1
|
Saikia B, Chen D, de Coene Y, Van Cleuvenbergen S. Organogels of FmocFF: Exploring the Solvent-Dependent Gelmorphic Behavior. Gels 2024; 10:749. [PMID: 39590105 PMCID: PMC11594169 DOI: 10.3390/gels10110749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
FmocFF (9-fluorenyl methoxycarbonyl-phenylalanine) is an extensively studied low-molecular-weight hydrogel. Although there have been numerous studies on FmocFF hydrogel, its potential to form organogels has not been well explored. In this work, we systematically explore the organogels of FmocFF in a wide range of organic solvents. FmocFF is found to be a robust organogeltor, and the subsequent organogels exhibit diverse gelmorphic behavior exhibiting various degrees of crystallinity and morphology depending on the solvent used. The mechanical strength of the organogels is evaluated using rheology. A novel technique, in situ SHG microscopy, is introduced to study the gel structure in its native state. In addition to the solvent-solute interactions that are typically used to predict gelmorphic behavior, we observed indications that the degree of crystallinity also plays a significant role in determining the mechanical properties and structure of FmocFF organogels.
Collapse
Affiliation(s)
- Basanta Saikia
- Department of Chemistry, Molecular Imaging and Photonics, KULAK—KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (B.S.); (D.C.)
| | - Dong Chen
- Department of Chemistry, Molecular Imaging and Photonics, KULAK—KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (B.S.); (D.C.)
| | - Yovan de Coene
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium;
| | - Stijn Van Cleuvenbergen
- Department of Chemistry, Molecular Imaging and Photonics, KULAK—KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (B.S.); (D.C.)
| |
Collapse
|
2
|
Cai Y, Sarkar S, Peng Y, König TAF, Vana P. Ultrasonic Control of Polymer-Capped Plasmonic Molecules. ACS NANO 2024; 18:31360-31371. [PMID: 39478368 PMCID: PMC11562790 DOI: 10.1021/acsnano.4c10912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/13/2024]
Abstract
Plasmonic molecules (PMs) composed of polymer-capped nanoparticles represent an emerging material class with precise optical functionalities. However, achieving controlled structural changes in metallic nanoparticle aggregation at the nanoscale, similar to the modification of atomic structures, remains challenging. This study demonstrates the 2D/3D isomerization of such plasmonic molecules induced by a controlled ultrasound process. We used two types of gold nanoparticles, each functionalized with hydrogen bonding (HB) donor or acceptor polymers, to self-assemble into different ABN-type complexes via interparticle polymer bundles acting as molecular bonds. Post-ultrasonication treatment significantly shortens these bonds from approximately 14 to 2 nm by enhancing HB cross-linking within the bundles. This drastic change in the bond length increases the stiffness of the resulting clusters, facilitating the transition from 2D to 3D configurations in 100% yield during drop-casting onto substrates. Our results advance the precise control of PMs' nanoarchitectures and provide insights for their broad applications in sensing, optoelectronics, and metamaterials.
Collapse
Affiliation(s)
- Yingying Cai
- Institut
für Physikalische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Swagato Sarkar
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Yuwen Peng
- Institut
für Physikalische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Tobias A. F. König
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Center
for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01069 Dresden, Germany
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Philipp Vana
- Institut
für Physikalische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Song Z, Huang G, Huang H. The ultrasonic-assisted enzymatic extraction, characteristics and antioxidant activities of lychee nuclear polysaccharide. ULTRASONICS SONOCHEMISTRY 2024; 110:107038. [PMID: 39180869 PMCID: PMC11386491 DOI: 10.1016/j.ultsonch.2024.107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
A response surface methodology (RSM) and one-factor method were established to investigate the optimum conditions for the extraction of lychee nuclear polysaccharides (LSP) by ultrasonic-assisted pectinase. The content of basic components in polysaccharides was determined. The antioxidant activity was well determined and compared the differences in the activities of the polysaccharides extracted by water extraction (LSP-HW) and those extracted at ultrasound-assisted enzyme (LSP-UAE). The activity of lychee nuclear polysaccharide increased with the increase of concentration. The anti-hydroxyl radical and anti-lipid peroxidation abilities of lychee nuclear polysaccharide were more excellent, and LSP-HW was slightly better than LSP-UAE in terms of activity, but the difference was not significant. In terms of solubility; LSP-HW without deproteinization was the best, followed by LSP-UAE, and the worst was LSP-UAE after deproteinization. The higher the glycoprotein content, the better the solubility of its polysaccharide. Compared with the existing extraction methods, this experiment greatly improved the extraction rate of lychee nuclear polysaccharides and further enriched the antioxidant activities of polysaccharides.
Collapse
Affiliation(s)
- Zongyan Song
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Zhang P, Yin Y, Tong X, Chen P, He Z, Li Z, Xu B, Wang C, Kang X, Han B. Bio-based hydrogels induced by salts. Chem Commun (Camb) 2024; 60:11960-11963. [PMID: 39352228 DOI: 10.1039/d4cc04162c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
In this study, we introduce a salt-responsive hydrogel system utilizing a sugar-derived surfactant featuring a polyhydroxy spacer in its headgroup. The inclusion of salts enhances and organizes the intermolecular hydrogen bonding within the hydrophilic region of the polyhydroxy spacer, promoting cross-linking among surfactant molecules.
Collapse
Affiliation(s)
- Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
| | - Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Tong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuosen He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
| | - Zhihong Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Baocai Xu
- Beijing Technology and Business University, School of Light Industry Science and Engineering, 100048, China
| | - Ce Wang
- Beijing Technology and Business University, School of Light Industry Science and Engineering, 100048, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai, 200062, China
| |
Collapse
|
5
|
Moral R, Das G. Exploring the gelation and AIE properties of a tripodal acylhydrazone-based probe: turn-on Zn(II) sensing in HEPES buffer. SOFT MATTER 2024; 20:7668-7677. [PMID: 39291680 DOI: 10.1039/d4sm00787e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Two C3-symmetric acylhydrazone-based AIE active probes, TRI-QUI and TRI-NAP, were synthesized with different peripheral substituents. The probe containing a quinoline moiety in the periphery displayed a selective turn-on response towards Zn2+ in HEPES buffer, with a calculated detection limit of 6.45 μM. The probe TRI-QUI was also identified as a supergelator as it formed a gel in DMSO-H2O (2 : 3, v/v) with a minimum gelation concentration of 0.5 mg mL-1. The gelator could interact with various metal ions or anions in the gel phase. Furthermore, the gelator could encapsulate small molecules like methyl orange and bromophenol blue, making the probe a multifunctional smart material.
Collapse
Affiliation(s)
- Rubi Moral
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
6
|
Liu H, Du C, Sheng J, Zhong F, He Y, Zhang F, Zhou Y, Sun Y, Dong F. Strong Dipole Moments from Ferrocene Methanol Clusters Boost Exciton Dissociation in Quantum-Confined Perovskite for CO 2 Photoreduction. ACS NANO 2024; 18:24558-24568. [PMID: 39159432 DOI: 10.1021/acsnano.4c09197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Perovskite nanocrystals (PCNs) exhibit a significant quantum confinement effect that enhances multiexciton generation, making them promising for photocatalytic CO2 reduction. However, their conversion efficiency is hindered by poor exciton dissociation. To address this, we synthesized ferrocene-methanol-functionalized CsPbBr3 (CPB/FcMeOH) using a ligand engineering approach. By manipulating the electronic coupling between ligands and the PCN surface, facilitated by the increased dipole moment from hydrogen bonding in FcMeOH molecules, we effectively controlled exciton dissociation and interfacial charge transfer. Under 5 h of irradiation, the CO yield of CPB/FcMeOH reached 772.79 μmol g-1, 4.95 times higher than pristine CPB. This high activity is due to the formation of hydrogen-bonded FcMeOH clusters on the CPB surface. The nonpolar disruption and strong dipole moment of FcMeOH molecules enhance electronic coupling between the FcMeOH ligands and the CPB surface, reducing the surface barrier energy. Consequently, exciton dissociation and interfacial charge transfer are promoted, efficiently utilizing multiple excitons in quantum-confined domains. Transient absorption spectroscopy confirms that CPB/FcMeOH exhibits optimized exciton behavior with fast internal relaxation, trapping, and a short recombination time, allowing photogenerated charges to more rapidly participate in CO2 reduction.
Collapse
Affiliation(s)
- Huiyu Liu
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chenyu Du
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fengyi Zhong
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ye He
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fengying Zhang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Ying Zhou
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
7
|
Zhan L, Xu W, Hu Z, Fan J, Sun L, Wang X, Zhang Y, Shi X, Ding B, Yu J, Ma Y. Full-Color "Off-On" Thermochromic Fluorescent Fibers for Customizable Smart Wearable Displays in Personal Health Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310762. [PMID: 38366074 DOI: 10.1002/smll.202310762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Responsive thermochromic fiber materials capable of miniaturization and integrating comfortably and compliantly onto the soft and dynamically deforming human body are promising materials for visualized personal health monitoring. However, their development is hindered by monotonous colors, low-contrast color changes, and poor reversibility. Herein, full-color "off-on" thermochromic fluorescent fibers are prepared based on self-crystallinity phase change and Förster resonance energy transfer for long-term and passive body-temperature monitoring, especially for various personalized customization purposes. The off-on switching luminescence characteristic is derived from the reversible conversion of the dispersion state and fluorescent emission by fluorophores and quencher molecules, which are embedded in the matrix of a phase-change material, during the crystallizing/melting processes. The achievement of full-color fluorescence is attributed to the large modulation range of fluorescence colors according to primary color additive theory. These thermochromic fluorescent fibers exhibit good mechanical properties, fluorescent emission contrast, and reversibility, showing their great potential in flexible smart display devices. Moreover, the response temperature of the thermochromic fibers is controllable by adjusting the phase-change material, enabling body-temperature-triggered luminescence; this property highlights their potential for human body-temperature monitoring and personalized customization. This work presents a new strategy for designing and exploring flexible sensors with higher comprehensive performances.
Collapse
Affiliation(s)
- Luyao Zhan
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Wanxuan Xu
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zixi Hu
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jiayin Fan
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Luping Sun
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xingchi Wang
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Yingying Zhang
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaodi Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Ying Ma
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
8
|
Fu S, Wu S, Liu J, Wang J, Tian S, Zhang G, Yin F, Sun Y, Zhang P, Yang Q. A quinoline derivative-based supramolecular gel for fluorescence 'turn-off' detection of Fe 3+and Cu 2. Methods Appl Fluoresc 2024; 12:035006. [PMID: 38702877 DOI: 10.1088/2050-6120/ad4232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
In this research, we synthesized and constructed a novel gelator (namedQN) combining quinoline and naphthalene that self-assembled in N, N-dimethylformamide (DMF) to form a stable supramolecular gel (namedOQN). Under UV light, gelOQNexhibited extremely bright yellow fluorescence. The gelOQNshowed excellent sensing performance for both Fe3+and Cu2+, with a fluorescence 'turn-off' detection mechanism and the lowest detection limit of 7.58 × 10-8M and 1.51 × 10-8M, respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, x-ray powder diffraction (XRD), rheological measurements, x-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy were used to characterize the gelOQN. TheOQNion-responsive membrane created is an excellent fluorescent writing material.
Collapse
Affiliation(s)
- Shuaishuai Fu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Shang Wu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Jutao Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Jiajia Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Shuo Tian
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Guangwu Zhang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Beimiantan 400, Lanzhou, Gansu 730000, People's Republic of China
| | - Fenping Yin
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Yuzhi Sun
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Ping Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Quanlu Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Beimiantan 400, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
9
|
Mukherjee S, Reddy SMM, Shanmugam G. A bio-inspired silkworm 3D cocoon-like hierarchical self-assembled structure from π-conjugated natural aromatic amino acids. SOFT MATTER 2024; 20:1834-1845. [PMID: 38314911 DOI: 10.1039/d3sm01746j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The formation of spontaneous 3D self-assembled hierarchical structures from 1D nanofibers is a significant breakthrough in materials science. Overcoming the major challenges associated with developing these 3D structures, such as uncontrolled self-assembly, complex procedures, and machinery, has been a formidable task. However, the current discovery reveals that simple π-system (fluorenyl)-functionalized natural aromatic amino acids, phenylalanine (Fmoc-F) and tyrosine (Fmoc-Y), can form bio-inspired 3D cocoon-like structures. These structures are composed of entangled 1D nanofibers created through supramolecular self-assembly using a straightforward one-step process of solvent casting. The self-assembly process relies on π-π stacking of the fluorenyl (π-system) moieties and intermolecular hydrogen bonding between urethane amide groups. The cocoon-like structures are versatile and independent of concentration, temperature, and humidity, making them suitable for various applications. This discovery has profound implications for materials science and the developed advanced biomaterials, such as Fmoc-F and Fmoc-Y, can serve as flexible foundational components for constructing 3D fiber-based structures.
Collapse
Affiliation(s)
- Smriti Mukherjee
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI) (CSIR-CLRI), Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Samala Murali Mohan Reddy
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI) (CSIR-CLRI), Adyar, Chennai, 600020, India.
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI) (CSIR-CLRI), Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
10
|
Dai L, Liu B, Lin J, Jiang Y, Li Y, Yao Z, Shen S, Jiang Y, Duan Y, Li J. Long-acting anti-inflammatory injectable DEX-Gel with sustained release and self-healing properties regulates T H1/T H2 immune balance for minimally invasive treatment of allergic rhinitis. J Nanobiotechnology 2024; 22:51. [PMID: 38321547 PMCID: PMC10845556 DOI: 10.1186/s12951-024-02306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Allergic rhinitis (AR) is a prevalent immune-related allergic disease, and corticosteroid nasal sprays serve as the primary treatment for this patient population. However, their short duration of efficacy and frequent administration pose challenges, leading to drug wastage and potential adverse effects. To overcome these limitations, we devised a novel approach to formulate DEX-Gel by incorporating dexamethasone (DEX) into a blend of Pluronic F127, stearic acid (SA), and polyethylene glycol 400 (PEG400) to achieve sustained-release treatment for AR. RESULTS Following endoscopic injection into the nasal mucosa of AR rats, DEX-Gel exhibited sustained release over a 14-day period. In vivo trials employing various assays, such as flow cytometry (FC), demonstrated that DEX-Gel not only effectively managed allergic symptoms but also significantly downregulated helper T-cells (TH) 2 and TH2-type inflammatory cytokines (e.g., interleukins 4, 5, and 13). Additionally, the TH1/TH2 cell ratio was increased. CONCLUSION This innovative long-acting anti-inflammatory sustained-release therapy addresses the TH1/TH2 immune imbalance, offering a promising and valuable approach for the treatment of AR and other inflammatory nasal diseases.
Collapse
Affiliation(s)
- Li Dai
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yongquan Jiang
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuanyuan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Zhuowei Yao
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Silin Shen
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yiming Jiang
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Jiping Li
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
11
|
Chevigny R, Rahkola H, Sitsanidis ED, Korhonen E, Hiscock JR, Pettersson M, Nissinen M. Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator-Solvent Reactions and Material Properties Correlation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:407-416. [PMID: 38222938 PMCID: PMC10782441 DOI: 10.1021/acs.chemmater.3c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.
Collapse
Affiliation(s)
- Romain Chevigny
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Henna Rahkola
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Efstratios D. Sitsanidis
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Elsa Korhonen
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Jennifer R. Hiscock
- School
of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NH, U.K.
| | - Mika Pettersson
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Maija Nissinen
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
12
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
13
|
Zhang F, Li Z, Wang X. Mechanically tunable organogels from highly charged polyoxometalate clusters loaded with fluorescent dyes. Nat Commun 2023; 14:8327. [PMID: 38097637 PMCID: PMC10721816 DOI: 10.1038/s41467-023-43989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Inorganic nanowires-based organogel, a class of emerging organogel with convenient preparation, recyclability, and excellent mechanical properties, is in its infancy. Solidifying and functionalizing nanowires-based organogels by designing the gelator structure remains challenging. Here, we fabricate Ca2-P2W16 and Ca2-P2W15M nanowires utilizing highly charged [Ca2P2W16O60]10- and [Ca2P2W15MO60]14-/13- cluster units, respectively, which are then employed for preparing organogels. The mechanical performance and stability of prepared organogels are improved due to the enhanced interactions between nanowires and locked organic molecules. Compressive stress and tensile stress of Ca2-P2W16 nanowires-based organogel reach 34.5 and 29.0 kPa, respectively. The critical gel concentration of Ca2-P2W16 nanowires is as low as 0.28%. Single-molecule force spectroscopy confirms that the connections between cluster units and linkers can regulate the flexibility of nanowires. Furthermore, the incorporation of fluorophores into the organogels adds fluorescence properties. This work reveals the relationships between the microstructures of inorganic gelators and the properties of organogels, guiding the synthesis of high-performance and functional organogels.
Collapse
Affiliation(s)
- Fenghua Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhong Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Kang HW, Lee JH, Seo ML, Jung SH. Platinum(II) terpyridine-based supramolecular polymer gels with induced chirality. SOFT MATTER 2023. [PMID: 38037753 DOI: 10.1039/d3sm01342a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Metal-ligand binding plays a crucial role in regulating the photophysical properties of supramolecular gels. In this study, we designed 1-Pt complexes comprising a central benzene-1,3,5-tricarboxamide unit functionalized with three terpyridines, which can form supramolecular gels with Pt(II). The resulting supramolecular gel of 1-Pt exhibited strong orange emission, which was attributed to the metal-to-metal ligand charge transfer during gel formation. Furthermore, the temperature-dependent absorption spectrum changes of the supramolecular polymer 1-Pt exhibited a nonsigmoidal transition, following a cooperative pathway involving a nucleation-elongation mechanism. Additionally, the strategy for the co-assembling system involving 1-Pt with chiral molecules (D-form and L-form) induced the helical arrangement of 1-Ptvia chiral additives in supramolecular metallogels.
Collapse
Affiliation(s)
- Hyoung Wook Kang
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Ji Ha Lee
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Moo Lyong Seo
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Sung Ho Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
15
|
Giuri D, Ravarino P, Tomasini C. Transparent Organogels as a Medium for the Light-Induced Conversion from Spiropyran to Merocyanine. Gels 2023; 9:932. [PMID: 38131918 PMCID: PMC10742928 DOI: 10.3390/gels9120932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Low-molecular-weight peptide gelators are a versatile class of compounds able to form gels under a variety of conditions, even via simple ultrasound sonication. In this paper, the ability of Boc-L-Phe-D-Oxd-L-Phe-OBn to gelate three organic solvents (toluene, tert-butyl methyl ether, and ethanol) was evaluated. The rheological behaviour of the materials was assessed via strain sweep analysis, while the fibrous network was analysed via optical microscopy on the wet gels. The gel obtained from toluene is a highly transparent material, and the one from ethanol appears translucent, while the one from tert-butyl methyl ether is opaque. These gels were used to study the reversible light-induced transformation from spyropiran (SP) to merocyanine (MC) and back, as a model system to check the effect of the gel medium onto the rection kinetic. We observed that the solvent used to form the organogels has a crucial effect on the reaction, as gels from aprotic solvents stabilize the SP form, while the ones from protic solvents stabilize the MC form. We thus obtained a solid support to stabilize the two photochromic species just by changing the solvent polarity. Moreover, we could demonstrate that the self-assembled gels do not interfere with the light-driven conversion process, either starting from SP or MC, thus representing a valid and economical photochromic material.
Collapse
Affiliation(s)
| | | | - Claudia Tomasini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy; (D.G.); (P.R.)
| |
Collapse
|
16
|
Vujičić NŠ, Makarević J, Popović J, Štefanić Z, Žinić M. ( N-Alkyloxalamido)-Amino Acid Amides as the Superior Thixotropic Phase Selective Gelators of Petrol and Diesel Fuels. Gels 2023; 9:852. [PMID: 37998942 PMCID: PMC10670479 DOI: 10.3390/gels9110852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
(N-Alkyloxalamido)-amino acid amides 9-12 exhibit excellent gelation capacities toward some lipophilic solvents as well as toward the commercial fuels, petrol and diesel. Gelator 10 exhibits an excellent phase-selective gelation (PSG) ability and also possesses the highest gelation capacity toward petrol and diesel known to date, with minimum gelation concentration (MGC) values (%, w/v) as low as 0.012 and 0.015, respectively. The self-assembly motif of 10 in petrol and toluene gel fibres is determined from xerogel X-ray powder diffraction (XRPD) data via the simulated annealing procedure (SA) implemented in the EXPO2014 program and refined using the Rietveld method. The elucidated motif is strongly supported by the NMR (NOE and variable temperature) study of 10 toluene-d8 gel. It is shown that the triple unidirectional hydrogen bonding between gelator molecules involving oxalamide and carboxamide groups, together with their very low solubility, results in the formation of gel fibres of a very high aspect ratio (d = 10-30 nm, l = 0.6-1.3 μm), resulting in the as-yet unprecedented capacity of gelling commercial fuels. Rheological measurements performed at low concentrations of 10 confirmed the strength of the self-assembled network with the desired thixotropic properties that are advantageous for multiple applications. Instantaneous phase-selective gelation was obtained at room temperature through the addition of the 10 solution to the biphasic mixture of diesel and water in which the carrier solvent was congealed along with the diesel phase. The superior gelling properties and PSG ability of 10 may be used for the development of more efficient marine and surface oil spill recovery and waste water treatment technologies as well as the development of safer fuel storage and transport technologies.
Collapse
Affiliation(s)
- Nataša Šijaković Vujičić
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54, 10000 Zagreb, Croatia;
| | - Janja Makarević
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54, 10000 Zagreb, Croatia;
| | - Jasminka Popović
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Synthesis and Crystallography of Functional Materials, Bijenička 54, 10000 Zagreb, Croatia;
| | - Zoran Štefanić
- Ruđer Bošković Institute, Division of Physical Chemistry, Laboratory for Chemical and Biological Crystallography, Bijenička 54, 10000 Zagreb, Croatia;
| | - Mladen Žinić
- Croatian Academy of Sciences and Arts, Nikole Šubića Zrinskog 11, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Qin Y, Wang Y, Xiong J, Li Q, Zeng MH. Supramolecular Gel-to-Gel Transition Induced by Nanoscale Structural Perturbation via the Rotary Motion of Feringa's Motor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207785. [PMID: 37052516 DOI: 10.1002/smll.202207785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Supramolecular rather than covalent molecular engineering on Feringa motors can provide an alternative toolkit for tuning the properties of motorized materials through appropriate supramolecular structural perturbations, which are underexplored. Herein, a multicomponent supramolecular gel system is successfully prepared by employing an ultra-low molecular weight gelator and a modulator-Feringa motor. The electron microscopic, spectroscopic, and rheological data revealed that the morphology and mechanical properties of the gel can be tuned via a crystallographic mismatch branching (CMB) mechanism simply by adding varied amounts of motor modulators. Notably, the rotary motion of the motor is preserved in such a multicomponent gel system, and the morphology and rheology of the gel can be further altered by the motor's rotary motion that promotes the structural perturbation, resulting in seldomly seen gel-to-gel transition events. The work shown here offers prospects to utilize a supramolecular perturbation strategy to deliver responsiveness from molecular motors to the corresponding bulk materials.
Collapse
Affiliation(s)
- Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yurou Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jingpeng Xiong
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Quan Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
- Department of Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Ming-Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
18
|
Liu Z, Zhao X, Chu Q, Feng Y. Recent Advances in Stimuli-Responsive Metallogels. Molecules 2023; 28:molecules28052274. [PMID: 36903517 PMCID: PMC10005064 DOI: 10.3390/molecules28052274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Recently, stimuli-responsive supramolecular gels have received significant attention because their properties can be modulated through external stimuli such as heat, light, electricity, magnetic fields, mechanical stress, pH, ions, chemicals and enzymes. Among these gels, stimuli-responsive supramolecular metallogels have shown promising applications in material science because of their fascinating redox, optical, electronic and magnetic properties. In this review, research progress on stimuli-responsive supramolecular metallogels in recent years is systematically summarized. According to external stimulus sources, stimuli-responsive supramolecular metallogels, including chemical, physical and multiple stimuli-responsive metallogels, are discussed separately. Moreover, challenges, suggestions and opportunities regarding the development of novel stimuli-responsive metallogels are presented. We believe the knowledge and inspiration gained from this review will deepen the current understanding of stimuli-responsive smart metallogels and encourage more scientists to provide valuable contributions to this topic in the coming decades.
Collapse
Affiliation(s)
- Zhixiong Liu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
- Correspondence: (Z.L.); (Y.F.)
| | - Xiaofang Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Qingkai Chu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Yu Feng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
- Correspondence: (Z.L.); (Y.F.)
| |
Collapse
|
19
|
Sang Y, Zhu Q, Zhou X, Jiang Y, Zhang L, Liu M. Ultrasound-Directed Symmetry Breaking and Spin Filtering of Supramolecular Assemblies from only Achiral Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202215867. [PMID: 36522559 DOI: 10.1002/anie.202215867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Herein we describe the self-assembly of an achiral molecule into macroscopic helicity as well as the emergent chiral-selective spin-filtering effect. It was found that a benzene-1,3,5-tricarboxamide (BTA) motif with an aminopyridine group in each arm could coordinate with AgI and self-assemble into nanospheres. Upon sonication, symmetry breaking occurred and the nanospheres transferred into helical nanofibers with strong CD signals. Although the sign of the CD signals appeared randomly, it could be controlled by using the as-made chiral assemblies as a seed. Furthermore, it was found that the charge transport of the helical nanofibers was highly selective with a spin-polarization transport of up to 45 %, although the chiral nanofibers are composed exclusively from achiral building blocks. This work demonstrates symmetry breaking under sonication and the chiral-selective spin-filtering effect.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qirong Zhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Xiaoqin Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
20
|
Dong X, Sheng K, Chen Z, Guo C, Huang J, Gu Y. Electron Beam Etching of Cellulose Microgels for Absorptive Separation of DMSO from Reactions of 5-Hydroxymethylfurfural Synthesis. CHEMSUSCHEM 2023; 16:e202201755. [PMID: 36282629 DOI: 10.1002/cssc.202201755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In this study, an efficient method for the separation of 5-hydroxymethylfurfural by the specific adsorption of dimethyl sulfoxide (DMSO) with cellulose microgels fabricated by electron beam irradiation was developed. The cellulose microgel was recovered and reused although this was accompanied by a decrease in the separation efficiency. A series of characterizations, including ultraviolet and infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and swelling ability tests, were performed to determine the adsorption behavior of the chemical structures of the microgel toward DMSO. The results showed that after the first run, the chemical structure of the recovered microgel did not change significantly. Electron-beam etching played a pivotal role in conferring a special capacity for enriching DMSO in its matrix on the microgel.
Collapse
Affiliation(s)
- Xiaohan Dong
- Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Keyan Sheng
- Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Zhiyan Chen
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Changhao Guo
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Jiang Huang
- Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| | - Yanlong Gu
- Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China
| |
Collapse
|
21
|
Gao K, Qin Y, Liu S, Wang L, Xing R, Yu H, Chen X, Li P. A review of the preparation, derivatization and functions of glucosamine and N-acetyl-glucosamine from chitin. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
22
|
Gelation at oil-water interface by using dimethylcyclohexylamine/fatty acid-based surface-active ionic liquids. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
23
|
Xu L, Pan Y, Wang X, Xu Z, Tian H, Liu Y, Bu X, Jing H, Wang T, Liu Y, Liu M. Reconfigurable Touch Panel Based on a Conductive Thixotropic Supramolecular Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4458-4468. [PMID: 36629334 DOI: 10.1021/acsami.2c18471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Touch panels based on ionic conductive hydrogels perform excellent flexibility and biocompatibility, becoming promising candidates for the next-generation human-machine interface. However, these ionic hydrogels are usually composed of cross-linked polymeric networks that are difficult to be recycled or reconfigured, resulting in environmental issues. Herein, we designed a lithium ion-triggered gelation strategy to provide a conductive molecular hydrogel with thixotropy, which can be mechanically recycled or reconfigured at room temperature. In this hydrogel, lithium ions function as ionic bridges to construct supramolecular nanoassemblies and charge carriers to impart ionic conductivity. With polymer additives, the mechanical accommodability of the hydrogel was improved to meet the requirements of the daily use of touch panels. When this molecular hydrogel was fabricated into a surface capacitive touch panel, real-time sensing and reliable touch locating abilities were achieved. Remarkably, this touch panel can be reconfigured into 1D, 2D, and 3D device structures by a simple stirring-remolding method under ambient conditions. This work brings new insight into enriching the functionalities of hydrogel-based ionotronics with a supramolecular approach.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Ying Pan
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
| | - Xuanqi Wang
- School of Software, Shandong University, Jinan, Shandong250101, China
| | - Zhijun Xu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
| | - Huasheng Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Yue Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Xiaodan Bu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin130012, China
| | - Houchao Jing
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong250100, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu215123, China
| | - Minghua Liu
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing100190, China
| |
Collapse
|
24
|
Zhang J, Li R, Bei Y, Xu XD, Kang W. Design of a large Stokes shift ratiometric fluorescent sensor with hypochlorite detection towards the potential application as invisible security ink. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121859. [PMID: 36108409 DOI: 10.1016/j.saa.2022.121859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Hypochlorite (ClO-) as a well-known highly reactive oxygen species (ROS), is widely used as preservative and household disinfectant in daily life. Although many fluorescence imaging sensors for ClO- have been reported, the development of ClO- ratio fluorescence sensors with large Stokes shift is still quite limited. This sensor shows obvious benefits including minimizing environmental intervention and improving signal-to-noise ratio. In the present project, we report an innovative conjugated pyrene-based system, 1-B, as a chlorine fluorescence sensor. The detector exhibits ratio detection performance, large Stokes and emission shifts. Furthermore, the system has desired sensitivity as well as selectivity for ClO-. Based on these excellent properties, the sensor 1-B was successfully used as ink to encrypt patterns and anti-counterfeiting information through inkjet printing technology. Compared with the existing probes, the probe shows some superior characteristics, which provides a promising tool for exploring the role of ClO- response sensor in the field of anti-counterfeiting.
Collapse
Affiliation(s)
- Junying Zhang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Ruochen Li
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yiling Bei
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Xing-Dong Xu
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China.
| | - Wenbing Kang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
25
|
Hou W, Yu X, Li Y, Wei Y, Ren J. Ultrafast Self-Healing, Highly Stretchable, Adhesive, and Transparent Hydrogel by Polymer Cluster Enhanced Double Networks for Both Strain Sensors and Environmental Remediation Application. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57387-57398. [PMID: 36512607 DOI: 10.1021/acsami.2c17773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stretchable, healable, biocompatible, and conductive hydrogels are one of the promising candidates for both wearable electronics and environmental remediation applications. To date, the design of hydrogels that integrate ultrafast self-healing with high efficiency (seconds), high stretchability, and biocompatibility and reversibility into one system is not an easy task. Herein, we demonstrate a general oxidation approach to accelerate the hydrogelation of hPEI-based double network gels via the generation of fluorescent polymer clusters at room temperature or triggered by the heating-cooling process. The resulting ohPEI hydrogel has the merit of biocompatibility over most reported hPEI hydrogels for strain sensors. It shows a high conductivity (1.3 S/m), an ultrafast self-healing ability (<3 s, 98% healing efficiency within 60 s), a high stretchability (∼1850 and ∼7000% in deformation), and reversible adhesivity on various material surfaces. The excellent performance of the hydrogel is ascribed to the cooperative and hierarchical interactions of four types of dynamic combinations, including the reversible borate bond, hydrogen bonding, electrostatic interaction, and polymer cluster interactions. The reversible fabrication process by the one-spot method (just by simple mixing of the components) and superior properties of the hydrogel make it an ideal candidate for a wearable strain sensor to monitor human motions and physiological activities. Moreover, it is also a good hydrogel absorbent for phase separation absorption of volatile organic compounds with a high capacity (for acetone: 4.75 g g-1), reusability, and an easy handling process.
Collapse
Affiliation(s)
- Wenshuo Hou
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Yajuan Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Yi Wei
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Jujie Ren
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| |
Collapse
|
26
|
Van Lommel R, Van Hooste J, Vandaele J, Steurs G, Van der Donck T, De Proft F, Rocha S, Sakellariou D, Alonso M, De Borggraeve WM. Does Supramolecular Gelation Require an External Trigger? Gels 2022; 8:gels8120813. [PMID: 36547337 PMCID: PMC9778329 DOI: 10.3390/gels8120813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The supramolecular gelation of small molecules is typically preceded by an external stimulus to trigger the self-assembly. The need for this trigger stems from the metastable nature of most supramolecular gels and can limit their applicability. Herein, we present a small urea-based molecule that spontaneously forms a stable hydrogel by simple mixing without the addition of an external trigger. Single particle tracking experiments and observations made from scanning electron microscopy indicated that triggerless gelation occurred in a similar fashion as the archetypical heat-triggered gelation. These results could stimulate the search for other supramolecular hydrogels that can be obtained by simple mixing. Furthermore, the mechanism of the heat-triggered supramolecular gelation was elucidated by a combination of molecular dynamics simulations and quantitative NMR experiments. Surprisingly, hydrogelation seemingly occurs via a stepwise self-assembly in which spherical nanoparticles mature into an entangled fibrillary network.
Collapse
Affiliation(s)
- Ruben Van Lommel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Julie Van Hooste
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Johannes Vandaele
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Gert Steurs
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Tom Van der Donck
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Dimitrios Sakellariou
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
- Correspondence: (M.A.); (W.M.D.B.)
| | - Wim M. De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
- Correspondence: (M.A.); (W.M.D.B.)
| |
Collapse
|
27
|
Mirzamani M, Dawn A, Garvey CJ, He L, Koerner H, Kumari H. Structural insights into self-assembly of a slow-evolving and mechanically robust supramolecular gel via time-resolved small-angle neutron scattering. Phys Chem Chem Phys 2022; 25:131-141. [PMID: 36475500 DOI: 10.1039/d2cp01826h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The supramolecular assembly process is a widespread phenomenon found in both synthetically engineered and naturally occurring systems, such as colloids, liquid crystals and micelles. However, a basic understanding of the evolution of self-assembly processes over time remains elusive, primarily owing to the fast kinetics involved in these processes and the complex nature of the various non-covalent interactions operating simultaneously. With the help of a slow-evolving supramolecular gel derived from a urea-based gelator, we aim to capture the different stages of the self-assembly process commencing from nucleation. In particular, we are able to study the self-assembly in real time using time-resolved small-angle neutron scattering (SANS) at length scales ranging from approximately 30 Å to 250 Å. Systems with and without sonication are compared simultaneously, to follow the different kinetic paths involved in these two cases. Time-dependent NMR, morphological and rheological studies act complementarily to the SANS data at sub-micron and bulk length scales. A hollow columnar formation comprising of gelator monomers arranged radially along the long axis of the fiber and solvent in the core is detected at the very early stage of the self-assembly process. While sonication promotes uniform growth of fibers and fiber entanglement, the absence of such a stimulus helps extensive bundle formation at a later stage and at the microscopic domain, making the gel system mechanically robust. The results of the present work provide a thorough understanding of the self-assembly process and reveal a path for fine-tuning such growth processes for applications such as the cosmetics industry, 3D printing ink development and paint industry.
Collapse
Affiliation(s)
- Marzieh Mirzamani
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0004, USA.
| | - Arnab Dawn
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0004, USA.
| | - Christopher J Garvey
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, Garching 85748, Germany
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831, USA
| | - Hilmar Koerner
- Materials & Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, USA
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0004, USA.
| |
Collapse
|
28
|
Squaric acid driven supramolecular metallogels of Cd(II) and Zn(II): Sensitive inhibitors for multi-drug resistance ESKAPE pathogens. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Yuan J, Dong S, Hao J. Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Gao A, Wang Q, Wu H, Zhao JW, Cao X. Research progress on AIE cyanostilbene-based self-assembly gels: Design, regulation and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Wang K, Zhang W, Liu N, Hu D, Yu F, He YP. Methionine-Derived Organogels as Lubricant Additives Enhance the Continuity of the Oil Film through Dynamic Self-Healing Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11492-11501. [PMID: 36089744 DOI: 10.1021/acs.langmuir.2c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
(S)-2-((1-(Hexadecylamino)-4-(methylthio)-1-oxobutan-2-yl)carbamoyl)benzoic acid (HMTA) was efficiently synthesized and successfully applied as an additive to several types of blank lubricant oils. Initially, HMTA self-assembles to fibrous structures and traps blank lubricant oils to form gel lubricants. The prepared gel lubricants show thermo-reversible properties and enhanced lubricating performance by 3∼5-fold. X-ray photoelectron spectrometry of the metal surface and the quartz crystal microbalance illustrated that there are no obvious interactions between HMTA and the metal surface. The results of Fourier transform infrared spectroscopy and X-ray diffraction further confirm that inter/intro-molecular H-bonding interactions are the main driving force for the self-healing of HMTA. Finally, molecular dynamics (MD) simulations show that the number of noncovalent H-bonding interactions fluctuates with time, and this highly dynamic H-bonding network could regulate the self-assembly process and result in the self-healing property of the HMTA organogel, which is consistent with the results of the step-strain tests. Especially, the Hirshfeld independent gradient model method at the quantum level demonstrated that C8/C9 aromatics of 500SN have strong π-π stacking interactions with the aromatic heads of HMTA and van der Waals interactions with the hydrophobic tails of HMTA, which disrupt the self-assembly behavior of the 500SN model. Therefore, the calculation studies offer a rational explanation for the superior lubricant property of the PAO10 gel as compared to that for 500SN.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Wannian Zhang
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Na Liu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Dianwen Hu
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
| | - Fang Yu
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Yu-Peng He
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| |
Collapse
|
32
|
Yang Y, Wang L, Li X, Liu D, Dai S, Lu H. Carboxylate Group-Based Phase-Selective Organogelators with a pH-Triggered Recyclable Property. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9567-9574. [PMID: 35881913 DOI: 10.1021/acs.langmuir.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phase-selective organogelators (PSOGs) have recently attracted more attention because of their advantages in handling oil spills and leaked organic solvents. However, it is difficult to separate and recover the organic phase and PSOGs from organic gels due to the strong interaction between them. Aiming to enhance the separation and recovery performance of the organic phase and PSOGs, we synthesized a series of pH-responsive PSOGs by using itaconic anhydride and fatty amines with carbon chain lengths of C12-C18. Here, PSOGs have an excellent gelation ability in that amounts of organic solvents and fuel oil can be solidified at a low concentration (<3 wt %). It is worth noting that these gels are stronger, which is more convenient for removal by a salvage operation. More importantly, compared with traditional organogelators, pH-responsive PSOGs can easily recover the organic phase and fuel oil with an adjustment of the pH without extraction or distillation. Because of the transformation between the hydrophilicity and hydrophobicity of PSOGs by pH stimulation, 83.15% PSOGs are recovered in three-cycle experiments. In addition, the recycled PSOGs can be used to realize the removal of the organic phase again. Herein, we find that pH-responsive PSOGs could be used as promising and sustainable materials for separating and recovering organic solvents/oils and PSOGs.
Collapse
Affiliation(s)
- Yang Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Li Wang
- College of Material Science and Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Xiaojiang Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Dan Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Shanshan Dai
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, P. R. China
| |
Collapse
|
33
|
Synthesis of an ursolic acid organic salt based low-molecular-weight supramolecular hydrogel with unique thermo-responsiveness behavior. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Nayak K, Sahoo S, De P. Chirality and solvent assisted gelation modulation with stearoyl appended macromolecules. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
Qin S, Zou H, Hai Y, You L. Aggregation-induced emission luminogens and tunable multicolor polymer networks modulated by dynamic covalent chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Wei P, Wang Q, Yi T. From fluorescent probes to the theranostics platform. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Qing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
- Department of Chemistry Fudan University Shanghai 200438 China
| |
Collapse
|
37
|
Wang Y, Xiong J, Peng F, Li Q, Zeng MH. Building a supramolecular gel with an ultra-low-molecular-weight Schiff base gelator and its multiple-stimulus responsive properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Maldonado N, Beobide G, Reyes E, Martínez JI, Gómez-García CJ, Castillo O, Amo-Ochoa P. Innovative Microstructural Transformation upon CO 2 Supercritical Conditions on Metal-Nucleobase Aerogel and Its Use as Effective Filler for HPLC Biomolecules Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:675. [PMID: 35215003 PMCID: PMC8880480 DOI: 10.3390/nano12040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/25/2023]
Abstract
This work contributes to enlightening the opportunities of the anisotropic scheme of non-covalent interactions present in supramolecular materials. It provides a top-down approach based on their selective disruption that herein has been employed to process a conventional microcrystalline material to a nanofibrillar porous material. The developed bulk microcrystalline material contains uracil-1-propionic acid (UPrOH) nucleobase as a molecular recognition capable building block. Its crystal structure consists of discrete [Cu(UPrO)2 (4,4'-bipy)2 (H2 O)] (4,4'-bipy=4,4'-bipyridine) entities held together through a highly anisotropic scheme of non-covalent interactions in which strong hydrogen bonds involving coordinated water molecules provide 1D supramolecular chains interacting between them by weaker interactions. The sonication of this microcrystalline material and heating at 45 °C in acetic acid-methanol allows partial reversible solubilization/recrystallization processes that promote the cross-linking of particles into an interlocked platelet-like micro-particles metal-organic gel, but during CO2 supercritical drying, the microcrystalline particles undergo a complete morphological change towards highly anisotropic nanofibers. This unprecedented top-down microstructural conversion provides a nanofibrillar material bearing the same crystal structure but with a highly increased surface area. Its usefulness has been tested for HPLC separation purposes observing the expected nucleobase complementarity-based separation.
Collapse
Affiliation(s)
- Noelia Maldonado
- Department of Inorganic Chemistry, Autonomous University of Madrid, 28049 Madrid, Spain;
| | - Garikoitz Beobide
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain; (G.B.); (E.R.); (O.C.)
- BC Materials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain; (G.B.); (E.R.); (O.C.)
| | - José Ignacio Martínez
- Department of Nanostructures, Surfaces, Coatings and Molecular Astrophysics, Institute of Materials Science of Madrid (ICMM-CSIC), 28049 Madrid, Spain;
| | - Carlos J. Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjasot, Spain;
| | - Oscar Castillo
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain; (G.B.); (E.R.); (O.C.)
- BC Materials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Pilar Amo-Ochoa
- Department of Inorganic Chemistry, Autonomous University of Madrid, 28049 Madrid, Spain;
- Institute for Advanced Research in Chemistry at UAM (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
39
|
Uehara S, Wang Y, Ootani Y, Ozawa N, Kubo M. Molecular-Level Elucidation of a Fracture Process in Slide-Ring Gels via Coarse-Grained Molecular Dynamics Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuichi Uehara
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yang Wang
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
- Department of Mechanical Systems Engineering, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yusuke Ootani
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Nobuki Ozawa
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Momoji Kubo
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
40
|
Open chain pseudopeptides as hydrogelators with reversible and dynamic responsiveness to pH, temperature and sonication as vehicles for controlled drug delivery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Zhao T, Chen S, Kang K, Ren J, Yu X. Self-Assembled Copper Metallogel Bearing Terpyridine and Its Application as a Catalyst for the Click Reaction in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1398-1405. [PMID: 35041431 DOI: 10.1021/acs.langmuir.1c02568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metallogels have attracted a great deal of interest because of their intriguing properties and applications in chemsensors, batteries, catalysis, and other fields. In this work, a novel ligand bearing terpyridine and hydroxyamine units was designed and synthesized. The ligand selectively gelated with copper ions in water by heating and cooling or sonication. Different physicochemical studies [Fourier transform infrared, ultraviolet-visible (UV-vis), electron paramagnetic resonance (EPR), scanning electron microscopy, X-ray diffraction, and rheology] were conducted to characterize the gels. We show that coordination interaction, π-π interaction, and noncovalent interaction had obvious effects on the properties of the gel. Additionally, a stable radical hydrogel could be obtained by ultrasound treatment, which was accompanied by color variation from green to blue. This was further confirmed by UV-vis and EPR experiments. Furthermore, the copper metallogels were developed as catalysts for the preparation of 1,2,3-triazole derivatives in water at 25 °C. Although various types of catalysts have been investigated, the use of metallogels as catalysts for the click reaction in water has been scarce. This strategy shows the process is simple, affords a high yield, and is "green" and economical.
Collapse
Affiliation(s)
- Tong Zhao
- College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
| | - Shaorui Chen
- College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
| | - Kai Kang
- College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
| | - Jvjie Ren
- College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
| | - Xudong Yu
- College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
| |
Collapse
|
42
|
Liu Z, Chu Q, Feng Y. Progress in Stimulus-Responsive Dendritic Gels ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Liao L, Liu R, Hu S, Jiang W, Chen Y, Zhong J, Jia X, Liu H, Luo X. Self-assembled sonogels formed from 1,4-naphthalenedicarbonyldinicotinic acid hydrazide. RSC Adv 2022; 12:20218-20226. [PMID: 35919589 PMCID: PMC9280287 DOI: 10.1039/d2ra01391f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Ultrasound-induced gelation of a novel type of gelator, 1,4-naphthalenedicarbonyl- dinicotinic acid hydrazide, is reported. The gelator self-assembled into various architectures in different solvents.
Collapse
Affiliation(s)
- Lieqiang Liao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Ruidong Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Shuwen Hu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Wenting Jiang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yali Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Jinlian Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xinjian Jia
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Huijin Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xuzhong Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
44
|
Xue K, Cao J, Pan L, Zhang X, Zou JJ. Review on design, preparation and performance characterization of gelled fuels for advanced propulsion. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Duan M, Wang X, Xu W, Ma Y, Yu J. Electro-Thermochromic Luminescent Fibers Controlled by Self-Crystallinity Phase Change for Advanced Smart Textiles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57943-57951. [PMID: 34817172 DOI: 10.1021/acsami.1c17232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Smart textiles with tunable luminescence have received special attention due to their great potential in various advanced photonic applications. Particularly, the development of one-dimensional, on-demand, responsive fluorescence fibers with excellent adaptability is of great significance. Herein, we propose electro-thermochromic fluorescence fibers regulated by a self-crystallinity phase change; that is, their tunable luminescence properties are derived from the reversible conversion of the dispersion state and fluorescence emission of fluorophore molecules during the crystallization/melting processes of phase-change materials. First results obtained with an alginate wet-spinning system demonstrate that the self-crystallinity phase change can produce polymeric fibers with thermochromic fluorescence behavior, which are prepared using microemulsion particles containing a phase-change fatty acid and coumarin fluorescent dyes. These thermochromic fluorescence fibers possess a fast response speed, high emission contrast, and good reversibility (>100 cycles). Particularly, the thermochromic fluorescent fibers can gain an electrotriggered capability by means of electric heating materials, and their great potential in precision operation applications is demonstrated. It is easy to adjust the switching point of the electro-thermochromic fluorescence fibers, highlighting their potential use in a diverse range of applications, the designs of which can be personalized. This work offers a simple yet versatile strategy for constructing electro-thermochromic fluorescence fibers for advanced smart textiles.
Collapse
Affiliation(s)
- Minghan Duan
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Xingchi Wang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Wanxuan Xu
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Ying Ma
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, P. R. China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, P. R. China
| |
Collapse
|
46
|
Cao X, Han Q, Wang Q, Gao A, Ge XF, Yu X, Wang G. Fluorescent naphthalimide-based supramolecular gel system for detection phosgene, sulfoxide chloride and oxalyl dichloride. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Li X, Zhang H, Liu L, Cao C, Wei P, Yi X, Zhou Y, Lv Q, Zhou D, Yi T. De novo design of self-assembly hydrogels based on Fmoc-diphenylalanine providing drug release. J Mater Chem B 2021; 9:8686-8693. [PMID: 34617098 DOI: 10.1039/d1tb01628h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Short peptides with self-assembled nanostructures are widely applied in the areas of drug delivery systems and biomaterials. In this article, we create a new peptide-based hydrogelator (Fmoc-FFRRVR) based on N-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) through an approach to improve its hydrophilicity. Compared to Fmoc-FF, Fmoc-FFRRVR prefers to form a hydrogel under mild conditions, and the gelation time is only 2 s. Fmoc-FFRRVR self-assembles into organized arrays of β-sheets in nanofibers via π-stacking of Fmoc-FF, which are supported by circular dichroism and fluorescence emission spectroscopy. Rheology results confirm that the hydrogel of Fmoc-FFRRVR is elastic, reversible and injectable. The newly discovered hydrogel not only retains some excellent performances of Fmoc-FF, but also can be used as a drug carrier for biomedical applications.
Collapse
Affiliation(s)
- Xiang Li
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China. .,School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China. .,China School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Huijun Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China.
| | - Lingyan Liu
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China.
| | - Chunyan Cao
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China.
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Xin Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Yifeng Zhou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Qingyang Lv
- China School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Dongfang Zhou
- China School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Tao Yi
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China. .,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
48
|
Shaheen A, Maswal M, Dar AA. Synergistic effect of various metal ions on the mechanical, thixotropic, self-healing, swelling and water retention properties of bimetallic hydrogels of alginate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
1,10-Phenanthroline-based hexacatenar LCs with complex self-assembly, photophysical and binding selectivity behaviors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Guo J, Li Y, Zhang Y, Ren J, Yu X, Cao X. Switchable Supramolecular Configurations of Al 3+/LysTPY Coordination Polymers in a Hydrogel Network Controlled by Ultrasound and Heat. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40079-40087. [PMID: 34379399 DOI: 10.1021/acsami.1c10150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coordination-driven self-assembly with controllable properties has attracted increasing interest because of its potential in biological events and material science. Herein, we report on the remote, instant, and switchable control of competitive coordination interactions via ultrasound and heat stimuli in a hydrogel network. Configurational coordination changes result in the transformation of blue-emissive and opaque Al3+-amide aggregations to yellow-green-emissive and transparent Al3+-terpyridine aggregations. Interestingly, circularly polarized luminescence "off-on" switches of the metallo-supramolecular assembly are also created by these configuration changes. Additionally, the impact of the stoichiometric ratio of Al3+ and LysTPY on the assembly is also studied in detail. With a higher content of Al3+, the hydrogel with branched and abundant junctions exhibited robust, self-healing, and self-supporting properties. This in-depth understanding of the coordination interaction adjustment will afford new insights into the preparation of stimuli-responsive metallogels.
Collapse
Affiliation(s)
- Jiangbo Guo
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Yajuan Li
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Yajun Zhang
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Jujie Ren
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering & Green Catalysis and Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Nanhu Road 237, Xinyang 464000, PR China
| |
Collapse
|