1
|
Kim E, Lee J, Park J, Kim H, Nam KW. Conductive MOF-Derived Coating for Suppressing the Mn Dissolution in LiMn 2O 4 toward Long-Life Lithium-Ion Batteries. NANO LETTERS 2025; 25:619-627. [PMID: 39760663 DOI: 10.1021/acs.nanolett.4c03482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Spinel lithium manganese oxide (LiMn2O4, LMO) is a promising cathode material with nontoxicity, high operating voltage, and low cost. However, structural collapse during battery cycling ─ caused by Mn dissolution and the Jahn-Teller effect ─ is a critical disadvantage, reducing cycle retention, particularly at high temperatures. In this study, to solve these critical issues, we introduce Cu3(HITP)2 (CuHITP; HITP = 2,3,6,7,10,11-hexaiminotriphenylene), a conductive two-dimensional (2D) metal-organic framework (MOF) as a surface coating material. The CuHITP-derived coating increases the electrical conductivity and suppresses Mn dissolution by enriching the LMO surface with Mn4+. By suppressing Mn dissolution, structural stability also improves, offsetting the inherent problems. As a result, at 60 °C, CuHITP-LMO exhibits an initial capacity of 95.8 mAh g-1 at 100 mA g-1 and achieves a capacity of 42.4 mAh g-1 after 300 cycles. This research highlights the potential of conductive 2D MOFs to improve the electrochemical performances of LMO.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeongmin Lee
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Junghyun Park
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Heejin Kim
- Division of Analytical Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon 34133, Republic of Korea
| | - Kwan Woo Nam
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Jiang T, Zhang Z, Wei S, Tan S, Liu H, Chen W. Rechargeable Hydrogen Gas Batteries: Fundamentals, Principles, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412108. [PMID: 39511903 DOI: 10.1002/adma.202412108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/28/2024] [Indexed: 11/15/2024]
Abstract
The growing demand for renewable energy sources has accelerated a boom in research on new battery chemistries. Despite decades of development for various battery types, including lithium-ion batteries, their suitability for grid-scale energy storage applications remains imperfect. In recent years, rechargeable hydrogen gas batteries (HGBs), utilizing hydrogen catalytic electrode as anode, have attracted extensive academic and industrial attention. HGBs, facilitated by appropriate catalysts, demonstrate notable attributes such as high power density, high capacity, excellent low-temperature performance, and ultralong cycle life. This review presents a comprehensive overview of four key aspects pertaining to HGBs: fundamentals, principles, materials, and applications. First, detailed insights are provided into hydrogen electrodes, encompassing electrochemical principles, hydrogen catalytic mechanisms, advancements in hydrogen catalytic materials, and structural considerations in hydrogen electrode design. Second, an examination and future prospects of cathode material compatibility, encompassing both current and potential materials, are summarized. Third, other components and engineering considerations of HGBs are elaborated, including cell stack design and pressure vessel design. Finally, a techno-economic analysis and outlook offers an overview of the current status and future prospects of HGBs, indicating their orientation for further research and application advancements.
Collapse
Affiliation(s)
- Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ziwei Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuyang Wei
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shunxin Tan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongxu Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
3
|
Guo Q, Lu M, Zhang Y, Gong W. Naphthalene Diimide-Based Cyanovinylene-Containing Conjugated Organic Polymers for Efficient Lithium-Ion Battery Electrodes. Macromol Rapid Commun 2025; 46:e2400566. [PMID: 39340480 DOI: 10.1002/marc.202400566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Indexed: 09/30/2024]
Abstract
The pursuit of innovative organic materials and the examination of the "structure-function" correlation in lithium-ion batteries (LIBs) are crucial and highly desirable. Current research focuses on the creation of novel conjugated organic polymers with polycarbonyl groups and examining the impact of electrode structure on the function of lithium-ion batteries. In this paper, two novel cyanovinylene-based conjugated organic polymers, NBA-TFB and NBA-TFPB, are synthesized using a Knoevenagel condensation reaction with naphthalene diimide as the integral unit. The performance of NBA-TFB and NBA-TFPB as cathodes in lithium-ion batteries is investigated. Improved conductivity and increased active site density in NBA-TFPB resulted in superior electrochemistry compared to NBA-TFB. Specifically, NBA-TFPB exhibited a larger reversible capacity (87.58 mAh g-1 at 0.2C and 88.34% retention after 100 cycles), exceptional rate capability (66.13 mAh g-1 at 5C), and robust cycling stability (99.58% coulombic efficiency at 1C and 60.71% retention after 2000 cycles). This study expands the family of diimide-based naphthalene polymers and provides a strategy for enhancing the performance of organic electrode materials containing polycarbonyl structure.
Collapse
Affiliation(s)
- Qiqi Guo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R.China
| | - Meihan Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R.China
| | - Yang Zhang
- Department of Criminal Science and Technology, Liaoning Police College, Dalian, 116036, P. R. China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R.China
| |
Collapse
|
4
|
Yang Z, Lai F, Mao Q, Liu C, Peng S, Liu X, Zhang T. Breaking the Mutual-Constraint of Bifunctional Oxygen Electrocatalysis via Direct O─O Coupling on High-Valence Ir Single-Atom on MnO x. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412950. [PMID: 39558778 DOI: 10.1002/adma.202412950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/27/2024] [Indexed: 11/20/2024]
Abstract
Insufficient bifunctional activity of electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the major obstruction to the application of rechargeable metal-air batteries. The primary reason is the mutual constraint of ORR and OER mechanism, involving the same oxygen-containing intermediates and demonstrating the scaling limitations of the adsorption energies. Herein, it is reported a high-valence Ir single atom anchored on manganese oxide (IrSA-MnOx) bifunctional catalyst showing independent pathways for ORR and OER, i.e., associated 4e- pathway on high-valence Ir site for ORR and a novel chemical-activated concerted mechanism for OER, where a distinct spontaneous chemical activation process triggers direct O─O coupling. The IrSA-MnOx therefore delivers outstanding bifunctional activities with remarkably low potential difference (0.635 V) between OER potential at 10 mA cm-2 and ORR half-wave potential in alkaline solution. This work breaks the scaling limitations and provides a new avenue to design efficient and multifunctional electrocatalysts.
Collapse
Affiliation(s)
- Ziyi Yang
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fayuan Lai
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qianjiang Mao
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Chong Liu
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing City, Jiangsu Province, 211106, China
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tianran Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China
| |
Collapse
|
5
|
Khan S, Lone AR, Khan MY, Rahaman S, Pandey K, Helal A, Sama F, Shahid M. Engineered Amine-Functionalized Metal-Organic Framework to Fabricate a Composite for Next-Generation Asymmetric Supercapacitors with Ultrahigh Performance: Modulating the Energy Storage Barrier. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21106-21119. [PMID: 39321132 DOI: 10.1021/acs.langmuir.4c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The present work summarizes the fabrication of an amine-functionalized cadmium-based metal-organic framework (MOF), {[Cd(AT)(BP)]·4DMF}n or Cd_AT-BP, by adopting a simple solvothermal approach using 2-aminoterephthalic acid (AT) as the main linker, while 4,4'-bipyridyl (BP) as an auxiliary linker. The structure of Cd_AT-BP was validated by the single-crystal X-ray diffraction technique that revealed the formation of an overall three-dimensional network with BP acting as a bridge between the 2D sheets of the MOF. The robust framework of Cd_AT-BP decorated with a free amine functional group was utilized for energy storage application. The electrochemical measurements of Cd_AT-BP revealed a maximum areal capacitance of 9.8 mF/cm2 at a scan rate of 5 mV/s. Further, to enhance the practical utility of Cd_AT-BP in energy storage devices, two composites of Cd_AT-BP with reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs), viz., Cd_AT-BP/rGO and Cd_AT-BP/CNT, were prepared by adopting a facile ultrasonication approach. The synthesized Cd_AT-BP/rGO and Cd_AT-BP/CNT composites displayed an impressive areal capacitance of 117 and 37 mF/cm2 (58.5 and 17.5 F/g) at a scan rate of 5 mV/s, respectively, and a capacitance retention of up to 118 and 100% after 5000 cycles at a constant current density of 5 mA/cm2. The highest energy density of about 4.23 mW h/cm2 (2.12 W h/kg) at a current density of 1 mA/cm2 was shown by Cd_AT-BP/rGO among all the three materials attributable to the layered structure of rGO, providing a larger surface area accessible for ion adsorption. Enticed by the remarkable outcomes exhibited by Cd_AT-BP/rGO, we fabricated a two-electrode asymmetric supercapacitor (ASC) device. The developed ASC device revealed energy and power densities of 26.7 mW h/cm2 (13.4 W h/kg) and 3760 mW/cm2 (1880 W/kg), respectively, with a galvanostatic charge-discharge stability of up to 10,000 cycles. The findings identify Cd_AT-BP/rGO as a potential contender for future-generation supercapacitors.
Collapse
Affiliation(s)
- Shabnam Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Aadil Rashid Lone
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bangalore 562162, India
| | - Mohammad Yasir Khan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Sabiar Rahaman
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bangalore 562162, India
| | - Kavita Pandey
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bangalore 562162, India
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Farasha Sama
- Department of Industrial Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
6
|
Li M, Li C, Zuo C, Hu J, Li C, Luo W, Luo S, Duan A, Wang J, Wang X, Sun W, Mai L. Strategically Modulating Proton Activity and Electric Double Layer Adsorption for Innovative All-Vanadium Aqueous Mn 2+/Proton Hybrid Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407233. [PMID: 39152942 DOI: 10.1002/adma.202407233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Aqueous Mn-ion batteries (MIBs) exhibit a promising development potential due to their cost-effectiveness, high safety, and potential for high energy density. However, the development of MIBs is hindered by the lack of electrode materials capable of storing Mn2+ ions due to acidic manganese salt electrolytes and large ion radius. Herein, the tunnel-type structure of monoclinic VO2 nanorods to effectively store Mn2+ ions via a reversible (de)insertion chemistry for the first time is reported. Utilizing exhaustive in situ/ex situ multi-scale characterization techniques and theoretical calculations, the co-insertion process of Mn2+/proton is revealed, elucidating the capacity decay mechanism wherein high proton activity leads to irreversible dissolution loss of vanadium species. Further, the Grotthuss transfer mechanism of protons is broken via a hydrogen bond reconstruction strategy while achieving the modulation of the electric double-layer structure, which effectively suppresses the electrode interface proton activity. Consequently, the VO2 demonstrates excellent electrochemical performance at both ambient temperatures and -20 °C, especially maintaining a high capacity of 162 mAh g-1 at 5 A g-1 after a record-breaking 20 000 cycles. Notably, the all-vanadium symmetric pouch cells are successfully assembled for the first time based on the "rocking-chair" Mn2+/proton hybrid mechanism, demonstrating the practical application potential.
Collapse
Affiliation(s)
- Ming Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Cong Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chunli Zuo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jisong Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chen Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Wen Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Department of Physical Science & Technology, School of Physics and Mechanics, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sha Luo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - An Duan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Junjun Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xuanpeng Wang
- Department of Physical Science & Technology, School of Physics and Mechanics, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiang-yang, 441000, China
| | - Wei Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
7
|
Zhang J, Bu Y, Li Z, Yang T, Zhao N, Wu G, Zhao F, Zhang R, Zhang D. Nanoarchitectonics of Fe-Doped Ni 3S 2 Arrays on Ni Foam from MOF Precursors for Promoted Oxygen Evolution Reaction Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1445. [PMID: 39269107 PMCID: PMC11397559 DOI: 10.3390/nano14171445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Oxygen evolution reaction (OER) is a critical half-reaction in electrochemical overall water splitting and metal-air battery fields; however, the exploitation of the high activity of non-noble metal electrocatalysts to promote the intrinsic slow kinetics of OER is a vital and urgent research topic. Herein, Fe-doped Ni3S2 arrays were derived from MOF precursors and directly grown on nickel foam via the traditional solvothermal way. The arrays integrated into nickel foam can be used as self-supported electrodes directly without any adhesive. Due to the synergistic effect of Fe and Ni elements in the Ni3S2 structure, the optimized Fe2.3%-Ni3S2/NF electrode delivers excellent OER activity in an alkaline medium. The optimized electrode only requires a small overpotential of 233 mV to reach the current density of 10 mA cm-2, and the catalytic activity of the electrode can surpass several related electrodes reported in the literature. In addition, the long-term stability of the Fe2.3%-Ni3S2/NF electrode showed no significant attenuation after 12 h of testing at a current density of 50 mA cm-2. The introduction of Fe ions could modulate the electrical conductivity and morphology of the Ni3S2 structure and thus provide a high electrochemically active area, fast reaction sites, and charge transfer rate for OER activity.
Collapse
Affiliation(s)
- Jingchao Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingping Bu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhuoyan Li
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ting Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Naihui Zhao
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Guanghui Wu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fujing Zhao
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Renchun Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Daojun Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
8
|
Liang H, Zhu C, Tian W, Zhu C, Ma Y, Hu W, Wu J, Chen J, Wang R, Huang M, Zhu Y, Wang H. High-Energy Symmetric Li-Ion Battery Enabled by Binder-Free FeOF-MXene Heterostructure with Doubly Matched Capacity and Kinetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400767. [PMID: 38676351 DOI: 10.1002/smll.202400767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Fluorides are viewed as promising conversion-type Li-ion battery cathodes to meet the desired high energy density. FeOF is a typical member of conversion-type fluorides, but its major drawback is sluggish kinetics upon deep discharge. Herein, a heterostructured FeOF-MXene composite (FeOF-MX) is demonstrated to overcome this limitation. The rationally designed FeOF-MX electrode features a microsphere morphology consisting of closely packed FeOF nanoparticles, providing fast transport pathways for lithium ions while a continuous wrapping network of MXene nanosheets ensures unobstructed electron transport, thus enabling high-rate lithium storage with enhanced pseudocapacitive contribution. In/ex situ characterization techniques and theoretical calculations, both reveal that the lithium storage mechanism in FeOF arises from a hybrid intercalation-conversion process, and strong interfacial interactions between FeOF and MXene promote Li-ion adsorption and migration. Remarkably, through demarcating the conversion-type reaction with a controlled potential window, a symmetric full battery with prelithiated FeOF-MX as both cathode and anode is fabricated, achieving a high energy density of 185.5 Wh kg-1 and impressive capacity retention of 88.9% after 3000 cycles at 1 A g-1. This work showcases an effective route toward high-performance MXene engineered fluoride-based electrodes and provides new insights into constructing symmetric batteries yet with high-energy/power densities.
Collapse
Affiliation(s)
- Huanyu Liang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunliu Zhu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Weiqian Tian
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunyan Zhu
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Yu Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Jinan, 250353, China
| | - Jingyi Wu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Rutao Wang
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yue Zhu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
9
|
Xie C, Xu Z, Zheng Y, Wang S, Dai M, Xiao C. Research Progress on the Preparation of Manganese Dioxide Nanomaterials and Their Electrochemical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1283. [PMID: 39120387 PMCID: PMC11313769 DOI: 10.3390/nano14151283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Manganese dioxide (MnO2) nanomaterials have shown excellent performance in catalytic degradation and other fields because of their low density and great specific surface area, as well as their tunable chemical characteristics. However, the methods used to synthesize MnO2 nanomaterials greatly affect their structures and properties. Therefore, the present work systematically illustrates common synthetic routes and their advantages and disadvantages, as well as examining research progress relating to electrochemical applications. In contrast to previous reviews, this review summarizes approaches for preparing MnO2 nanoparticles and describes their respective merits, demerits, and limitations. The aim is to help readers better select appropriate preparation methods for MnO2 nanomaterials and translate research results into practical applications. Finally, we also point out that despite the significant progress that has been made in the development of MnO2 nanomaterials for electrochemical applications, the related research remains in the early stages, and the focus of future research should be placed on the development of green synthesis methods, as well as the composition and modification of MnO2 nanoparticles with other materials.
Collapse
Affiliation(s)
- Chunsheng Xie
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China
| | - Zesheng Xu
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
| | - Yujian Zheng
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
| | - Shuo Wang
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Min Dai
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China
| | - Chun Xiao
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (C.X.); (Z.X.); (Y.Z.); (M.D.)
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China
| |
Collapse
|
10
|
Sheikh TA, Ismail M, Rabbee MF, Khan H, Rafique A, Rasheed Z, Siddique A, Rafiq MZ, Khattak ZAK, Jillani SMS, Shahzad U, Akhtar MN, Saeed M, Alzahrani KA, Uddin J, Rahman MM, Verpoort F. 2D MXene-Based Nanoscale Materials for Electrochemical Sensing Toward the Detection of Hazardous Pollutants: A Perspective. Crit Rev Anal Chem 2024:1-46. [PMID: 39046991 DOI: 10.1080/10408347.2024.2379851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
MXenes (Mn+1XnTx), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects. Different characterization techniques like XRD, SEM, TEM, UV-Visible spectroscopy, and Raman spectroscopy have been used for the structural elucidation of 2D MXene. Current responses against applied potential were measured during the electrochemical sensing of the hazardous pollutants in an aqueous system using a variety of electroanalytical techniques, including differential pulse voltammetry, amperometry, square wave anodic stripping voltammetry, etc. In this review, a comprehensive discussion on structural patterns, synthesis, properties of MXene and their application for electrochemical detection of lethal pollutants like hydroquionone, phenol, catechol, mercury and lead, etc. are presented. This review will be helpful to critically understand the methods of synthesis and application of MXenes for the removal of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Ali Sheikh
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ismail
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Hira Khan
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ayesha Rafique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zeerak Rasheed
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amna Siddique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Zeeshan Rafiq
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Akhtar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A Alzahrani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- National Research Tomsk Polytechnic University, Tomsk, Russian
| |
Collapse
|
11
|
Cheng Z, Dong Q, Pu G, Song J, Zhong W, Wang J. A Durable and High-Voltage Mn-Graphite Dual-Ion Battery Using Mn-Based Hybrid Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400389. [PMID: 38287734 DOI: 10.1002/smll.202400389] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Rechargeable Mn-metal batteries (MMBs) can attract considerable attention because Mn has the intrinsic merits including high energy density (976 mAh g-1), high air stability, and low toxicity. However, the application of Mn in rechargeable batteries is limited by the lack of proper cathodes for reversible Mn2+ intercalation/de-intercalation, thus leading to low working voltage (<1.8 V) and poor cycling stability (≤200 cycles). Herein, a high-voltage and durable MMB with graphite as the cathode is successfully constructed using a LiPF6-Mn(TFSI)2 hybrid electrolyte, which shows a high discharge voltage of 2.34 V and long-term stability of up to 1000 cycles. Mn(TFSI)2 can reduce the plating/stripping overpotential of Mn ions, while LiPF6 can efficiently improve the conductivity of the electrolyte. Electrochemical in-situ characterization implies the dual-anions intercalation/de-intercalation at the cathode and Mn2+ plating/stripping reaction at the anode. Theoretical calculations unveil the top site of graphite is the energetically favorable for anions intercalation and TFSI- shows the low migration barrier. This work paves an avenue for designing high-performance rechargeable MMBs towards electricity storage.
Collapse
Affiliation(s)
- Zhenjie Cheng
- Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, P. R. China
| | - Qingyu Dong
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Guiqiang Pu
- Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, P. R. China
| | - Junnan Song
- Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, P. R. China
| | - Wenwu Zhong
- Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, P. R. China
| | - Jiacheng Wang
- Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, P. R. China
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, P. R. China
| |
Collapse
|
12
|
Liu L, Shen S, Zhao N, Zhao H, Wang K, Cui X, Wen B, Wang J, Xiao C, Hu X, Su Y, Ding S. Revealing the Indispensable Role of In Situ Electrochemically Reconstructed Mn(II)/Mn(III) in Improving the Performance of Lithium-Carbon Dioxide Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403229. [PMID: 38598727 DOI: 10.1002/adma.202403229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Li-CO2 batteries are regarded as promising high-energy-density energy conversion and storage devices, but their practicability is severely hindered by the sluggish CO2 reduction/evolution reaction (CORR/COER) kinetics. Due to the various crystal structures and unique electronic configuration, Mn-based cathode catalysts have shown considerable competition to facilitate CORR/COER. However, the specific active sites and regulation principle of Mn-based catalysts remain ambiguous and limited. Herein, this work designs novel Mn dual-active sites (MOC) supported on N-doped carbon nanofibers and conduct a comprehensive investigation into the underlying relationship between different Mn active sites and their electrochemical performance in Li-CO2 batteries. Impressively, this work finds that owing to the in situ generation and stable existence of Mn(III), MOC undergoes obvious electrochemical reconstruction during battery cycling. Moreover, a series of characterizations and theoretical calculations demonstrate that the different electronic configurations and coordination environments of Mn(II) and Mn(III) are conducive to promoting CORR and COER, respectively. Benefiting from such a modulating behavior, the Li-CO2 batteries deliver a high full discharge capacity of 10.31 mAh cm-2, and ultra-long cycle life (327 cycles/1308 h). This fundamental understanding of MOC reconstruction and the electrocatalytic mechanisms provides a new perspective for designing high-performance multivalent Mn-integrated hybrid catalysts for Li-CO2 batteries.
Collapse
Affiliation(s)
- Limin Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shenyu Shen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ning Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongyang Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ke Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofeng Cui
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Wen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiuhong Wang
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunhui Xiao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofei Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
13
|
Zhang K, Li D, Wang X, Gao J, Shen H, Zhang H, Rong C, Chen Z. Dry Electrode Processing Technology and Binders. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2349. [PMID: 38793416 PMCID: PMC11123077 DOI: 10.3390/ma17102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
As a popular energy storage equipment, lithium-ion batteries (LIBs) have many advantages, such as high energy density and long cycle life. At this stage, with the increasing demand for energy storage materials, the industrialization of batteries is facing new challenges such as enhancing efficiency, reducing energy consumption, and improving battery performance. In particular, the challenges mentioned above are particularly critical in advanced next-generation battery manufacturing. For batteries, the electrode processing process plays a crucial role in advancing lithium-ion battery technology and has a significant impact on battery energy density, manufacturing cost, and yield. Dry electrode technology is an emerging technology that has attracted extensive attention from both academia and the manufacturing industry due to its unique advantages and compatibility. This paper provides a detailed introduction to the development status and application examples of various dry electrode technologies. It discusses the latest advancements in commonly used binders for different dry processes and offers insights into future electrode manufacturing.
Collapse
Affiliation(s)
- Kaiqi Zhang
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (K.Z.); (X.W.); (H.S.); (H.Z.)
| | - Dan Li
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Group Co., Ltd., Changchun 130013, China; (D.L.); (J.G.)
| | - Xuehan Wang
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (K.Z.); (X.W.); (H.S.); (H.Z.)
| | - Jingwan Gao
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Group Co., Ltd., Changchun 130013, China; (D.L.); (J.G.)
| | - Huilin Shen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (K.Z.); (X.W.); (H.S.); (H.Z.)
| | - Hao Zhang
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (K.Z.); (X.W.); (H.S.); (H.Z.)
| | - Changru Rong
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Group Co., Ltd., Changchun 130013, China; (D.L.); (J.G.)
| | - Zheng Chen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (K.Z.); (X.W.); (H.S.); (H.Z.)
| |
Collapse
|
14
|
Zhuang S, Duan N, Xu F. Synergistic strategy of solute environment and phase control of Pb-based anodes to solve the activity-stability trade-off. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134119. [PMID: 38579581 DOI: 10.1016/j.jhazmat.2024.134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
The contradiction between the activity and stability of metal anodes exists extensively, especially in acid electrooxidation under industrial-level current density. Although the anode modification enhanced the initial activity of anodes, its long-term activity is limited by anode slime accumulation. Herein, a synergistic strategy, coupling the solute environment with the phase control of anodes, is proposed to achieve the trade-off between activity and stability of Pb-based anodes in concentrated sulfuric acid electrolysis. Non-exogenous Mn2+ motivated a series of positive behaviours of reactive-oxygen-species capture, anode reconstruction and corrosion-dependent activity alleviation. The synergistic effects, which are crystal phase-dependent, mainly benefit from the continuous self-healing ability of the specific crystal phase of MnO2 on the anodes by the coexisted Mn2+. Compared with Mn2+/α-MnO2, Mn2+/γ-MnO2 exhibited outperformed activity and stability in boosting oxygen evolution reaction (OER) and reducing hazardous pollutants, which resulted from the energy difference in the rate-determining step of OER and in the selectivity priority of Mn2+/MnO2 oxidation pathway. Interestingly, the pre-coated γ-MnO2 on the anode also presents excellent inheritance, guaranteeing the unchanged crystal phase of MnO2 and the high performance in ultra-low hazardous slime generation in subsequent Mn2+ oxidation. The sustainability of Mn2+/γ-MnO2 was proved in the operating hydrometallurgy conditions on Pb-based anodes. This strategy offers a promising approach for this common issue in electrooxidation-related areas.
Collapse
Affiliation(s)
- Siwei Zhuang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ning Duan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Fuyuan Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
15
|
Cheng H, Li J, Meng T, Shu D. Advances in Mn-Based MOFs and Their Derivatives for High-Performance Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308804. [PMID: 38073335 DOI: 10.1002/smll.202308804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/19/2023] [Indexed: 05/18/2024]
Abstract
As the most widely used metal material in supercapacitors, manganese (Mn)-based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn-based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn-based materials. Metal-organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal-based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn-based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn-based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn-MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn-based MOFs and their derivatives in the future.
Collapse
Affiliation(s)
- Honghong Cheng
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510800, P. R. China
| | - Jianping Li
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510800, P. R. China
| | - Tao Meng
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
16
|
Liu Y, Xiang K, Zhou W, Deng W, Zhu H, Chen H. Investigations on Tunnel-Structure MnO 2 for Utilization as a High-Voltage and Long-Life Cathode Material in Aqueous Ammonium-Ion and Hybrid-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308741. [PMID: 38112264 DOI: 10.1002/smll.202308741] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Recently, nonmetal NH4 + ions have attracted extensive attention for use as charge carries in the field of energy storage due to their abundant resources, environmental friendliness, and low cost. However, the development of aqueous ammonium-ion batteries (AAIBs) is constrained by the absence of high-voltage and long-life materials. Herein, different tunnel-structure MnO2 materials (α-, β-, and γ-MnO2) are utilized as cathodes for AAIBs and hybrid-ion batteries and compared, and α-MnO2 is demonstrated to exhibit the most remarkable electrochemical performance. The α-MnO2 cathode material delivers the highest discharge capacity of 219 mAh g-1 at a current density of 0.1 A g-1 and the best cyclability with a capacity retention of 95.4% after 10 000 cycles at 1.0 A g-1. Moreover, aqueous ammonium-ion and hybrid-ion (ammonium/sodium ions) full batteries are successfully constructed using α-MnO2 cathodes. This work provides a novel direction for the development of aqueous energy storage for practical applications.
Collapse
Affiliation(s)
- Yang Liu
- School of Materials and Environmental Engineering, Changsha University, Changsha, Hunan, 410022, P. R. China
- Hunan University of Technology, Zhuzhou, Hunan, 412008, P. R. China
| | - Kaixiong Xiang
- Hunan University of Technology, Zhuzhou, Hunan, 412008, P. R. China
| | - Wei Zhou
- School of Materials and Environmental Engineering, Changsha University, Changsha, Hunan, 410022, P. R. China
| | - Weina Deng
- School of Materials and Environmental Engineering, Changsha University, Changsha, Hunan, 410022, P. R. China
| | - Hai Zhu
- School of Materials and Environmental Engineering, Changsha University, Changsha, Hunan, 410022, P. R. China
| | - Han Chen
- School of Materials and Environmental Engineering, Changsha University, Changsha, Hunan, 410022, P. R. China
| |
Collapse
|
17
|
Liu Y, Shi Z, Zhang J, Chen C, Zhang Y, Li L, Chen Q, Zhang Q, Xing F. Crystal Structure and Molten Salt Environment Cooperatively Controlling the Morphology of the Plate-like CaMnO 3 Template through Topochemical Conversion. Inorg Chem 2024; 63:4628-4635. [PMID: 38416706 DOI: 10.1021/acs.inorgchem.3c04191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
In the field of oxide thermoelectrics, perovskite CaMnO3 ceramics have drawn plenty of attention due to their chemical stability, low cost, and environmental friendliness. By employing Ruddlesden-Poppe phase Ca3Mn2O7 as a precursor, the plate-like CaMnO3 microcrystals were successfully synthesized by the molten salt method combined with topochemical microcrystal conversion (TMC). The plate-like morphology of CaMnO3 was coordinately optimized by modulating the crystal structure of MnO2 and the molten salt environment. Plate-like microcrystals with an average size of ∼14.55 μm and a thickness of ∼2.89 μm were obtained by TMC reaction, demonstrating an obvious anisotropy. When β-MnO2 was used as the raw material, a length-thickness ratio of 4.77 was obtained, which was attributed to the fact that CaMnO3 inherited the plate-like morphology of the Ca3Mn2O7 precursor during the TMC. The results confirm that the plate-like CaMnO3 microcrystals with obvious anisotropy can provide excellent template seeds for high-quality CaMnO3-based textured ceramics.
Collapse
Affiliation(s)
- Yuan Liu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Zongmo Shi
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Junzhan Zhang
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Chanli Chen
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Ying Zhang
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Leilei Li
- School of Civil Engineering, Northwest Minzu University, Lanzhou 730000, P. R. China
| | - Qian Chen
- College of Sciences, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, P. R. China
| | - Qiantao Zhang
- Instrumental Analysis Center, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Fei Xing
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| |
Collapse
|
18
|
Zhang C, Wang S, Xiao J. Coaxial nickel cobalt selenide/nitrogen-doped carbon nanotube array as a three-dimensional self-supported electrode for electrochemical energy storage. RSC Adv 2024; 14:7710-7719. [PMID: 38444967 PMCID: PMC10912943 DOI: 10.1039/d3ra08635f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Herein, we propose a one-step urea pyrolysis method for preparing a nitrogen-doped carbon nanotube array grown on carbon fiber paper, which is demonstrated as a three-dimensional scaffold for constructing a nickel cobalt selenide-based coaxial array structure. Thanks to the large surface area, interconnected porous structure, high mass loading, as well as fast electron/ion transport pathway of the coaxial array structure, the nickel cobalt selenide/nitrogen-doped carbon nanotube electrode exhibits over 7 times higher areal capacity than that directly grown on carbon fiber paper, and better rate capability. The cell assembled by a nickel cobalt selenide/nitrogen-doped carbon nanotube positive electrode and an iron oxyhydroxide/nitrogen-doped carbon nanotube negative electrode delivers a volumetric capacity of up to 22.5 C cm-3 (6.2 mA h cm-3) at 4 mA cm-2 and retains around 86% of the initial capacity even after 10 000 cycles at 10 mA cm-2. A volumetric energy density of up to 4.9 mW h cm-3 and a maximum power density of 208.1 mW cm-3 are achieved, and is comparable to, if not better than, those of similar energy storage devices reported previously.
Collapse
Affiliation(s)
- Chen Zhang
- College of Petroleum Equipment and Electrical Engineering, Dongying Vocational Institute Dongying P. R. China
| | - Shang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Junwu Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
19
|
Islam MR, Bhuiyan MA, Ahmed MH, Rahaman M. Hydrothermal synthesis of NiO nanoparticles decorated hierarchical MnO 2 nanowire for supercapacitor electrode with improved electrochemical performance. Heliyon 2024; 10:e26631. [PMID: 38420414 PMCID: PMC10901009 DOI: 10.1016/j.heliyon.2024.e26631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
In this work, MnO2/NiO nanocomposite electrode materials have been synthesized by a cost-effective hydrothermal method. The effect of the concentrations (0, 1, 3, 5, and 7 wt%) of NiO nanoparticles on the surface morphology, structural properties, and electrochemical performance of the nanocomposites was characterized by different characterization techniques. The scanning electron micrographs (SEM) reveal that the as-prepared NiO nanoparticles are well connected and stuck with the MnO2 nanowires. The transmission electron microscopy (TEM) analysis showed an increase in the interplanar spacing due to the incorporation of NiO nanoparticles. The different structural parameters of MnO2/NiO nanocomposites were also found to vary with the concentration of NiO. The MnO2/NiO nanocomposites provide an improved electrochemical performance together with a specific capacitance as high as 343 F/g at 1.25 A/g current density. The electrochemical spectroscopic analysis revealed a reduction in charge transfer resistance due to the introduction of NiO, indicating a rapid carrier transportation between the materials interface. The improved electrochemical performance of MnO2/NiO can be attributed to good interfacial interaction, a large interlayer distance, and low charge transfer resistance. The unique features of MnO2/NiO and the cost-effective hydrothermal method will open up a new route for the fabrication of a promising supercapacitor electrode.
Collapse
Affiliation(s)
- Muhammad Rakibul Islam
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | | | - Md Hasive Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Mizanur Rahaman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
20
|
Qiu J, Duan Y, Li S, Zhao H, Ma W, Shi W, Lei Y. Insights into Nano- and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage. NANO-MICRO LETTERS 2024; 16:130. [PMID: 38393483 PMCID: PMC10891041 DOI: 10.1007/s40820-024-01341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024]
Abstract
Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.
Collapse
Affiliation(s)
- Jiajia Qiu
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Yu Duan
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Shaoyuan Li
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Wenhui Ma
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China.
- School of Science and Technology, Pu'er University, Pu'er, 665000, People's Republic of China.
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| |
Collapse
|
21
|
Wang W, Yang C, Han D, Yu S, Qi W, Ling R, Liu G. Ni 3S 2/Ni 2O 3 heterojunction anchored on N-doped carbon nanosheet aerogels for dual-ion hybrid supercapacitors. J Colloid Interface Sci 2024; 654:709-718. [PMID: 37866043 DOI: 10.1016/j.jcis.2023.10.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
As a member of transition metal sulfides, Ni3S2 has been reported as one type of the effective pseudocapacitive electrode materials for supercapacitors, due to its good electrical conductivity and high electrochemical activity. To further improve the energy density of the Ni3S2-based supercapacitors, we propose a novel approach to the Ni3S2/Ni2O3 heterojunction anchored on N-doped carbon nanosheet aerogels (Ni3S2/Ni2O3@N-CNA), which is used as the cathode for Zn-ion hybrid supercapacitors with the dual-ion electrolytes. The Ni3S2/Ni2O3@N-CNA samples can be prepared through the bubble-templated polymerization of pyrrole and the carbonization of the polypyrrole nanosheet hydrogel/Ni2+. The Ni3S2/Ni2O3@N-CNA cathode is immersed into the Li-ion catholyte for Li+ storage, while the Zn foil anode is immersed into the Zn-ion anolyte for Zn2+ storage. Electrochemical kinetic analysis of the dual-ion hybrid supercapacitor indicates its evident capacitance characteristic. Additionally, theoretical calculations reveal that the Ni3S2/Ni2O3 heterojunction can facilitate the adsorption and dehydration of a hydrated Li+ ion to further play a great role in the enhancement of pseudocapacitance. Based on the novel strategy of the alkaline dual-ion electrolytes, this dual-ion hybrid supercapacitor with the high energy density (64.2 Wh kg-1) opens up a new avenue to develop high-performance Zn-ion hybrid supercapacitors.
Collapse
Affiliation(s)
- Wenyun Wang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Chao Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China.
| | - Daotong Han
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Shangjing Yu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Wentao Qi
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Rui Ling
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Guangqiang Liu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
22
|
Liu J, Li F, Xi L, Sun Z, Yang Y, Shen J, Yao S, Zhao J, Zhu M, Liu J. Grafting a Polymer Coating Layer onto Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 Cathode by Benzene Diazonium Salts to Facilitate the Cycling Performance and High-Voltage Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305606. [PMID: 37670544 DOI: 10.1002/smll.202305606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Indexed: 09/07/2023]
Abstract
Li-rich Mn-based cathodes have been regarded as promising cathodes for lithium-ion batteries because of their low cost of raw materials (compared with Ni-rich layer structure and LiCoO2 cathodes) and high energy density. However, for practical application, it needs to solve the great drawbacks of Li-rich Mn-based cathodes like capacity degradation and operating voltage decline. Herein, an effective method of surface modification by benzene diazonium salts to build a stable interface between the cathode materials and the electrolyte is proposed. The cathodes after modification exhibit excellent cycling performance (the retention of specific capacity is 84.2% after 350 cycles at the current density of 1 C), which is mainly attributed to the better stability of the structure and interface. This work provides a novel way to design the coating layer with benzene diazonium salts for enhancing the structural stability under high voltage condition during cycling.
Collapse
Affiliation(s)
- Junhao Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Fangkun Li
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Lei Xi
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhaoyu Sun
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiadong Shen
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shiyan Yao
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jingwei Zhao
- Research and Development Center, Guangzhou Tinci Materials Technology Co., Ltd., Guangzhou, 510765, China
| | - Min Zhu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
23
|
Lv ZC, Wang FF, Wang JC, Wang PF, Yi TF. Durable lithium-ion insertion/extraction and migration behavior of LiF-encapsulated cobalt-free lithium-rich manganese-based layered oxide cathode. J Colloid Interface Sci 2023; 649:175-184. [PMID: 37348337 DOI: 10.1016/j.jcis.2023.06.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Lithium-rich manganese-based cathode has made a subject of intense scrutiny for scientists and application researchers due to their exceptional thermal stability, high specific capacity, high operating voltage, and cost-effectiveness. However, the inclusion of cobalt, as a crucial component in lithium-rich manganese-based cathode materials, has become a cause for concern due to its limited availability and non-renewable nature, which eventually limits the growth of the battery industry and increase costs. Considering the poor stability of cobalt-free cathode, this work proposes a coating strategy of LiF through a simple high-temperature melting method. Directly coating LiF on Li1.2Ni0.2Mn0.6O2 surface is found to be an effective way to protect the cathode material, decrease metal solubility, and inhibit irreversible phase transition processes, thus leading to an improved electrochemical performance. As a result, the battery employing LiF coated Li1.2Ni0.2Mn0.6O2 cathode can be stabilized over 280 cycles and maintain a capacity of 110 mAh g-1 at 1C. What's more, the mechanisms of ion insertion/extraction behavior and ion migration process are also studied systematically. This study will open the avenue to develop a high-energy battery system with cobalt-free cathode.
Collapse
Affiliation(s)
- Ze-Chen Lv
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Fan-Fan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Jian-Cang Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Peng-Fei Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| | - Ting-Feng Yi
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| |
Collapse
|
24
|
Zhang L, Zhang X, Han D, Zhai L, Mi L. Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries. SMALL METHODS 2023; 7:e2300687. [PMID: 37568245 DOI: 10.1002/smtd.202300687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Covalent organic frameworks (COFs) are acknowledged as a new generation of crystalline organic materials and have garnered tremendous attention owing to their unique advantages of structural tunability, frameworks diversity, functional versatility, and diverse applications in drug delivery, adsorption/separation, catalysis, optoelectronics, and sensing, etc. Recently, COFs is proven to be promising candidates for electrochemical energy storage materials. Their chemical compositions and structures can be precisely tuned and functionalized at the molecular level, allowing a comprehensive understanding of COFs that helps to make full use of their features and addresses the inherent drawback based on the components and functions of the devices. In this review, the working mechanisms and the distinguishing advantages of COFs as electrodes for rechargeable Li-ion batteries are discussed in detail. Especially, principles and strategies for the rational design of COFs as advanced electrode materials in Li-ion batteries are systematically summarized. Finally, this review is structured to cover recent explorations and applications of COF electrode materials in other rechargeable metal-ion batteries.
Collapse
Affiliation(s)
- Lin Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Xiaofei Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Diandian Han
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| |
Collapse
|
25
|
Zhang Y, Ding T, Wang J, Yao A, Zhang C, Zhang T, Zhang Y, Feng Y, Chi Q. Improvements in the Electrochemical Performance of Sodium Manganese Oxides by Ti Doping for Aqueous Mg-Ion Batteries. Chem Asian J 2023; 18:e202300542. [PMID: 37669070 DOI: 10.1002/asia.202300542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
In recent times, the research on cathode materials for aqueous rechargeable magnesium ion battery has gained significant attention. The focus is on enhancing high-rate performance and cycle stability, which has become the primary research goal. Manganese oxide and its derived Na-Mn-O system have been considered as one of the most promising electrode materials due to its low cost, non-toxicity and stable spatial structure. This work uses hydrothermal method to prepare titanium gradient doped nano sodium manganese oxides, and uses freeze-drying technology to prepare magnesium ion battery cathode materials with high tap density. At the initial current density of 50 mA g-1 , the NMTO-5 material exhibits a high reversible capacity of 231.0 mAh g-1 , even at a current density of 1000 mA g-1 , there is still 122.1 mAh g-1 . It is worth noting that after 180 cycles of charging and discharging at a gradually increasing current density such as 50-1000 mA g-1 , it can still return to the original level after returning to 50 mA g-1 . Excellent electrochemical performance and capacity stability show that NMTO-5 material is a promising electrode material.
Collapse
Affiliation(s)
- Yongquan Zhang
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Tao Ding
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Jingshun Wang
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Anquan Yao
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Changhai Zhang
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Tiandong Zhang
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Yue Zhang
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Yu Feng
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Qingguo Chi
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| |
Collapse
|
26
|
Yang X, Liu K, Han X, Xu J, Bian M, Zheng D, Xie H, Zhang Y, Yang X. Transformation of waste battery cathode material LiMn 2O 4 into efficient ultra-low temperature NH 3-SCR catalyst: Proton exchange synergistic vanadium modification. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132209. [PMID: 37567137 DOI: 10.1016/j.jhazmat.2023.132209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
It is essential to develop the catalyst for NH3-SCR with excellent performance at ultra-low temperature (≤150 °C), and resource recycling is another important part of environmental protection. Based on the principle of environmental friendliness, the LiMn2O4, one of the waste battery cathode materials, was successfully modified into a novel high-value catalyst for ultra-low temperature NH3-SCR through hydrogen ion exchange and two-dimensional vanadic oxide modification. The optimized LiMn2O4-0.5V-10H catalyst performed the best balance of NOx conversion and N2 selectivity, with activity reaching 96 % at 150 °C and N2 selectivity exceeding 70 % at ultra-low temperature. Due to the unique three-dimensional network structural characteristics of LiMn2O4 spinel, hydrogen exchange could exchange Li+ from the lattice and increase surface acidity; and a small amount of two-dimensional vanadic oxide loading could appropriately regulate redox ability and increase acidic sites. The in-situ DRIFTS results still showed that the L-H and E-R mechanisms coexisted during the reaction. Moreover, combining first-principles calculations and in-situ DRIFTS, the dual modification of H and V could enhance the adsorption of NH3 on the surface of LiMn2O4 but weaken the adsorption of NO, and promote the decomposition of nitrites while inhibit the formation of surface nitrate species, which was the core reason for the improvement of N2 selectivity. The modification mode in this work was simple and inexpensive, which provided a new idea for the high-value utilization of waste batteries and the design of NOx purification catalyst at ultra-low temperature.
Collapse
Affiliation(s)
- Xin Yang
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou 341000, China
| | - Kaijie Liu
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou 341000, China.
| | - Xinyu Han
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou 341000, China
| | - Jianheng Xu
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou 341000, China
| | - Mengyao Bian
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou 341000, China
| | - Daying Zheng
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou 341000, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., No.712, Wen'er West Road, Hangzhou 310003, China
| | - Yibo Zhang
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou 341000, China.
| | - Xiangguang Yang
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, No.1, Science Academy Road, Ganzhou 341000, China
| |
Collapse
|
27
|
Kong X, Wu H, Lu K, Zhang X, Zhu Y, Lei H. Galvanic Replacement Reaction: Enabling the Creation of Active Catalytic Structures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41205-41223. [PMID: 37638534 DOI: 10.1021/acsami.3c08922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The galvanic replacement reaction (GRR) is recognized as a redox process where one metal undergoes oxidation by the ions of another metal possessing a higher reduction potential. This reaction takes place at the interface between a substrate and a solution containing metal ions. Utilizing metal or metal oxide as sacrificial templates enables the synthesis of metallic nanoparticles, oxide-metal composites, and mixed oxides through GRR. Growing evidence showed that GRR has a direct impact on surface structures and properties. This has generated significant interest in catalysis and opened up new horizons for the application of GRR in energy and chemical transformations. This review provides a comprehensive overview of the synthetic strategies utilizing GRR for the creation of catalytically active structures. It discusses the formation of alloys, intermetallic compounds, single atom alloys, metal-oxide composites, and mixed metal oxides with diverse nanostructures. Additionally, GRR serves as a postsynthesis method to modulate metal-oxide interfaces through the replacement of oxide domains. The review also outlines potential future directions in this field.
Collapse
Affiliation(s)
- Xiao Kong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Hao Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Kun Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Xinyi Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Yifeng Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, Washington 99354, United States
| |
Collapse
|
28
|
Tang W, Mai J, Liu L, Yu N, Fu L, Chen Y, Liu Y, Wu Y, van Ree T. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. NANOSCALE ADVANCES 2023; 5:4368-4401. [PMID: 37638171 PMCID: PMC10448312 DOI: 10.1039/d3na00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
With the growing depletion of traditional fossil energy resources and ongoing enhanced awareness of environmental protection, research on electrochemical energy storage techniques like zinc-air batteries is receiving close attention. A significant amount of work on bifunctional catalysts is devoted to improving OER and ORR reaction performance to pave the way for the commercialization of new batteries. Although most traditional energy storage systems perform very well, their durability in practical applications is receiving less attention, with issues such as carbon corrosion, reconstruction during the OER process, and degradation, which can seriously impact long-term use. To be able to design bifunctional materials in a bottom-up approach, a summary of different kinds of carbon materials and transition metal-based materials will be of assistance in selecting a suitable and highly active catalyst from the extensive existing non-precious materials database. Also, the modulation of current carbon materials, aimed at increasing defects and vacancies in carbon and electron distribution in metal-N-C is introduced to attain improved ORR performance of porous materials with fast mass and air transfer. Finally, the reconstruction of catalysts is introduced. The review concludes with comprehensive recommendations for obtaining high-performance and highly-durable catalysts.
Collapse
Affiliation(s)
- Wanqi Tang
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jiarong Mai
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Nengfei Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yankai Liu
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
29
|
Xiao X, Zhang Z, Wu Y, Xu J, Gao X, Xu R, Huang W, Ye Y, Oyakhire ST, Zhang P, Chen B, Cevik E, Asiri SM, Bozkurt A, Amine K, Cui Y. Ultrahigh-Loading Manganese-Based Electrodes for Aqueous Batteries via Polymorph Tuning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211555. [PMID: 37149287 DOI: 10.1002/adma.202211555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/05/2023] [Indexed: 05/08/2023]
Abstract
Manganese-based aqueous batteries utilizing Mn2+ /MnO2 redox reactions are promising choices for grid-scale energy storage due to their high theoretical specific capacity, high power capability, low-cost, and intrinsic safety with water-based electrolytes. However, the application of such systems is hindered by the insulating nature of deposited MnO2 , resulting in low normalized areal loading (0.005-0.05 mAh cm-2 ) during the charge/discharge cycle. In this work, the electrochemical performance of various MnO2 polymorphs in Mn2+ /MnO2 redox reactions is investigated, and ɛ-MnO2 with low conductivity is determined to be the primary electrochemically deposited phase in normal acidic aqueous electrolyte. It is found that increasing the temperature can change the deposited phase from ɛ-MnO2 with low conductivity to γ-MnO2 with two order of magnitude increase in conductivity. It is demonstrated that the highly conductive γ-MnO2 can be effectively exploited for ultrahigh areal loading electrode, and a normalized areal loading of 33 mAh cm-2 is achieved. At a mild temperature of 50 °C, cells are cycled with an ultrahigh areal loading of 20 mAh cm-2 (1-2 orders of magnitude higher than previous studies) for over 200 cycles with only 13% capacity loss.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Zewen Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yecun Wu
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jinwei Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xin Gao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Rong Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Wenxiao Huang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yusheng Ye
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Solomon T Oyakhire
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Pu Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Emre Cevik
- Bioenergy Research unit, Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Sarah M Asiri
- Bioenergy Research unit, Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Ayhan Bozkurt
- Bioenergy Research unit, Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Khalil Amine
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Bioenergy Research unit, Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| |
Collapse
|
30
|
Hao Z, Sun X, Chen J, Zhou X, Zhang Y. Recent Progress and Challenges in Faradic Capacitive Desalination: From Mechanism to Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300253. [PMID: 37093194 DOI: 10.1002/smll.202300253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Indexed: 05/03/2023]
Abstract
Due to substantial consumption and widespread contamination of the available freshwater resources, green, economical, and sustainable water recycling technologies are urgently needed. Recently, Faradic capacitive deionization (CDI), an emerging desalination technology, has shown great desalination potential due to its high salt removal ability, low consumption, and hardly any co-ion exclusion effect. However, the ion removal mechanisms and structure-property relationships of Faradic CDI are still unclear. Therefore, it is necessary to summarize the current research progress and challenges of Faradic CDI. In this review, the recent progress of Faradic CDI from five aspects is systematically reviewed: cell architectures, desalination mechanisms, evaluation indicators, operation modes, and electrode materials. The working mechanisms of Faradic CDI are classified as insertion reaction, conversion reaction, ion-redox species interaction, and ion-redox couple interaction in the electrolytes. The intrinsic and desalination properties of a series of Na+ and Cl- capturing materials are described in detail in terms of design concepts, structural analysis, and synthesis modulation. In addition, the effects of different cell architectures, operation modes, and electrode materials on the desalination performance of Faradic CDI are also investigated. Finally, the work summarizes the challenges remaining in Faradic CDI and provides the prospects and directions for future development.
Collapse
Affiliation(s)
- Zewei Hao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaoqi Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
31
|
Zhang B, Zhang W, Jin H, Wan J. Research Progress of Cathode Materials for Rechargeable Aluminum Batteries in AlCl
3
/[EMIm]Cl and Other Electrolyte Systems. ChemistrySelect 2023. [DOI: 10.1002/slct.202204575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Boya Zhang
- College of Materials Science & Engineering Qingdao University of Science & Technology Qingdao 266042, Shandong P. R. China
| | - Wenyang Zhang
- Kagami Memorial Research Institute for Materials Science and Technology Waseda University 2-8-26 Nishiwaseda, Shinjuku-ku Tokyo 169-0051 Japan
| | - Huixin Jin
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering Shandong University Jinan 250061 PR China
| | - Jiaqi Wan
- College of Materials Science & Engineering Qingdao University of Science & Technology Qingdao 266042, Shandong P. R. China
| |
Collapse
|
32
|
Srivastava V, Choubey AK. Novel PVA/chitosan composite membrane modified using bio-fabricated α-MnO 2 nanoparticles for photocatalytic degradation of cationic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35838-35852. [PMID: 36538223 DOI: 10.1007/s11356-022-24634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
By integrating the benefits of poly vinyl alcohol (PVA) and chitosan (CS) with α-MnO2 nanoparticles (MNPs), a novel type of nano-polymer composite (PVA/CS-MNP) membrane was synthesized through a simple and facile casting method. In this proposed work, the membrane prepared was used for removal of organic textile dyes from their aqueous solutions. The as-synthesized PVA/CS-MNP membrane was examined using different analytical techniques such as Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM), and mechanical properties of material was also studied. Two cationic dyes, methylene blue (MB) and eosin yellow (EY), were chosen as template dyes to be removed from industrial waste water. These dyes were degraded by carrying out a reaction in which the synthesized membrane was used as a photocatalyst. The study of kinetics revealed that the reaction process followed pseudo-first-order kinetics. The efficiency of catalyst and the rate of reaction were also examined by varying parameters such as pH, initial concentration of dyes, and composition of membrane. The maximum efficiency of catalyst was observed at pH 12 as more than 95% of dyes degraded within 1 h of time span. The catalyst was found to be reusable as its efficiency did not deteriorate even after using it for several times. Such functional membrane having higher stability, low production cost, excellent efficiency to degrade dyes, and good recyclability are promising material for distinctly effective deletion of organic dyes from waste water.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, Amethi, Uttar Pradesh, 229304, India.
| | - Abhay Kumar Choubey
- Department of Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, Amethi, Uttar Pradesh, 229304, India
| |
Collapse
|
33
|
Su H, Liu J, Hu Y, Ai T, Gong C, Lu J, Luo Y. Comparative Study of α- and β-MnO 2 on Methyl Mercaptan Decomposition: The Role of Oxygen Vacancies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:775. [PMID: 36839143 PMCID: PMC9964818 DOI: 10.3390/nano13040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
As a representative sulfur-containing volatile organic compounds (S-VOCs), CH3SH has attracted widespread attention due to its adverse environmental and health risks. The performance of Mn-based catalysts and the effect of their crystal structure on the CH3SH catalytic reaction have yet to be systematically investigated. In this paper, two different crystalline phases of tunneled MnO2 (α-MnO2 and β-MnO2) with the similar nanorod morphology were used to remove CH3SH, and their physicochemical properties were comprehensively studied using high-resolution transmission electron microscope (HRTEM) and electron paramagnetic resonance (EPR), H2-TPR, O2-TPD, Raman, and X-ray photoelectron spectroscopy (XPS) analysis. For the first time, we report that the specific reaction rate for α-MnO2 (0.029 mol g-1 h-1) was approximately 4.1 times higher than that of β-MnO2 (0.007 mol g-1 h-1). The as-synthesized α-MnO2 exhibited higher CH3SH catalytic activity towards CH3SH than that of β-MnO2, which can be ascribed to the additional oxygen vacancies, stronger surface oxygen migration ability, and better redox properties from α-MnO2. The oxygen vacancies on the catalyst surface provided the main active sites for the chemisorption of CH3SH, and the subsequent electron transfer led to the decomposition of CH3SH. The lattice oxygen on catalysts could be released during the reaction and thus participated in the further oxidation of sulfur-containing species. CH3SSCH3, S0, SO32-, and SO42- were identified as the main products of CH3SH conversion. This work offers a new understanding of the interface interaction mechanism between Mn-based catalysts and S-VOCs.
Collapse
Affiliation(s)
- Hong Su
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Jiangping Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Yanan Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Tianhao Ai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Chenhao Gong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Jichang Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Yongming Luo
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
34
|
Abstract
Organic batteries using redox-active polymers and small organic compounds have become promising candidates for next-generation energy storage devices due to the abundance, environmental benignity, and diverse nature of organic resources. To date, tremendous research efforts have been devoted to developing advanced organic electrode materials and understanding the material structure-performance correlation in organic batteries. In contrast, less attention was paid to the correlation between electrolyte structure and battery performance, despite the critical roles of electrolytes for the dissolution of organic electrode materials, the formation of the electrode-electrolyte interphase, and the solvation/desolvation of charge carriers. In this review, we discuss the prospects and challenges of organic batteries with an emphasis on electrolytes. The differences between organic and inorganic batteries in terms of electrolyte property requirements and charge storage mechanisms are elucidated. To provide a comprehensive and thorough overview of the electrolyte development in organic batteries, the electrolytes are divided into four categories including organic liquid electrolytes, aqueous electrolytes, inorganic solid electrolytes, and polymer-based electrolytes, to introduce different components, concentrations, additives, and applications in various organic batteries with different charge carriers, interphases, and separators. The perspectives and outlook for the future development of advanced electrolytes are also discussed to provide a guidance for the electrolyte design and optimization in organic batteries. We believe that this review will stimulate an in-depth study of electrolytes and accelerate the commercialization of organic batteries.
Collapse
Affiliation(s)
- Mengjie Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Robert Paul Hicks
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States
| | - Zifeng Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Chao Luo
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States
| | - Juchen Guo
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States
- Materials Science and Engineering Program, University of California-Riverside, Riverside, California 92521, United States
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yunhua Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| |
Collapse
|
35
|
Ren X, Wang H, Chen J, Xu W, He Q, Wang H, Zhan F, Chen S, Chen L. Emerging 2D Copper-Based Materials for Energy Storage and Conversion: A Review and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204121. [PMID: 36526607 DOI: 10.1002/smll.202204121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
2D materials have shown great potential as electrode materials that determine the performance of a range of electrochemical energy technologies. Among these, 2D copper-based materials, such as Cu-O, Cu-S, Cu-Se, Cu-N, and Cu-P, have attracted tremendous research interest, because of the combination of remarkable properties, such as low cost, excellent chemical stability, facile fabrication, and significant electrochemical properties. Herein, the recent advances in the emerging 2D copper-based materials are summarized. A brief summary of the crystal structures and synthetic methods is started, and innovative strategies for improving electrochemical performances of 2D copper-based materials are described in detail through defect engineering, heterostructure construction, and surface functionalization. Furthermore, their state-of-the-art applications in electrochemical energy storage including supercapacitors (SCs), alkali (Li, Na, and K)-ion batteries, multivalent metal (Mg and Al)-ion batteries, and hybrid Mg/Li-ion batteries are described. In addition, the electrocatalysis applications of 2D copper-based materials in metal-air batteries, water-splitting, and CO2 reduction reaction (CO2 RR) are also discussed. This review also discusses the charge storage mechanisms of 2D copper-based materials by various advanced characterization techniques. The review with a perspective of the current challenges and research outlook of such 2D copper-based materials for high-performance energy storage and conversion applications is concluded.
Collapse
Affiliation(s)
- Xuehua Ren
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Haoyu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Jun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Weili Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95060, USA
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
36
|
Ul Hoque MI, Holze R. Intrinsically Conducting Polymer Composites as Active Masses in Supercapacitors. Polymers (Basel) 2023; 15:730. [PMID: 36772032 PMCID: PMC9920322 DOI: 10.3390/polym15030730] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Intrinsically conducting polymers ICPs can be combined with further electrochemically active materials into composites for use as active masses in supercapacitor electrodes. Typical examples are inspected with particular attention to the various roles played by the constituents of the composites and to conceivable synergistic effects. Stability of composite electrode materials, as an essential property for practical application, is addressed, taking into account the observed causes and effects of materials degradation.
Collapse
Affiliation(s)
- Md. Ikram Ul Hoque
- Discipline of Chemistry, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rudolf Holze
- Department of Electrochemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
- Institut für Chemie, Chemnitz University of Technology, D-09107 Chemnitz, Germany
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
37
|
Li S, Lee JH, Hwang SM, Kim YJ. Reversible flowering of CuO nanoclusters via conversion reaction for dual-ion Li metal batteries. NANO CONVERGENCE 2023; 10:4. [PMID: 36637575 PMCID: PMC9839906 DOI: 10.1186/s40580-022-00353-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Dual-ion Li metal batteries based on non-flammable SO2-in-salt inorganic electrolytes ( Li-SO2 batteries) offer high safety and energy density. The use of cupric oxide (CuO) as a self-activating cathode material achieves a high specific capacity with cost-effective manufacturing in Li-SO2 batteries, but its cycle retention performance deteriorates owing to the significant morphological changes of the cathode active materials. Herein, we report the catalytic effect of carbonaceous materials used in the cathode material of Li-SO2 batteries, which act as templates to help recrystallize the active materials in the activation and conversion reactions. We found that the combination of oxidative-cyclized polyacrylonitrile (PAN) with N-doped carbonaceous materials and multi-yolk-shell CuO (MYS-CuO) nanoclusters as cathode active materials can significantly increase the specific capacity to 315.9 mAh g- 1 (93.8% of the theoretical value) at 0.2 C, which corresponds to an energy density of 1295 Wh kgCuO-1, with a capacity retention of 84.46% at the 200th cycle, and the cathode exhibited an atypical blossom-like morphological change.
Collapse
Affiliation(s)
- Siying Li
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545616, China
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung-Hun Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soo Min Hwang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Young-Jun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
38
|
Ma H, Wang X, Wang C, Zhang H, Ma X, Deng W, Chen R, Cao T, Chai Y, He Y, Ji W, Li R, Chen J, Ji J, Rao W, Xue M. Metal Halides for High-Capacity Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205071. [PMID: 36366943 DOI: 10.1002/smll.202205071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/15/2022] [Indexed: 06/16/2023]
Abstract
High-capacity electrochemical energy storage systems are more urgently needed than ever before with the rapid development of electric vehicles and the smart grid. The most efficient way to increase capacity is to develop electrode materials with low molecular weights. The low-cost metal halides are theoretically ideal cathode materials due to their advantages of high capacity and redox potential. However, their cubic structure and large energy barrier for deionization impede their rechargeability. Here, the reversibility of potassium halides, lithium halides, sodium halides, and zinc halides is achieved through decreasing their dimensionality by the strong π-cation interactions between metal cations and reduced graphene oxide (rGO). Especially, the energy densities of KI-, KBr-, and KCl-based materials are 722.2, 635.0, and 739.4 Wh kg-1 , respectively, which are higher than those of other cathode materials for potassium-ion batteries. In addition, the full-cell with 2D KI/rGO as cathode and graphite as anode demonstrates a lifespan of over 150 cycles with a considerable capacity retention of 57.5%. The metal halides-based electrode materials possess promising application prospects and are worthy of more in-depth researches.
Collapse
Affiliation(s)
- Hui Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xusheng Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Cong Wang
- Department of Physics, Renmin University of China, Beijing, 100872, China
| | - Huanrong Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlei Ma
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Wenjun Deng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ruoqi Chen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianqi Cao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuqiao Chai
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonglin He
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Wei Ji
- Department of Physics, Renmin University of China, Beijing, 100872, China
| | - Rui Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jitao Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junhui Ji
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Rao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mianqi Xue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
39
|
Liu Y, Xie C, Li X. Bromine Assisted MnO 2 Dissolution Chemistry: Toward a Hybrid Flow Battery with Energy Density of over 300 Wh L -1. Angew Chem Int Ed Engl 2022; 61:e202213751. [PMID: 36299166 DOI: 10.1002/anie.202213751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Indexed: 11/24/2022]
Abstract
Mn2+ /Mn3+ redox pair has been considered as a promising cathode for high energy density batteries, due to its attractive features of high redox potential, solubility and outstanding kinetics. However, the disproportionation side reaction of Mn3+ , which results in accumulation of "dead" MnO2 limits its reversibility and further energy density. Herein, a novel catholyte based on mixture of Mn2+ and Br- was proposed for flow batteries with high energy density and long cycle life. In the design, the "dead" MnO2 can be fully discharged via Br- by a chemical-electrochemical reaction. Coupled with Cd/Cd2+ as anode, the assembled Bromine-Manganese flow battery (BMFB) demonstrates a high energy efficiency of 76 % at 80 mA cm-2 with energy density of 360 Wh L-1 . The battery assembled with silicotungstic acid as anode could continuously run for over 2000 cycles at 80 mA cm-2 . With high power density, energy density and durability, the BMFB shows great potential for large-scale energy storage.
Collapse
Affiliation(s)
- Yun Liu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congxin Xie
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
40
|
Soundharrajan V, Lee J, Kim S, Putro DY, Lee S, Sambandam B, Mathew V, Sakthiabirami K, Hwang JY, Kim J. Aqueous Rechargeable Zn/ZnO Battery Based on Deposition/Dissolution Chemistry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248664. [PMID: 36557797 PMCID: PMC9786327 DOI: 10.3390/molecules27248664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Recently, a novel electrochemical regulation associated with a deposition/dissolution reaction on an electrode surface has been proven to show superiority in large-scale energy storage systems (ESSs). Hence, in the search for high-performance electrodes showcasing these novel regulations, we utilized a low-cost ZnO microsphere electrode to construct aqueous rechargeable batteries (ARBs) that supplied a harvestable and storable charge through electrochemical deposition/dissolution via a reversible manganese oxidation reaction (MOR)/manganese reduction reaction (MRR), respectively, induced by the inherent formation/dissolution of zinc basic sulfate in a mild aqueous electrolyte solution containing 2 M ZnSO4 and 0.2 M MnSO4.
Collapse
Affiliation(s)
- Vaiyapuri Soundharrajan
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun Lee
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seokhun Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dimas Yunianto Putro
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seulgi Lee
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Balaji Sambandam
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Vinod Mathew
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kumaresan Sakthiabirami
- Department of Prosthodontics, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jang-Yeon Hwang
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence: (J.-Y.H.); (J.K.)
| | - Jaekook Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence: (J.-Y.H.); (J.K.)
| |
Collapse
|
41
|
Liang H, Liu Y, Zuo F, Zhang C, Yang L, Zhao L, Li Y, Xu Y, Wang T, Hua X, Zhu Y, Li H. Fe 2(MoO 4) 3 assembled by cross-stacking of porous nanosheets enables a high-performance aluminum-ion battery. Chem Sci 2022; 13:14191-14197. [PMID: 36540814 PMCID: PMC9728561 DOI: 10.1039/d2sc05479e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/11/2022] [Indexed: 09/10/2024] Open
Abstract
Rechargeable aluminum-ion batteries have attracted increasing attention owing to the advantageous multivalent ion storage mechanism thus high theoretical capacity as well as inherent safety and low cost of using aluminum. However, their development has been largely impeded by the lack of suitable positive electrodes to provide both sufficient energy density and satisfactory rate capability. Here we report a candidate positive electrode based on ternary metal oxides, Fe2(MoO4)3, which was assembled by cross-stacking of porous nanosheets, featuring superior rate performance and cycle stability, and most importantly a well-defined discharge voltage plateau near 1.9 V. Specifically, the positive electrode is able to deliver reversible capacities of 239.3 mA h g-1 at 0.2 A g-1 and 73.4 mA h g-1 at 8.0 A g-1, and retains 126.5 mA h g-1 at 1.0 A g-1 impressively, after 2000 cycles. Furthermore, the aluminum-storage mechanism operating on Al3+ intercalation in this positive electrode is demonstrated for the first time via combined in situ and ex situ characterization studies and density functional theory calculations. This work not only explores potential positive electrodes for aluminum-based batteries but also sheds light on the fundamental charge storage mechanism within the electrode.
Collapse
Affiliation(s)
- Huanyu Liang
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Yongshuai Liu
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Fengkai Zuo
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Cunliang Zhang
- School of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Henan Key Laboratory of Bimolecular Recognition and Sensing, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| | - Li Yang
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Linyi Zhao
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Yuhao Li
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Yifei Xu
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Tiansheng Wang
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Xia Hua
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Yue Zhu
- Max Planck Institute for Solid State Research Heisenbergstraße 1 70569 Stuttgart Germany
| | - Hongsen Li
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| |
Collapse
|
42
|
Mai H, Le TC, Chen D, Winkler DA, Caruso RA. Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203899. [PMID: 36285802 PMCID: PMC9798988 DOI: 10.1002/advs.202203899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Indexed: 06/04/2023]
Abstract
Addressing climate change challenges by reducing greenhouse gas levels requires innovative adsorbent materials for clean energy applications. Recent progress in machine learning has stimulated technological breakthroughs in the discovery, design, and deployment of materials with potential for high-performance and low-cost clean energy applications. This review summarizes basic machine learning methods-data collection, featurization, model generation, and model evaluation-and reviews their use in the development of robust adsorbent materials. Key case studies are provided where these methods are used to accelerate adsorbent materials design and discovery, optimize synthesis conditions, and understand complex feature-property relationships. The review provides a concise resource for researchers wishing to use machine learning methods to rapidly develop effective adsorbent materials with a positive impact on the environment.
Collapse
Affiliation(s)
- Haoxin Mai
- Applied Chemistry and Environmental ScienceSchool of ScienceSTEM CollegeRMIT UniversityMelbourneVictoria3001Australia
| | - Tu C. Le
- School of EngineeringSTEM CollegeRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | - Dehong Chen
- Applied Chemistry and Environmental ScienceSchool of ScienceSTEM CollegeRMIT UniversityMelbourneVictoria3001Australia
| | - David A. Winkler
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- School of Biochemistry and ChemistryLa Trobe UniversityKingsbury DriveBundoora3042Australia
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Rachel A. Caruso
- Applied Chemistry and Environmental ScienceSchool of ScienceSTEM CollegeRMIT UniversityMelbourneVictoria3001Australia
| |
Collapse
|
43
|
Chen F, Chen X, Hao Q, Sun X, Li N. Elucidating the regulation mechanism of the photoelectrochemical effect of photocathodes on battery discharge voltages: a case study of aqueous zinc-iodine batteries. NANOSCALE 2022; 14:15269-15274. [PMID: 36218176 DOI: 10.1039/d2nr03794g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We demonstrated a method to increase the discharge voltages of zinc-iodine batteries by introducing a p-type semiconductor photocathode to trigger the photoelectrochemical reduction reaction of the cathode redox. Accordingly, the photogenerated voltage across the semiconductor/liquid junction interface would be added to the discharge voltages of zinc-iodine batteries, realizing a discharge voltage (1.49 V) exceeding the theoretical value (1.30 V) under illumination, which is equivalent to an energy density increase of 31% compared to that of zinc-iodine batteries under dark conditions.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Xiangtao Chen
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Qingfei Hao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Xudong Sun
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Na Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
44
|
Li Y, Qin J, Ding Y, Ma J, Das P, Liu H, Wu ZS, Bao X. Two-Dimensional Mn 3O 4 Nanosheets with Dominant (101) Crystal Planes on Graphene as Efficient Oxygen Catalysts for Ultrahigh Capacity and Long-Life Li–O 2 Batteries. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuejiao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing100049, P. R. China
| | - Jieqiong Qin
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou450002, P. R. China
| | - Yajun Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing100049, P. R. China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing100049, P. R. China
| | - Hanqing Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing100049, P. R. China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, P. R. China
| |
Collapse
|
45
|
Xu S, Yu W, Li W, Kong W, Zhu H, Liu S, Wen Z. High compact mechanical adhesion enables interfacial lithium-ion storage in cobalt phthalocyanine decorated tin oxide nanotubes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
46
|
Zhang D, Jiang B, Li C, Bian H, Liu Y, Bu Y, Zhang R, Zhang J. Facile Synthesis of Ni xCo 3-xS 4 Microspheres for High-Performance Supercapacitors and Alkaline Aqueous Rechargeable NiCo-Zn Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2994. [PMID: 36080031 PMCID: PMC9457657 DOI: 10.3390/nano12172994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical energy storage devices (EESDs) have caused widespread concern, ascribed to the increasing depletion of traditional fossil energy and environmental pollution. In recent years, nickel cobalt bimetallic sulfides have been regarded as the most attractive electrode materials for super-performance EESDs due to their relatively low cost and multiple electrochemical reaction sites. In this work, NiCo-bimetallic sulfide NixCo3-xS4 particles were synthesized in a mixed solvent system with different proportion of Ni and Co salts added. In order to improve the electrochemical performance of optimized Ni2.5Co0.5S4 electrode, the Ni2.5Co0.5S4 particles were annealed at 350 °C for 60 min (denoted as Ni2.5Co0.5S4-350), and the capacity and rate performance of Ni2.5Co0.5S4-350 was greatly improved. An aqueous NiCo-Zn battery was assembled by utilizing Ni2.5Co0.5S4-350 pressed onto Ni form as cathode and commercial Zn sheet as anode. The NiCo-Zn battery based on Ni2.5Co0.5S4-350 cathode electrode delivers a high specific capacity of 232 mAh g-1 at 1 A g-1 and satisfactory cycling performance (65% capacity retention after 1000 repeated cycles at 8 A g-1). The as-assembled NiCo-Zn battery deliver a high specific energy of 394.6 Wh kg-1 and long-term cycling ability. The results suggest that Ni2.5Co0.5S4-350 electrode has possible applications in the field of alkaline aqueous rechargeable electrochemical energy storage devices for supercapacitor and NiCo-Zn battery.
Collapse
Affiliation(s)
- Daojun Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Bei Jiang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Chengxiang Li
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Hao Bian
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yang Liu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingping Bu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Renchun Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jingchao Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
47
|
Siddiqui SET, Rahman MA, Kim JH, Sharif SB, Paul S. A Review on Recent Advancements of Ni-NiO Nanocomposite as an Anode for High-Performance Lithium-Ion Battery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2930. [PMID: 36079968 PMCID: PMC9457991 DOI: 10.3390/nano12172930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Recently, lithium-ion batteries (LIBs) have been widely employed in automobiles, mining operations, space applications, marine vessels and submarines, and defense or military applications. As an anode, commercial carbon or carbon-based materials have some critical issues such as insufficient charge capacity and power density, low working voltage, deadweight formation, short-circuiting tendency initiated from dendrite formation, device warming up, etc., which have led to a search for carbon alternatives. Transition metal oxides (TMOs) such as NiO as an anode can be used as a substitute for carbon material. However, NiO has some limitations such as low coulombic efficiency, low cycle stability, and poor ionic conductivity. These limitations can be overcome through the use of different nanostructures. This present study reviews the integration of the electrochemical performance of binder involved nanocomposite of NiO as an anode of a LIB. This review article aims to epitomize the synthesis and characterization parameters such as specific discharge/charge capacity, cycle stability, rate performance, and cycle ability of a nanocomposite anode. An overview of possible future advances in NiO nanocomposites is also proposed.
Collapse
Affiliation(s)
- Safina-E-Tahura Siddiqui
- Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh
| | - Md. Arafat Rahman
- Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh
| | - Jin-Hyuk Kim
- Clean Energy R&D Department, Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Ip-jang-myeon, Seobuk-gu, Cheonan-si 31056, Chungcheongnam-do, Korea
| | - Sazzad Bin Sharif
- Department of Mechanical Engineering, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh
| | - Sourav Paul
- Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh
| |
Collapse
|
48
|
Kitta M, Kataoka R, Kojima T. Analytical transmission electron microscopy investigation of electrochemically Li+―Na+ substituted LiNi0.5Mn1.5O4 electrode. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Rendale SS, Bhat T, Patil P. MnCo2O4 Nanomaterials Based Electrodes for Supercapacitors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Koutani M, Hayashi E, Kamata K, Hara M. Synthesis and Aerobic Oxidation Catalysis of Mesoporous Todorokite-Type Manganese Oxide Nanoparticles by Crystallization of Precursors. J Am Chem Soc 2022; 144:14090-14100. [PMID: 35860845 DOI: 10.1021/jacs.2c02308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pursuit of a high surface area while maintaining high catalytic performance remains a challenge due to a trade-off relationship between these two features in some cases. In this study, mesoporous todorokite-type manganese oxide (OMS-1) nanoparticles with high specific surface areas were synthesized in one step by a new synthesis approach involving crystallization (i.e., solid-state transformation) of a precursor produced by a redox reaction between MnO4- and Mn2+ reagents. The use of a low-crystallinity precursor with small particles is essential to achieve this solid-state transformation into OMS-1 nanoparticles. The specific surface area reached up to ca. 250 m2 g-1, which is much larger than those (13-185 m2 g-1) for Mg-OMS-1 synthesized by previously reported methods including multistep synthesis or dissolution/precipitation processes. Despite ultrasmall nanoparticles, a linear correlation between the catalytic reaction rates of OMS-1 and the surface areas was observed without a trade-off relationship between particle size and catalytic performance. These OMS-1 nanoparticles exhibited the highest catalytic activity among the Mn-based catalysts tested for the oxidation of benzyl alcohol and thioanisole with molecular oxygen (O2) as the sole oxidant, including highly active β-MnO2 nanoparticles. The present OMS-1 nanomaterial could also act as a recyclable heterogeneous catalyst for the aerobic oxidation of various aromatic alcohols and sulfides under mild reaction conditions. The mechanistic studies showed that alcohol oxidation proceeds with oxygen species caused by the solid, and the high surface area of OMS-1 significantly contributes to an enhancement of the catalytic activity for aerobic oxidation.
Collapse
Affiliation(s)
- Maki Koutani
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|