane is unraveled by chiral-high-performance liquid chromatography (HPLC) and circular dichroism (CD) spectroscopy, and single-crystal X-ray diffraction (XRD) analysis of the interwoven cage-catenane also reveals a pair of two topological enantiomers. Our probability analysis-aided rationale would provide a design rationale for guiding the efficient synthesis of topologically sophisticated structures.
Collapse
Affiliation(s)
- Lihua Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenghong Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihao Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenhao Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yoshiaki Kuboi
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chi Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenfei Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Hua PP, Bai JH, Feng HJ, Wang JW, Zhang LF, Jin GX. The Topological Transformation of 4 1 Knot to 4 12 Link through Supramolecular Fusion. J Am Chem Soc 2024; 146:26427-26434. [PMID: 39241233 DOI: 10.1021/jacs.4c09385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Realizing topological transformation through supramolecular fusion is particularly challenging, as the self-assembly of disparate components often results in the orthogonal assembly of building blocks into distinct structures rather than the formation of a heteroleptic architecture. This study introduces a topological transformation, transitioning from a figure-eight knot (41 knot) to a Solomon link (412 link) through a supramolecular fusion process. By employing two structurally similar amino acid ligands (L1 and L3) of varying lengths as bridge ligands, we obtained figure-eight knot 1 and a molecular tweezer-like compound 3 when individually complexed with binuclear Cp*Rh acceptor B1. Our results revealed that subtle modifications to bridge ligands can lead to dramatic changes in their structures and recognition properties. Moreover, we successfully achieved the targeted formation of a heteroleptic Solomon link 4 by blending figure-eight knot 1 and compound 3 in a 1:1 ratio without the need for templates. This procedure effortlessly converted the 41 knot into a 412 link, thus marking a significant advancement in the topological transformation. This work not only marks the construction of the first heteroleptic Solomon link comprising two distinct metallamacrocycles but also demonstrates a process of supramolecular fusion-based topological transformation involving three distinct topological structures.
Collapse
Affiliation(s)
- Pan-Pan Hua
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jun-Hua Bai
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Hui-Jun Feng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jun-Wen Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Li-Fang Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| |
Collapse
|
4
|
Chang JP, Zhang YW, Sun LY, Zhang L, Hahn FE, Han YF. Synthesis of a Metalla[2]catenane, Metallarectangles and Polynuclear Assemblies from Di(N-Heterocyclic Carbene) Ligands. Angew Chem Int Ed Engl 2024; 63:e202409664. [PMID: 38949121 DOI: 10.1002/anie.202409664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
The 2,7-fluorenone-linked bis(6-imidazo[1,5-a]pyridinium) salt H2-1(PF6)2 reacts with Ag2O in CH3CN to yield the [2]catenane [Ag4(1)4](PF6)4. The [2]catenane rearranges in DMF to yield two metallamacrocycles [Ag2(1)2](PF6)2. 2,7-Fluorenone-bridged bis-(imidazolium) salts H2-L(PF6)2 (L=2 a, 2 b) react with Ag2O in CH3CN to yield metallamacrocycles [Ag2(L)2](PF6)2 with interplanar distances between the fluorenone rings too small for [2]catenane formation. Intra- and intermolecular π⋅⋅⋅π interactions between the fluorenone groups were observed by X-ray crystallography. The strongly kinked 2,7-fluorenone bridged bis(5-imidazo[1,5-a]pyridinium) salt H2-4(PF6)2 reacts with Ag2O to yield [Ag2(4)(CN)](PF6), while the tetranuclear assembly [Ag4(4)2(CO3)](PF6)2 was obtained in the presence of K2CO3.
Collapse
Affiliation(s)
- Jin-Ping Chang
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ya-Wen Zhang
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Le Zhang
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Ying-Feng Han
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
5
|
Feng Q, Ding R, Hou Y, Zhang Z, Zhang Y, Liu H, Guo C, He G, Zheng B, Zhang Y, Zhang M. Highly Efficient Self-Assembly of Heterometallic [2]Catenanes and Cyclic Bis[2]catenanes via Orthogonal Metal-Coordination Interactions. Angew Chem Int Ed Engl 2024; 63:e202407923. [PMID: 38738617 DOI: 10.1002/anie.202407923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Although catenated cages have been widely constructed due to their unique and elegant topological structures, cyclic catenanes formed by the connection of multiple catenane units have been rarely reported. Herein, based on the orthogonal metal-coordination-driven self-assembly, we prepare a series of heterometallic [2]catenanes and cyclic bis[2]catenanes, whose structures are clearly evidenced by single-crystal X-ray analysis. Owing to the multiple positively charged nature, as well as the potential synergistic effect of the Cu(I) and Pt(II) metal ions, the cyclic bis[2]catenanes display broad-spectrum antibacterial activity. This work not only provides an efficient strategy for the construction of heterometallic [2]catenanes and cyclic bis[2]catenanes but also explores their applications as superior antibacterial agents, which will promote the construction of advanced supramolecular structures for biomedical applications.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Rui Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yafei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Tang H, Zhang HN, Gao X, Zou Y, Jin GX. The Topological Transformation of Trefoil Knots to Solomon Links via Diels-Alder Click Reaction. J Am Chem Soc 2024; 146:16020-16027. [PMID: 38815259 DOI: 10.1021/jacs.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The quest for more efficient, user-friendly, and less wasteful topological transformations remains a significant challenge in the realm of postassembly modifications. In this article, high yields of two molecular trefoil knots (Rh-1, Ir-1) were obtained using ligand 3,6-bis(3-(pyridin-4-yl)phenyl)-1,2,4,5-tetrazine (L1) with reactive tetrazine units and binuclear half-sandwich organometallic units [Cp*2M2(μ-TPPHZ)(OTf)2](OTf)2 (Rh-B, M = RhIII; Ir-B, M = IrIII). 2,5-Norbornadiene was used as an inducer of the Diels-Alder click reaction to modulate rapidly and efficiently the transformation of Trefoil knots to Solomon links. However, the key to achieving this topological structural change is the subtle increase in site steric of the pyridazine fragments (L2), which allows the molecular structures to spread and bend in three-dimensional space, as confirmed by single-crystal X-ray diffraction, ESI-TOF/MS, elementary analysis and detailed solution-state NMR techniques.
Collapse
Affiliation(s)
- Haitong Tang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Yan Zou
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| |
Collapse
|
7
|
Chen Q, Zhu K. Advancements and strategic approaches in catenane synthesis. Chem Soc Rev 2024; 53:5677-5703. [PMID: 38659402 DOI: 10.1039/d3cs00499f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Catenanes, a distinctive category of mechanically interlocked molecules composed of intertwined macrocycles, have undergone significant advancements since their initial stages characterized by inefficient statistical synthesis methods. Through the aid of molecular recognition processes and principles of self-assembly, a diverse array of catenanes with intricate structures can now be readily accessed utilizing template-directed synthetic protocols. The rapid evolution and emergence of this field have catalyzed the design and construction of artificial molecular switches and machines, leading to the development of increasingly integrated functional systems and materials. This review endeavors to explore the pivotal advancements in catenane synthesis from its inception, offering a comprehensive discussion of the synthetic methodologies employed in recent years. By elucidating the progress made in synthetic approaches to catenanes, our aim is to provide a clearer understanding of the future challenges in further advancing catenane chemistry from a synthetic perspective.
Collapse
Affiliation(s)
- Qing Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
8
|
Liao S, Tang J, Ma C, Yu L, Tan Y, Li X, Gan Q. Foldaxane-Based Switchable [c2]Daisy Chains. Angew Chem Int Ed Engl 2024; 63:e202315668. [PMID: 38346927 DOI: 10.1002/anie.202315668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 02/29/2024]
Abstract
Artificial molecular muscles are highly attractive in the field of molecular machinery due to their unique properties of contraction and stretching motion. However, the synthesis of molecular muscles poses formidable challenges as it is hindered by undesirable yields and poor selectivity. Herein, we present a procedure for the dynamic assembly of foldaxane-based [c2]daisy chains, wherein the hermaphroditic sequences consisting of aromatic helices and peptide rods are interlocked through inter-strand hydrogen-bonding interactions. The binding complementarity facilitates a selective and efficient assembly of [c2]daisy chain structures, inhibiting the creation of by-products. Introducing multiple recognition sites confers the system with contraction and stretching motion actuated by chemical stimuli. The rate of this muscle-like motion is calculated to be 0.8 s-1, which is 107 times faster than that of complex dissociation.
Collapse
Affiliation(s)
- Sibei Liao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Jie Tang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Chunmiao Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Lu Yu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Xuanzhu Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Quan Gan
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| |
Collapse
|
9
|
Hicguet M, Verrieux L, Mongin O, Roisnel T, Berrée F, Fihey A, Le Guennic B, Trolez Y. Threading a Linear Molecule Through a Macrocycle Thanks to Boron: Optical Properties of the Threaded Species and Synthesis of a Rotaxane. Angew Chem Int Ed Engl 2024; 63:e202318297. [PMID: 38270341 DOI: 10.1002/anie.202318297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
Two BODIPYs and two boron β-diketonates were threaded through a macrocycle bearing a 2,2'-biphenol unit, showing thus the ability of boron to act as a gathering atom. The new threaded species were characterized by 1D and 2D NMR spectroscopy as well as by X-ray crystallography for one of them and their properties rationalized with quantum chemistry to unravel the vibronic contributions. The BODIPYs exhibited interesting fluorescence features with quantum yields up to 91 % and enhanced photostability compared to their non-threaded homologues. A rotaxane was synthesized using this threading strategy after stoppering and removing the boron with potassium hydroxide.
Collapse
Affiliation(s)
- Matthieu Hicguet
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Ludmilla Verrieux
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Olivier Mongin
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Thierry Roisnel
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Fabienne Berrée
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Arnaud Fihey
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Boris Le Guennic
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| | - Yann Trolez
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR6226, F-35000, Rennes, France
| |
Collapse
|
10
|
Becharguia N, Nierengarten I, Strub JM, Cianférani S, Rémy M, Wasielewski E, Abidi R, Nierengarten JF. Solution and Solvent-Free Stopper Exchange Reactions for the Preparation of Pillar[5]arene-containing [2] and [3]Rotaxanes. Chemistry 2024; 30:e202304131. [PMID: 38165139 DOI: 10.1002/chem.202304131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Diamine reagents have been used to functionalize a [2]rotaxane building block bearing an activated pentafluorophenyl ester stopper. Upon a first acylation, an intermediate host-guest complex with a terminal amine function is obtained. Dissociation of the intermediate occurs in solution and acylation of the released axle generates a [2]rotaxane with an elongated axle subunit. In contrast, the corresponding [3]rotaxane can be obtained if the reaction conditions are appropriate to stabilize the inclusion complex of the mono-amine intermediate and the pillar[5]arene. This is the case when the stopper exchange is performed under mechanochemical solvent-free conditions. Alternatively, if the newly introduced terminal amide group is large enough to prevent the dissociation, the second acylation provides exclusively a [3]rotaxane. On the other hand, detailed conformational analysis has been also carried out by variable temperature NMR investigations. A complete understanding of the shuttling motions of the pillar[5]arene subunit along the axles of the rotaxanes reported therein has been achieved with the help of density functional theory calculations.
Collapse
Affiliation(s)
- Nihed Becharguia
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
- Laboratoire d'Applications de la Chimie aux Ressources et Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg et CNRS (UMR 7178, IPHC), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg et CNRS (UMR 7178, IPHC), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Marine Rémy
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Emeric Wasielewski
- Plateforme RMN Cronenbourg, Université de Strasbourg et CNRS (UMR 7042, LIMA) Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Rym Abidi
- Laboratoire d'Applications de la Chimie aux Ressources et Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
11
|
Wang Y, Liu T, Zhang YY, Li B, Tan L, Li C, Shen XC, Li J. Cross-catenation between position-isomeric metallacages. Nat Commun 2024; 15:1363. [PMID: 38355599 PMCID: PMC10866959 DOI: 10.1038/s41467-024-45681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
The study of cross-catenated metallacages, which are complex self-assembly systems arising from multiple supramolecular interactions and hierarchical assembly processes, is currently lacking but could provide facile insights into achieving more precise control over low-symmetry/high-complexity hierarchical assembly systems. Here, we report a cross-catenane formed between two position-isomeric Pt(II) metallacages in the solid state. These two metallacages formed [2]catenanes in solution, whereas a 1:1 mixture selectively formed a cross-catenane in crystals. Varied temperature nuclear magnetic resonance experiments and time-of-flight mass spectra are employed to characterize the cross-catenation in solutions, and the dynamic library of [2]catenanes are shown. Additionally, we searched for the global-minimum structures of three [2]catenanes and re-optimized the low-lying structures using density functional theory calculations. Our results suggest that the binding energy of cross-catenanes is significantly larger than that of self-catenanes within the dynamic library, and the selectivity in crystallization of cross-catenanes is thermodynamic. This study presents a cross-catenated assembly from different metallacages, which may provide a facile insight for the development of low-symmetry/high-complexity self-assemble systems.
Collapse
Affiliation(s)
- Yiliang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Taotao Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yang-Yang Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518005, PR China
| | - Bin Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, PR China
| | - Liting Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Chunju Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, PR China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518005, PR China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, 100084, Beijing, PR China
| |
Collapse
|
12
|
Walther A, Regeni I, Holstein JJ, Clever GH. Guest-Induced Reversible Transformation between an Azulene-Based Pd 2L 4 Lantern-Shaped Cage and a Pd 4L 8 Tetrahedron. J Am Chem Soc 2023; 145:25365-25371. [PMID: 37960849 DOI: 10.1021/jacs.3c09295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Azulene, a blue structural isomer of naphthalene, is introduced as the backbone for a new family of Pd(II)-based self-assemblies. Three organic ligands, equipped with varying donor groups, produce three [Pd2L4] cages of different cavity dimensions. Unexpectedly, the addition of organic disulfonate guests to the smallest lantern-shaped cage (featuring pyridine donors) led to a rapid and quantitative transformation to a distorted-tetrahedral [Pd4L8] species. On the contrary, [Pd2L4] cages formed from ligands with isoquinoline donors either just encapsulated the guests or showed no interaction. The tetrahedral species could be fully reverted back to its original [Pd2L4] topology by capturing the guest by another, stronger binding [Pd2L'4] coordination cage, narcissistically self-sorting from the first cage. The azulenes, serving as colored hydrocarbon backbones of minimal atom count, allow one to follow cage assembly and guest-induced transformation by the naked eye. Furthermore, we propose that their peculiar electronic structure influences the system's assembly behavior.
Collapse
Affiliation(s)
- Alexandre Walther
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| | - Irene Regeni
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
13
|
Liu J, Wu M, Wu L, Liang Y, Tang ZB, Jiang L, Bian L, Liang K, Zheng X, Liu Z. Infinite Twisted Polycatenanes. Angew Chem Int Ed Engl 2023; 62:e202314481. [PMID: 37794215 DOI: 10.1002/anie.202314481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Poly[n]catenanes have exceptional mechanical bonding properties that give them tremendous potential for use in the development of molecular machines and soft materials. Synthesizing these compounds has, however, proven to be a formidable challenge. Herein, we describe a concise method for the construction of twisted polycatenanes. Our approach involves using preorganized double helicates as templates, linked crosswise in a linear fashion by either silver ions or triple bonds. By using this approach, we successfully synthesized twisted polycatenanes with both coordination and covalent bonding employing Ag(I) ions and ethynylene units, respectively, as the linkages and leveraging the same Ag(I)-templated double helicate in both cases. Synthesis with Ag(I) ions formed a single-crystalline one-dimensional (1D) coordination poly[n]catenane, and synthesis using ethynylene units generated 1D fibers which self-assembled with solvents to form a gel. Our results confirm the potential of multi-stranded metallohelicates for creating sophisticated mechanically interlocked molecules and polymers, which could pave the way for exploration in the realms of molecular nanotopology and materials design.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Chemistry, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Mengqi Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Lin Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Yimin Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zheng-Bin Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Liang Jiang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Lifang Bian
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Kejiang Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Xiaorui Zheng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zhichang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| |
Collapse
|
14
|
Gauthier M, Fournel-Marotte K, Clavel C, Waelès P, Laurent P, Coutrot F. An Interlocked Figure-of-Eight Molecular Shuttle. Angew Chem Int Ed Engl 2023; 62:e202310643. [PMID: 37594476 DOI: 10.1002/anie.202310643] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Here is reported the synthesis and characterization of an interlocked figure-of-eight rotaxane molecular shuttle from a dibenzo-24-crown-8 (DB24C8) derivative. This latter bears two molecular chains, whose extremities are able to react together by click chemistry. One of the two substituting chain holds an ammonium function aimed at driving the self-entanglement through the complexation of the DB24C8 moiety. In the targeted figure-of-eight rotaxane, shuttling of the DB24C8 along the threaded axle from the best ammonium station to the weaker binding site triazolium was performed through deprotonation or deprotonation-then-carbamoylation of the ammonium. This way, two discrete co-conformational states were obtained, in which the folding and size of the two loops could be changed.
Collapse
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Karine Fournel-Marotte
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Caroline Clavel
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Philip Waelès
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Philippe Laurent
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
15
|
Oka Y, Masai H, Terao J. Multistate Structural Switching of [3]Catenanes with Cyclic Porphyrin Dimers by Complexation with Amine Ligands. Angew Chem Int Ed Engl 2023; 62:e202217002. [PMID: 36625214 DOI: 10.1002/anie.202217002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Catenanes with multistate switchable properties are promising components for next-generation molecular machines and supramolecular materials. Herein, we report a ligand-controlled switching method, a novel method for the multistate switching of catenanes controlled by complexation with added amine ligands. To verify this method, a [3]catenane comprising cyclic porphyrin dimers with a rigid π-system has been synthesized. Owing to the rigidity, the relative positions among the cyclic components of the [3]catenane can be precisely controlled by complexation with various amine ligands. Moreover, ligand-controlled multistate switching affects the optical properties of the [3]catenanes: the emission intensity can be tuned by modulating the sizes and coordination numbers of integrated amine ligands. This work shows the utility of using organic ligands for the structural switching of catenanes, and will contribute to the further development of multistate switchable mechanically interlocked molecules.
Collapse
Affiliation(s)
- Yuki Oka
- Department of Basic Science, Graduate School of Arts and Sciences, The, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902, Tokyo, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902, Tokyo, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, 332-0012, Kawaguchi, Saitama, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902, Tokyo, Japan
| |
Collapse
|
16
|
Bessaguet A, Blancart‐Remaury Q, Poinot P, Opalinski I, Papot S. Stimuli-Responsive Catenane-Based Catalysts. Angew Chem Int Ed Engl 2023; 62:e202216787. [PMID: 36478644 PMCID: PMC10107136 DOI: 10.1002/anie.202216787] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Rotaxanes and molecular knots exhibit particular properties resulting from the presence of a mechanical bond within their structure that maintains the molecular components interlocked in a permanent manner. On the other hand, the disassembly of the interlocked architecture through the breakdown of the mechanical bond can activate properties which are masked in the parent compound. Herein, we present the development of stimuli-responsive CuI -complexed [2]catenanes as OFF/ON catalysts for the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The encapsulation of the CuI ion inside the [2]catenanes inhibits its ability to catalyze the formation of triazoles. In contrast, the controlled opening of the two macrocycles induces the breaking of the mechanical bond, thereby restoring the catalytic activity of the CuI ion for the CuAAC reaction. Such OFF/ON catalysts can be involved in signal amplification processes with various potential applications.
Collapse
Affiliation(s)
- Adrien Bessaguet
- University of PoitiersUMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)4 rue Michel-Brunet, TSA 5110686073Poitiers cedex 9France
| | - Quentin Blancart‐Remaury
- University of PoitiersUMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)4 rue Michel-Brunet, TSA 5110686073Poitiers cedex 9France
| | - Pauline Poinot
- University of PoitiersUMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)4 rue Michel-Brunet, TSA 5110686073Poitiers cedex 9France
| | - Isabelle Opalinski
- University of PoitiersUMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)4 rue Michel-Brunet, TSA 5110686073Poitiers cedex 9France
| | - Sébastien Papot
- University of PoitiersUMR CNRS 7285Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)4 rue Michel-Brunet, TSA 5110686073Poitiers cedex 9France
| |
Collapse
|
17
|
Garci A, David AHG, Le Bras L, Ovalle M, Abid S, Young RM, Liu W, Azad CS, Brown PJ, Wasielewski MR, Stoddart JF. Thermally Controlled Exciplex Fluorescence in a Dynamic Homo[2]catenane. J Am Chem Soc 2022; 144:23551-23559. [PMID: 36512436 DOI: 10.1021/jacs.2c10591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Motion-induced change in emission (MICE) is a phenomenon that can be employed to develop various types of probes, including temperature and viscosity sensors. Although MICE, arising from the conformational motion in particular compounds, has been studied extensively, this phenomenon has not been investigated in depth in mechanically interlocked molecules (MIMs) undergoing coconformational changes. Herein, we report the investigation of a thermoresponsive dynamic homo[2]catenane incorporating pyrene units and displaying relative circumrotational motions of its cyclophanes as evidenced by variable-temperature 1H NMR spectroscopy and supported by its visualization through molecular dynamics simulations and quantum mechanics calculations. The relative coconformational motions induce a significant change in the fluorescence emission of the homo[2]catenane upon changes in temperature compared with its component cyclophanes. This variation in the exciplex emission of the homo[2]catenane is reversible as demonstrated by four complete cooling and heating cycles. This research opens up possibilities of using the coconformational changes in MIMs-based chromophores for probing fluctuations in temperature which could lead to applications in biomedicine or materials science.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Laura Le Bras
- Laboratoire Chrono-environnement (UMR 6249), Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon, France
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seifallah Abid
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wenqi Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paige J Brown
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
18
|
Matviyishyn M, Białońska A, Szyszko B. Crownphyrins: Metal-Mediated Transformations of the Porphyrin-Crown Ether Hybrids. Angew Chem Int Ed Engl 2022; 61:e202211671. [PMID: 36214485 PMCID: PMC10098552 DOI: 10.1002/anie.202211671] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 11/06/2022]
Abstract
Crownphyrins are hybrid macrocycles combining structural features of porphyrin and crown ethers. The molecular architecture renders them an intriguing class of hosts capable of binding neutral, and ionic guests. The presence of dynamic covalent imine linkages connecting the dipyrrin segment with the ether chain enables unusual coordination behavior of crownphyrins, as demonstrated by the formation of two classes of strikingly different complexes. The remarkable metal-mediated expansion to the helical [2+2] macrocyclic complex is reversible. The reaction of the figure-eight mercury(II) assembly with [2.2.2]cryptand results in ring contraction providing the metal-free crownphyrin macrocycle.
Collapse
Affiliation(s)
- Maksym Matviyishyn
- Faculty of ChemistryUniversity of Wrocław14 F. Joliot-Curie St.50-383WrocławPoland
| | - Agata Białońska
- Faculty of ChemistryUniversity of Wrocław14 F. Joliot-Curie St.50-383WrocławPoland
| | - Bartosz Szyszko
- Faculty of ChemistryUniversity of Wrocław14 F. Joliot-Curie St.50-383WrocławPoland
| |
Collapse
|
19
|
The synthesis and near-infrared photothermal conversion of organometallic interdigitated complex and “U” type macrocycles. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Hoyas Pérez N, Sherin PS, Posligua V, Greenfield JL, Fuchter MJ, Jelfs KE, Kuimova MK, Lewis JEM. Emerging properties from mechanical tethering within a post-synthetically functionalised catenane scaffold. Chem Sci 2022; 13:11368-11375. [PMID: 36320581 PMCID: PMC9533469 DOI: 10.1039/d2sc04101d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 09/06/2024] Open
Abstract
Maintaining close spatial proximity of functional moieties within molecular systems can result in fascinating emergent properties. Whilst much work has been done on covalent tethering of functional units for myriad applications, investigations into mechanically linked systems are relatively rare. Formation of the mechanical bond is usually the final step in the synthesis of interlocked molecules, placing limits on the throughput of functionalised architectures. Herein we present the synthesis of a bis-azide [2]catenane scaffold that can be post-synthetically modified using CuAAC 'click' chemistry. In this manner we have been able to access functionalised catenanes from a common precursor and study the properties of electrochemically active, emissive and photodimerisable units within the mechanically interlocked system in comparison to non-interlocked analogues. Our data demonstrates that the greater (co-)conformational flexibility that can be obtained with mechanically interlocked systems compared to traditional covalent tethers paves the way for developing new functional molecules with exciting properties.
Collapse
Affiliation(s)
- Nadia Hoyas Pérez
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Peter S Sherin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Victor Posligua
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Jake L Greenfield
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Matthew J Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | - James E M Lewis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
21
|
Bu A, Zhao Y, Xiao H, Tung C, Wu L, Cong H. A Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022; 61:e202209449. [DOI: 10.1002/anie.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Yongye Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
22
|
Nandi M, Bej S, Ghosh P. NDI-integrated rotaxane/catenane and their interactions with anions. Dalton Trans 2022; 51:13507-13514. [PMID: 35997084 DOI: 10.1039/d2dt01908f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complexation of alkali and alkaline earth metal ions with the heteroditopic Phen-ester oxy-ether macrocyclic wheel (PhenMC) is established for the synthesis of interlocked molecular systems. The single crystal X-ray structure of Na-bound PhenMC confirms the hexacoordinated geometry around the Na ion in the macrocycle. Further, Ca-ion-bound PhenMC (Ca-PhenMC) is explored with a fluorophoric azide-terminated NDI (naphthalene diimide) axle (NDIAz) for the synthesis of fluorophoric [2]rotaxane (NDIROT) and [2]catenane (NDICAT) via Cu(I)-catalyzed cycloaddition reaction. Characterizations of these two new interlocked molecular systems are performed by ESI-MS, NMR, UV-vis and PL spectroscopic studies wherever applicable. Moreover, the new molecular systems are explored towards anion sensing applications via colorimetric, UV-vis-NIR, PL and other spectroscopic studies.
Collapse
Affiliation(s)
- Mandira Nandi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
23
|
Bu A, Zhao Y, Xiao H, Tung CH, Wu LZ, Cong H. Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Yongye Zhao
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Hongyan Xiao
- Technical Institute of Physics and Chemistry Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Chen-Ho Tung
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Huan Cong
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials No.29 Zhongguancun East Road 100190 Beijing CHINA
| |
Collapse
|
24
|
Unsworth WP, Stephens TC. Strategies for the Synthesis of Heterocyclic Macrocycles and Medium‐Sized Rings. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Yang Q, Li XL, Ashebr T, Zhao L, Tang J. Self‐assembly of lanthanide crescent‐like and macrocyclic clusters from versatile o‐vanillin‐based ligands. Chem Asian J 2022; 17:e202200496. [DOI: 10.1002/asia.202200496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qianqian Yang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Xiao-Lei Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Tesfay Ashebr
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Lang Zhao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jinkui Tang
- Changchun Institute of Applied Chemistry State Key Laboratory of Rare Earth Resource Utilization Renmin Street 5625 130022 Changchun CHINA
| |
Collapse
|
26
|
Liu G, Rauscher PM, Rawe BW, Tranquilli MM, Rowan SJ. Polycatenanes: synthesis, characterization, and physical understanding. Chem Soc Rev 2022; 51:4928-4948. [PMID: 35611843 DOI: 10.1039/d2cs00256f] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical composition and architecture are two key factors that control the physical and material properties of polymers. Some of the more unusual and intriguing polymer architectures are the polycatenanes, which are a class of polymers that contain mechanically interlocked rings. Since the development of high yielding synthetic routes to catenanes, there has been an interest in accessing their polymeric counterparts, primarily on account of the unique conformations and degrees of freedom offered by non-bonded interlocked rings. This has lead to the synthesis of a wide variety of polycatenane architectures and to studies aimed at developing structure-property relationships of these interesting materials. In this review, we provide an overview of the field of polycatenanes, exploring synthesis, architecture, properties, simulation, and modelling, with a specific focus on some of the more recent developments.
Collapse
Affiliation(s)
- Guancen Liu
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| | - Phillip M Rauscher
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Benjamin W Rawe
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - Stuart J Rowan
- Department of Chemistry, University of Chicago, Chicago, IL, USA. .,Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Chemical and Engineering Sciences, Argonne National Laboratory, Lemont, IL, USA
| |
Collapse
|
27
|
Krajnc M, Niemeyer J. BINOL as a chiral element in mechanically interlocked molecules. Beilstein J Org Chem 2022; 18:508-523. [PMID: 35601990 PMCID: PMC9086503 DOI: 10.3762/bjoc.18.53] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/22/2022] [Indexed: 12/17/2022] Open
Abstract
In this minireview we present the use of the axially chiral 1,1'-binaphthyl-2,2'-diol (BINOL) unit as a stereogenic element in mechanically interlocked molecules (MIMs). We describe the synthesis and properties of such BINOL-based chiral MIMs, together with their use in further diastereoselective modifications, their application in asymmetric catalysis, and their use in stereoselective chemosensing. Given the growing importance of mechanically interlocked molecules and the key advantages of the privileged chiral BINOL backbone, we believe that this research area will continue to grow and deliver many useful applications in the future.
Collapse
Affiliation(s)
- Matthias Krajnc
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany
| |
Collapse
|
28
|
Hoshino S, Ono K, Kawai H. Ring-Over-Ring Deslipping From Imine-Bridged Heterorotaxanes. Front Chem 2022; 10:885939. [PMID: 35592307 PMCID: PMC9110657 DOI: 10.3389/fchem.2022.885939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Ring-over-ring slippage and ring-through-ring penetration are important processes in the construction of ring-in-ring multiple interlocked architectures. We have successfully observed “ring-over-ring deslipping” on the rotaxane axle by exploiting the dynamic covalent nature of imine bonds in imine-bridged heterorotaxanes R1 and R2 with two macrocycles of different ring sizes on the axle. When the imine bridges of R1 were cleaved, a hydrolyzed hetero[4]rotaxane [4]R1′ was formed as an intermediate under dynamic equilibrium, and the larger 38-membered macrocycle M was deslipped over the 24-membered ring (24C8 or DB24C8) to dissociate into a [3]rotaxane [3]R3 and a macrocycle M. The time dependent NMR measurement and the determined thermodynamic parameters revealed that the rate-limiting step of the deslipping process was attributed to steric hindrance between two rings and reduced mobility of M due to proximity to the crown ether, which was bound to the anilinium on the axle molecule.
Collapse
Affiliation(s)
- Sayaka Hoshino
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Kosuke Ono
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| | - Hidetoshi Kawai
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
- *Correspondence: Hidetoshi Kawai,
| |
Collapse
|
29
|
Au-Yeung HY, Deng Y. Distinctive features and challenges in catenane chemistry. Chem Sci 2022; 13:3315-3334. [PMID: 35432874 PMCID: PMC8943846 DOI: 10.1039/d1sc05391d] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
From being an aesthetic molecular object to a building block for the construction of molecular machines, catenanes and related mechanically interlocked molecules (MIMs) continue to attract immense interest in many research areas. Catenane chemistry is closely tied to that of rotaxanes and knots, and involves concepts like mechanical bonds, chemical topology and co-conformation that are unique to these molecules. Yet, because of their different topological structures and mechanical bond properties, there are some fundamental differences between the chemistry of catenanes and that of rotaxanes and knots although the boundary is sometimes blurred. Clearly distinguishing these differences, in aspects of bonding, structure, synthesis and properties, between catenanes and other MIMs is therefore of fundamental importance to understand their chemistry and explore the new opportunities from mechanical bonds.
Collapse
Affiliation(s)
- Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
30
|
David AHG, García–Cerezo P, Campaña AG, Santoyo–González F, Blanco V. Vinyl sulfonyl chemistry-driven unidirectional transport of a macrocycle through a [2]rotaxane. Org Chem Front 2022. [DOI: 10.1039/d1qo01491a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pH- and chemically-driven unidirectional transport of a macrocycle through a [2]rotaxane based on the vinyl sulfonyl groups is reported.
Collapse
Affiliation(s)
- Arthur H. G. David
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| | - Pablo García–Cerezo
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| | - Araceli G. Campaña
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| | - Francisco Santoyo–González
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| | - Victor Blanco
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| |
Collapse
|
31
|
Dey SK, Harmalkar SS, Yadav RKHO, Lama P, Das G. Structure directing roles of weak noncovalent interactions and charge-assisted hydrogen bonds in the self-assembly of solvated podands: Example of an anion-assisted dimeric water capsule. CrystEngComm 2022. [DOI: 10.1039/d2ce00180b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structures of two new podand molecules (1 and 2) synthesized from 1,3,5-tris(bromomethyl)mesitylene and two bromide salts of tris(4-amino-N-ethylbenzamide)amine (3) were elucidated to witness the structure directing roles of weak...
Collapse
|
32
|
Wu GY, Zhu HJ, Pan FF, Sheng XW, Zhang MR, Zhang X, Yao G, Qu H, Lu Z. Self-Assembly of [3]Catenane and [4]Catenane Based on Neutral Organometallic Scaffolds. Front Chem 2021; 9:805229. [PMID: 34966723 PMCID: PMC8710481 DOI: 10.3389/fchem.2021.805229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Transition metal-mediated templating and self-assembly have shown great potential to construct mechanically interlocked molecules. Herein, we describe the formation of the bimetallic [3]catenane and [4]catenane based on neutral organometallic scaffolds via the orthogonality of platinum-to-oxygen coordination-driven self-assembly and copper(I) template-directed strategy of a [2]pseudorotaxane. The structures of these bimetallic [3]catenane and [4]catenane were characterized by multinuclear NMR {1H and 31P} spectroscopy, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS), and PM6 semiempirical molecular orbital theoretical calculations. In addition, single-crystal X-ray analyses of the [3]catenane revealed two asymmetric [2]pseudorotaxane units inside the metallacycle. It was discovered that tubular structures were formed through the stacking of individual [3]catenane molecules driven by the strong π-π interactions.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Hong-Juan Zhu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Fang-Fang Pan
- China Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Xiao-Wei Sheng
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Ming-Rui Zhang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Xianyi Zhang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Guangxin Yao
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| |
Collapse
|
33
|
Meng W, Kondo S, Ito T, Komatsu K, Pirillo J, Hijikata Y, Ikuhara Y, Aida T, Sato H. An elastic metal-organic crystal with a densely catenated backbone. Nature 2021; 598:298-303. [PMID: 34646002 DOI: 10.1038/s41586-021-03880-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/06/2021] [Indexed: 11/09/2022]
Abstract
What particular mechanical properties can be expected for materials composed of interlocked backbones has been a long-standing issue in materials science since the first reports on polycatenane and polyrotaxane in the 1970s1-3. Here we report a three-dimensional porous metal-organic crystal, which is exceptional in that its warps and wefts are connected only by catenation. This porous crystal is composed of a tetragonal lattice and dynamically changes its geometry upon guest molecule release, uptake and exchange, and also upon temperature variation even in a low temperature range. We indented4 the crystal along its a/b axes and obtained the Young's moduli of 1.77 ± 0.16 GPa in N,N-dimethylformamide and 1.63 ± 0.13 GPa in tetrahydrofuran, which are the lowest among those reported so far for porous metal-organic crystals5. To our surprise, hydrostatic compression showed that this elastic porous crystal was the most deformable along its c axis, where 5% contraction occurred without structural deterioration upon compression up to 0.88 GPa. The crystal structure obtained at 0.46 GPa showed that the catenated macrocycles move translationally upon contraction. We anticipate our mechanically interlocked molecule-based design to be a starting point for the development of porous materials with exotic mechanical properties. For example, squeezable porous crystals that may address an essential difficulty in realizing both high abilities of guest uptake and release are on the horizon.
Collapse
Affiliation(s)
- Wenjing Meng
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.,Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan
| | - Shun Kondo
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Kazuki Komatsu
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Jenny Pirillo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan. .,RIKEN Center for Emergent Matter Science, Saitama, Japan.
| | - Hiroshi Sato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan. .,RIKEN Center for Emergent Matter Science, Saitama, Japan. .,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan.
| |
Collapse
|
34
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
35
|
Zhang HN, Lin YJ, Jin GX. Selective Construction of Trefoil knots and a Molecular Borromean Ring Induced by Steric Hindrance of Thioether Ligands. Chem Asian J 2021; 16:1918-1924. [PMID: 33960138 DOI: 10.1002/asia.202100450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/05/2021] [Indexed: 11/08/2022]
Abstract
Two Cp*-RhIII based trefoil knots were obtained in high yield under ambient conditions via the coordination-driven self-assembly of semi-rigid thioether dipyridyl ligand 1,4-bis[(pyridin-4-ylthio)methyl]benzene (L1 ), ligand chloranilic acid (H2 -CA) and 6,11-dihydroxytetracene-5,12-dione (H2 -TtDo) with Cp*RhIII metal corner units, respectively. Furthermore, using the bulkier 4,4'-{[(2,5-dimethyl-1,4-phenylene)bis(methylene)]bis(sulfanediyl)}dipyridine (L2 ) in the place of ligand L1 in the construction process resulted in the formation of a teranuclear metallacycle and a template-free Borromean ring in high yields thanks to significantly altered intermolecular forces between the constituent ligands induced by the sterically-hindering methyl groups of L2 , as demonstrated via a detailed X-ray crystallographic analysis and NMR spectroscopy.
Collapse
Affiliation(s)
- Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
36
|
Tranquilli MM, Wu Q, Rowan SJ. Effect of metallosupramolecular polymer concentration on the synthesis of poly[ n]catenanes. Chem Sci 2021; 12:8722-8730. [PMID: 34257871 PMCID: PMC8246094 DOI: 10.1039/d1sc02450g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 12/05/2022] Open
Abstract
Poly[n]catenanes are a class of polymers that are composed entirely of interlocked rings. One synthetic route to these polymers involves the formation of a metallosupramolecular polymer (MSP) that consists of alternating units of macrocyclic and linear thread components. Ring closure of the thread components has been shown to yield a mixture of cyclic, linear, and branched poly[n]catenanes. Reported herein are investigations into this synthetic methodology, with a focus on a more detailed understanding of the crude product distribution and how the concentration of the MSP during the ring closing reaction impacts the resulting poly[n]catenanes. In addition to a better understanding of the molecular products obtained in these reactions, the results show that the concentration of the reaction can be used to tune the size and type of poly[n]catenanes accessed. At low concentrations the interlocked product distribution is limited to primarily oligomeric and small cyclic catenanes . However, the same reaction at increased concentration can yield branched poly[n]catenanes with an ca. 21 kg mol-1, with evidence of structures containing as many as 640 interlocked rings (1000 kg mol-1).
Collapse
Affiliation(s)
| | - Qiong Wu
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL USA
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago Chicago IL USA
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL USA
- Chemical and Engineering Sciences, Argonne National Laboratory Lemont IL USA
| |
Collapse
|
37
|
Shang J, Gong H, Zhang Q, Cui Z, Li S, Lv P, Pan T, Ge Y, Qi Z. The dynamic covalent reaction based on diselenide-containing crown ether irradiated by visible light. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Prakashni M, Shukla R, Dasgupta S. Rapid and High-Yield Synthesis of [23]Crown Ether: Applied as a Wheel Component in the Formation of Pseudo[2]rotaxane and Synthesis of [2]Catenane with a Dibenzylammonium Dumbbell. J Org Chem 2021; 86:7825-7831. [PMID: 34019406 DOI: 10.1021/acs.joc.1c00674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile, rapid, and high yield synthesis of [23]crown ether (X23C7) has been developed from commercially available starting materials, in one step with good to excellent yield. The reaction is completed in 6 h under room temperature conditions, with the highest yield being 81%. The X23C7 macrocycle formed pseudo[2]rotaxane with a dibenzylammonium ion (DBA+) dumbbell, exhibiting strong association (Ka = 2.61 × 103 M-1). Consequently, a [2]catenane was synthesized from a DBA+-based diolefin terminated salt and X23C7 in 81% yield, using a threading-followed-ring-closing-metathesis approach.
Collapse
Affiliation(s)
- Manisha Prakashni
- Department of Chemistry, National Institute of Technology Patna, Patna - 800005, India
| | - Rasendra Shukla
- Department of Chemistry, National Institute of Technology Patna, Patna - 800005, India
| | - Suvankar Dasgupta
- Department of Chemistry, National Institute of Technology Patna, Patna - 800005, India
| |
Collapse
|
39
|
Li K, Wang Y, Guo F, He L, Zhang L. Sliding dynamics of multi-rings on a semiflexible polymer in poly[ n]catenanes. SOFT MATTER 2021; 17:2557-2567. [PMID: 33514985 DOI: 10.1039/d0sm02084b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The sliding dynamics of one- or multi-ring structures along a semiflexible cyclic polymer in radial poly[n]catenanes is investigated using molecular dynamics simulations. The fixed and fluctuating (non-fixed) semiflexible central cyclic polymers are considered, respectively. With increasing bending energy of the central cyclic polymer, for the fixed case, the diffusion coefficient increases monotonically due to the reduction of the tortuous sliding path, while for the fluctuating case, the diffusion coefficient decreases. This indicates that the contribution of the polymer fluctuation is suppressed by a further increase in the stiffness of the central cyclic chain. Compared with the one ring case, the mean-square displacement of the multiple rings exhibits a unique sub-diffusive behavior at intermediate time scales due to the repulsion between two neighboring rings. In addition, for the multi-ring system, the whole set of rings exhibit relatively slower diffusion, but faster local dynamics of threading rings and rotational diffusion of the central cyclic polymer arise. These results may help us to understand the diffusion motion of rings in radial poly[n]catenanes from a fundamental point of view and control the sliding dynamics in molecular designs.
Collapse
Affiliation(s)
- Ke Li
- Department of Physics, Zhejiang University, Zhejiang, 310027, China.
| | - Yaxin Wang
- Department of Physics, Zhejiang University, Zhejiang, 310027, China.
| | - Fuchen Guo
- Department of Physics, Zhejiang University, Zhejiang, 310027, China.
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Linxi Zhang
- Department of Physics, Zhejiang University, Zhejiang, 310027, China.
| |
Collapse
|
40
|
Zhang YY, Qiu FY, Shi HT, Yu W. Self-assembly and guest-induced disassembly of triply interlocked [2]catenanes. Chem Commun (Camb) 2021; 57:3010-3013. [DOI: 10.1039/d0cc08052g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two triply interlocked [2]catenanes and one simple metallacage were constructed by tuning the widths of the organometallic dinuclear building blocks, and the interlocked architectures were disassembled by large aromatic molecules.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Center for Advanced Materials Research
- Henan Key Laboratory of Functional Salt Materials
- Zhongyuan University of Technology
- Zhengzhou
- P. R. China
| | - Feng-Yi Qiu
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan
- P. R. China
| | - Hua-Tian Shi
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan
- P. R. China
| | - Weibin Yu
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan
- P. R. China
| |
Collapse
|
41
|
Cai K, Cui B, Song B, Wang H, Qiu Y, Jones LO, Liu W, Shi Y, Vemuri S, Shen D, Jiao T, Zhang L, Wu H, Chen H, Jiao Y, Wang Y, Stern CL, Li H, Schatz GC, Li X, Stoddart JF. Radical Cyclic [3]Daisy Chains. Chem 2021. [DOI: 10.1016/j.chempr.2020.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Mizuno A, Shuku Y, Suizu R, Tsuchiizu M, Awaga K. 3D supramolecular chiral crystal structures of radical anion salts of (−)-NDI-Δ and possible magnetic phase diagrams. CrystEngComm 2021. [DOI: 10.1039/d1ce00628b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supramolecular chiral crystals of radical anion salts of a triangular chiral electron acceptor, (−)-naphthalene diimide (NDI)-Δ, were electrochemically grown in propylene carbonate electrolyte solutions in the presence of cyclic multidentate ligands.
Collapse
Affiliation(s)
- Asato Mizuno
- Department of Chemistry & Integrated Research Consortium on Chemical Sciences (IRCCS)
- Nagoya University
- Nagoya
- Japan
| | - Yoshiaki Shuku
- Department of Chemistry & Integrated Research Consortium on Chemical Sciences (IRCCS)
- Nagoya University
- Nagoya
- Japan
| | - Rie Suizu
- Department of Chemistry & Integrated Research Consortium on Chemical Sciences (IRCCS)
- Nagoya University
- Nagoya
- Japan
| | | | - Kunio Awaga
- Department of Chemistry & Integrated Research Consortium on Chemical Sciences (IRCCS)
- Nagoya University
- Nagoya
- Japan
| |
Collapse
|
43
|
Zhang HN, Lin YJ, Jin GX. Selective Construction of Very Large Stacking-Interaction-Induced Molecular 818 Metalla-knots and Borromean Ring Using Curved Dipyridyl Ligands. J Am Chem Soc 2020; 143:1119-1125. [DOI: 10.1021/jacs.0c11925] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P.R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P.R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 P.R. China
| |
Collapse
|
44
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
45
|
Cui Z, Lu Y, Gao X, Feng HJ, Jin GX. Stereoselective Synthesis of a Topologically Chiral Solomon Link. J Am Chem Soc 2020; 142:13667-13671. [DOI: 10.1021/jacs.0c05366] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zheng Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Ye Lu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Hui-Jun Feng
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| |
Collapse
|
46
|
Colley ND, Nosiglia MA, Li L, Amir F, Chang C, Greene AF, Fisher JM, Li R, Li X, Barnes JC. One-Pot Synthesis of a Linear [4]Catenate Using Orthogonal Metal Templation and Ring-Closing Metathesis. Inorg Chem 2020; 59:10450-10460. [DOI: 10.1021/acs.inorgchem.0c00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nathan D. Colley
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Mark A. Nosiglia
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Lei Li
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Faheem Amir
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Christy Chang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Angelique F. Greene
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jeremy M. Fisher
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Ruihan Li
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Xuesong Li
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jonathan C. Barnes
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
47
|
Dang LL, Gao X, Lin YJ, Jin GX. Selective synthesis and structural transformation between a molecular ring-in-ring architecture and an abnormal trefoil knot. Chem Sci 2020; 11:8013-8019. [PMID: 34094170 PMCID: PMC8163296 DOI: 10.1039/d0sc02733b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis of complicated supramolecular architectures and the study of their reversible structural transformations remains a fascinating challenge in the field of supramolecular chemistry. Herein, two types of novel coordination compounds, a non-intertwined ring-in-ring assembly and an abnormal trefoil knot were constructed from a strategically selected Cp*Rh building block and a semi-rigid N,N'-bis(4-pyridylmethyl)diphthalic diimide ligand via coordination-driven self-assembly. Remarkably, the reversible transformation between the abnormal trefoil knot and the ring-in-ring assembly or the corresponding tetranuclear macrocycle could be achieved by the synergistic effects of Ag+ ion coordination and alteration of the solvent. Single-crystal X-ray crystallographic data and NMR spectroscopic experiments support the structural assignments.
Collapse
Affiliation(s)
- Li-Long Dang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Xiang Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Yue-Jian Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Guo-Xin Jin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
48
|
Zhang YW, Bai S, Wang YY, Han YF. A Strategy for the Construction of Triply Interlocked Organometallic Cages by Rational Design of Poly-NHC Precursors. J Am Chem Soc 2020; 142:13614-13621. [DOI: 10.1021/jacs.0c06470] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya-Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
49
|
Wu GY, Shi X, Phan H, Qu H, Hu YX, Yin GQ, Zhao XL, Li X, Xu L, Yu Q, Yang HB. Efficient self-assembly of heterometallic triangular necklace with strong antibacterial activity. Nat Commun 2020; 11:3178. [PMID: 32576814 PMCID: PMC7311404 DOI: 10.1038/s41467-020-16940-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/21/2020] [Indexed: 12/02/2022] Open
Abstract
Sophisticated mechanically interlocked molecules (MIMs) with interesting structures, properties and applications have attracted great interest in the field of supramolecular chemistry. We herein report a highly efficient self-assembly of heterometallic triangular necklace 1 containing Cu and Pt metals with strong antibacterial activity. Single-crystal X-ray analysis shows that the finely arranged triangular necklace 1 has two racemic enantiomers in its solid state with intriguing packing motif. The superior antibacterial activity of necklace 1 against both standard and clinically drug-resistant pathogens implies that the presence of Cu(I) center and platinum(II) significantly enhance the bacterium-binding/damaging activity, which is mainly attributed to the highly positively charged nature, the possible synergistic effect of heterometals in the necklace, and the improved stability in culture media. This work clearly discloses the structure-property relationships that the existence of two different metal centers not only facilitates successful construction of heterometallic triangular necklace but also endows it with superior nuclease properties and antibacterial activities. Precise assembly of heterometallic complexes is a challenge. Here, the authors design a heterometallic triangular necklace through a highly efficient threading-and-ring-closing approach driven by metal-ligand coordination, which shows strong bacterium-binding and cell wall/plasma membrane-disrupting capacity for killing bacterial cells.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Hoa Phan
- Vinh University, 182 LeDuan Street, Vinh, Vietnam
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China.
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China.
| |
Collapse
|
50
|
Gao WX, Feng HJ, Guo BB, Lu Y, Jin GX. Coordination-Directed Construction of Molecular Links. Chem Rev 2020; 120:6288-6325. [PMID: 32558562 DOI: 10.1021/acs.chemrev.0c00321] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since the emergence of the concept of chemical topology, interlocked molecular assemblies have graduated from academic curiosities and poorly defined species to become synthetic realities. Coordination-directed synthesis provides powerful, diverse, and increasingly sophisticated protocols for accessing interlocked molecules. Originally, metal ions were employed solely as templates to gather and position building blocks in entwined or threaded arrangements. Recently, metal centers have increasingly featured within the backbones of the integral structural elements, which in turn use noncovalent interactions to self-assemble into intricate topologies. By outlining ingenious recent examples as well as seminal classic cases, this Review focuses on the role of metal-ligand paradigms in assembling molecular links. In addition, the ever-evolving approaches to efficient assembly, the structural features of the resulting architectures, and their prospects for the future are also presented.
Collapse
Affiliation(s)
- Wen-Xi Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Bei-Bei Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Ye Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|