1
|
Wang C, Chen D, Wei Z, Tan J, Wu C, Zhang X. Metal-Catalyzed Abiotic Cleavage of C═C Bonds for Effective Fluorescence Imaging of Cu(II) and Fe(III) in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412407. [PMID: 39784410 DOI: 10.1002/advs.202412407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Imaging abnormal copper/iron with effective fluorescent tools is essential to comprehensively put insight into many pathological events. However, conventional coordination-based detection is mired in the fluorescence quenching induced by paramagnetic Cu(II)/Fe(III). Moreover, the strong chelating property of the probe will consume dissociative metal ions and inevitably interfere with the physiological microenvironment. Here, a new strategy is developed by employing this aberrant Cu(II)/Fe(III) to catalyze bond cleavage for fluorescent imaging of them. A short series of near-infrared fluorescent molecules (NIRB1-NIRB6) is devised as substrates, wherein the specific C═C bonds can be effectively cleaved to activate red fluorophore by Cu(II)/Fe(III) catalyzing. Representatively, NIRB1 is applied for fluorescent imaging of Cu(II)/Fe(III) in living cells, zebrafish, and Alzheimer's disease (AD)-afflicted mouse brains which is of significance to monitor metal safety. The successful cleavage of C═C bonds catalyzed by Cu(II)/Fe(III) enriches the application of abiotic bond cleavage reactions in metal detection, and may also inspire the development of fluorescent tools for the future diagnosis and therapy of diseases.
Collapse
Affiliation(s)
- Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Dandan Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zixiang Wei
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Jingyun Tan
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
2
|
Goudarzi S, Sajjadi M, Ghaffarinejad A. Green preparation of reusable Pd@magnetic lignosulfonate nanocomposite for hydrogen evolution reaction in all pHs. Int J Biol Macromol 2024; 287:138656. [PMID: 39667467 DOI: 10.1016/j.ijbiomac.2024.138656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
In this study, palladium nanoparticles (Pd NPs) were successfully synthesized and supported on a cost-effective, eco-friendly magnetic lignosulfonate matrix using Hibiscus Rosasinensis L. leaf extract as a natural reducing and stabilizing agent (Pd@Fe₃O₄-lignosulfonate). The magnetic lignosulfonate prevented the aggregation of Pd NPs, enhanced the active surface area, and improved the hydrophilicity of the modified carbon paste electrode (CPE), thus boosting hydrogen production efficiency. The Pd@Fe₃O₄-lignosulfonate was incorporated into the CPE at different weight percentages (1.5, 2.5, 5, 10, and 15 %), and employed as an efficient electrocatalyst for the hydrogen evolution reaction (HER) across all pH conditions (0.5 M H₂SO₄, 1 M NaOH, and phosphate buffer at pH 7). Electrochemical techniques such as linear sweep voltammetry (LSV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), and chronopotentiometry (CP) were employed to assess the catalyst's performance. Optimal hydrogen generation was achieved at 10 wt% Pd@Fe₃O₄-lignosulfonate/CPE, yielding an overpotential of -239 mV (vs. RHE) at a current density of 10 mA. cm-2 and a Tafel slope of -62 mV. dec-1 under acidic conditions. This work positions the low-loaded Pd NPs on magnetic lignosulfonate as a viable alternative to traditional noble metal catalysts, contributing to advancements in green chemistry and sustainable energy solutions.
Collapse
Affiliation(s)
- Sheyda Goudarzi
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Mohaddeseh Sajjadi
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| |
Collapse
|
3
|
Tan J, Wang C, Hu Z, Zhang X. Wash‐free fluorescent tools based on organic molecules: Design principles and biomedical applications. EXPLORATION 2024. [DOI: 10.1002/exp.20230094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/28/2024] [Indexed: 01/05/2025]
Abstract
AbstractFluorescence‐assisted tools based on organic molecules have been extensively applied to interrogate complex biological processes in a non‐invasive manner with good sensitivity, high resolution, and rich contrast. However, the signal‐to‐noise ratio is an essential factor to be reckoned with during collecting images for high fidelity. In view of this, the wash‐free strategy is proven as a promising and important approach to improve the signal‐to‐noise ratio, thus a thorough introduction is presented in the current review about wash‐free fluorescent tools based on organic molecules. Firstly, generalization and summarization of the principles for designing wash‐free molecular fluorescent tools (WFTs) are made. Subsequently, to make the thought of molecule design more legible, a wash‐free strategy is highlighted in recent studies from four diverse but tightly binding aspects: (1) special chemical structures, (2) molecular interactions, (3) bio‐orthogonal reactions, (4) abiotic reactions. Meanwhile, biomedical applications including bioimaging, biodetection, and therapy, are ready to be accompanied by. Finally, the prospects for WFTs are elaborated and discussed. This review is a timely conclusion about wash‐free strategy in the fluorescence‐guided biomedical applications, which may bring WFTs to the forefront and accelerate their extensive applications in biology and medicine.
Collapse
Affiliation(s)
- Jingyun Tan
- Faculty of Health Sciences University of Macau Macau China
| | - Chunfei Wang
- Faculty of Health Sciences University of Macau Macau China
- Department of Pharmacology School of Pharmacy Wannan Medical College Wuhu China
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology (IFM) Linköping University Linköping Sweden
| | - Xuanjun Zhang
- Faculty of Health Sciences University of Macau Macau China
- MOE Frontiers Science Centre for Precision Oncology University of Macau Macau China
| |
Collapse
|
4
|
Chen XF, Song Y, Liu Y, Zhou Y, Zhao X, Yang Z. A near-infrared emitting "off-on" fluorescent probe for bioimaging of Pd(Ⅱ) ions in living cells and mice. Anal Chim Acta 2024; 1289:342174. [PMID: 38245197 DOI: 10.1016/j.aca.2023.342174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND The surging consumption of palladium in modern industry has given rise to its accumulation in the ecosystem, posing conspicuous toxicity to aquatic organisms and human health. The investigation of palladium in biological systems is highly demanded for the in-depth understanding of its dynamics and behaviors. Fluorescence imaging serves as a powerful approach to assess palladium species in biological systems, and currently most of the sensing probes are applicable to living cells. Effective tracking of palladium species in living organisms is challenging, which requires sufficient hydrophilicity and imaging depth of the probes. RESULTS Based on an intramolecular charge transfer (ICT) mechanism, a distyryl boron dipyrromethene (BODIPY) derivative (DISBDP-Pd) has been prepared for the near-infrared (NIR) fluorescence imaging of Pd2+ ions. Two additional methoxy triethylene glycol (TEG) chains could serve as flexible and hydrophilic moieties to enhance the aqueous solubility and cell permeability of the extended conjugate. Solution studies revealed that DISBDP-Pd exhibited a NIR fluorescence enhancement signal exclusively to Pd2+ ions (detection limit as low as 0.85 ppb) with negligible interference from Pd0 species and other closely related metal ions. Computational calculations have been performed to rationalize the binding mode and the mechanism of action. Fluorescence imaging assays have been conducted on A549 human non-small cell lung carcinoma cells and mouse models. Exhibiting negligible cytotoxicity, DISBDP-Pd demonstrated concentration-related fluorescence enhancement signals in response to Pd2+ ions in living cells and mice. SIGNIFICANCE DISBDP-Pd exhibits advantages over many small molecule palladium probes in terms of satisfactory aqueous solubility, high sensitivity and selectivity, and biocompatible NIR emission property, which are particularly favorable for the sensing application in biological environments. The design strategy of this probe can potentially be adopted for the functionalization of other BODIPY probes implemented for NIR fluorescence bioimaging.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Yu Song
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Yiling Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China; Guangzhou Laboratory, Guangzhou, 510320, People's Republic of China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
5
|
Tan Y, Pierrard F, Frédérick R, Riant O. Enhancing Tsuji-Trost deallylation in living cells with an internal-nucleophile coumarin-based probe. RSC Adv 2024; 14:5492-5498. [PMID: 38352674 PMCID: PMC10862660 DOI: 10.1039/d3ra08938j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
In recent years, bioorthogonal uncaging reactions have been developed to proceed efficiently under physiological conditions. However, limited progress has been made in the development of protecting groups combining stability under physiological settings with the ability to be quickly removed via bioorthogonal catalysis. Herein, we present a new water-soluble coumarin-derived probe bearing an internal nucleophilic group capable of promoting Tsuji-Trost deallylation under palladium catalysis. This probe can be cleaved by a bioorthogonal palladium complex at a faster rate than the traditional probe, namely N-Alloc-7-amino-4-methylcoumarin. As the deallylation process proved to be efficient in mammalian cells, we envision that this probe may find applications in chemical biology, bioengineering, and medicine.
Collapse
Affiliation(s)
- Yonghua Tan
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain Louvain-la-Neuve 1348 Belgium
- Louvain Drug Research Institute (LDRI), Université catholique de Louvain Brussels B-1200 Belgium
| | - François Pierrard
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain Louvain-la-Neuve 1348 Belgium
- Louvain Drug Research Institute (LDRI), Université catholique de Louvain Brussels B-1200 Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Université catholique de Louvain Brussels B-1200 Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain Louvain-la-Neuve 1348 Belgium
| |
Collapse
|
6
|
Xiao ZY, Tu BL, Hua SH, Wang F, Tang LJ, Dong WR, Jiang JH. Near-infrared fluorogenic imaging of carbon monoxide in live cells using palladium-mediated carbonylation. Chem Commun (Camb) 2024; 60:1420-1423. [PMID: 38204408 DOI: 10.1039/d3cc04523d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Here we develop a near infrared (NIR) fluorogenic probe for carbon monoxide (CO) detection and imaging based on palladium-mediated carbonylation using a NIR boron-dipyrromethene difluoride as a fluorophore and tetraethylene glycols as aqueous moieties. The probe is utilized to image exogenous and endogenous CO under different stimulated conditions in live cells.
Collapse
Affiliation(s)
- Zhi-Yi Xiao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Bing-Lun Tu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Shan-Hong Hua
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Wan-Rong Dong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
7
|
Pivovarenko VG, Klymchenko AS. Fluorescent Probes Based on Charge and Proton Transfer for Probing Biomolecular Environment. CHEM REC 2024; 24:e202300321. [PMID: 38158338 DOI: 10.1002/tcr.202300321] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Fluorescent probes for sensing fundamental properties of biomolecular environment, such as polarity and hydration, help to study assembly of lipids into biomembranes, sensing interactions of biomolecules and imaging physiological state of the cells. Here, we summarize major efforts in the development of probes based on two photophysical mechanisms: (i) an excited-state intramolecular charge transfer (ICT), which is represented by fluorescent solvatochromic dyes that shift their emission band maximum as a function of environment polarity and hydration; (ii) excited-state intramolecular proton transfer (ESIPT), with particular focus on 5-membered cyclic systems, represented by 3-hydroxyflavones, because they exhibit dual emission sensitive to the environment. For both ICT and ESIPT dyes, the design of the probes and their biological applications are summarized. Thus, dyes bearing amphiphilic anchors target lipid membranes and report their lipid organization, while targeting ligands direct them to specific organelles for sensing their local environment. The labels, amino acid and nucleic acid analogues inserted into biomolecules enable monitoring their interactions with membranes, proteins and nucleic acids. While ICT probes are relatively simple and robust environment-sensitive probes, ESIPT probes feature high information content due their dual emission. They constitute a powerful toolbox for addressing multitude of biological questions.
Collapse
Affiliation(s)
- Vasyl G Pivovarenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033, Kyiv, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI SysChem, Université de Strasbourg, 67401, Illkirch, France
| |
Collapse
|
8
|
Xu X, Qiu K, Tian Z, Aryal C, Rowan F, Chen R, Sun Y, Diao J. Probing the dynamic crosstalk of lysosomes and mitochondria with structured illumination microscopy. Trends Analyt Chem 2023; 169:117370. [PMID: 37928815 PMCID: PMC10621629 DOI: 10.1016/j.trac.2023.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Structured illumination microscopy (SIM) is a super-resolution technology for imaging living cells and has been used for studying the dynamics of lysosomes and mitochondria. Recently, new probes and analyzing methods have been developed for SIM imaging, enabling the quantitative analysis of these subcellular structures and their interactions. This review provides an overview of the working principle and advances of SIM, as well as the organelle-targeting principles and types of fluorescence probes, including small molecules, metal complexes, nanoparticles, and fluorescent proteins. Additionally, quantitative methods based on organelle morphology and distribution are outlined. Finally, the review provides an outlook on the current challenges and future directions for improving the combination of SIM imaging and image analysis to further advance the study of organelles. We hope that this review will be useful for researchers working in the field of organelle research and help to facilitate the development of SIM imaging and analysis techniques.
Collapse
Affiliation(s)
- Xiuqiong Xu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Chinta Aryal
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Fiona Rowan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
9
|
Choi MG, Han J, Ahn S, Chang SK. A colorimetric and fluorescent signaling probe for assaying Pd 2+ in practical samples. RSC Adv 2023; 13:31962-31968. [PMID: 37920198 PMCID: PMC10618942 DOI: 10.1039/d3ra05549c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
We developed an optical signaling probe to detect Pd2+ ions in Pd-containing catalyst and drug candidate. The Pd2+ signaling probe (Res-DT) was readily prepared by reacting the versatile fluorochrome resorufin with phenyl chlorodithioformate. In a phosphate-buffered saline solution (pH 7.4) containing sodium dodecyl sulfate (SDS) as a signal-boosting surfactant, Res-DT exhibited a pronounced colorimetric response with a chromogenic yellow to magenta shift, leading to a substantial increase in the fluorescence intensity. The Pd2+ signaling performance of Res-DT was attributed to the Pd2+-promoted hydrolysis of the dithioate moiety. The probe displayed high selectivity toward Pd2+ ions and remained unaffected by commonly encountered coexisting components. Moreover, the detection limit of Res-DT for Pd2+ ions was 10 nM, and the signaling was achieved within 7 min. Furthermore, to demonstrate the real-world applicability of Res-DT, a Pd2+ assay was performed in Pd-containing catalyst and drug candidate using an office scanner as an easily accessible measurement device. Our results highlight the prospects of Res-DT as a tool to detect Pd2+ ions in various practical samples, with potential applications in catalysis, medicine, and environmental science.
Collapse
Affiliation(s)
- Myung Gil Choi
- Department of Chemistry, Chung-Ang University Seoul 06974 Republic of Korea +82 2 825 4736 +82 2 820 5199
| | - Juyoung Han
- Department of Chemistry, Chung-Ang University Seoul 06974 Republic of Korea +82 2 825 4736 +82 2 820 5199
| | - Sangdoo Ahn
- Department of Chemistry, Chung-Ang University Seoul 06974 Republic of Korea +82 2 825 4736 +82 2 820 5199
| | - Suk-Kyu Chang
- Department of Chemistry, Chung-Ang University Seoul 06974 Republic of Korea +82 2 825 4736 +82 2 820 5199
| |
Collapse
|
10
|
Goswami N, Naithani S, Mangalam J, Goswami T, Dubey R, Kumar P, Kumar P, Kumar S. Fluorescent and chromogenic organic probes to detect group 10 metal ions: design strategies and sensing applications. Dalton Trans 2023; 52:14704-14732. [PMID: 37750386 DOI: 10.1039/d3dt01723k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Group 10 metals including Ni, Pd and Pt have been extensively applied in various essential aspects of human social life, material science, industrial manufactures, medicines and biology. The ionic forms of these metals are involved in several biologically important processes due to their strong binding capability towards different biomolecules. However, the mishandling or overuse of such metals has been linked to serious contamination of our ecological system, more specifically in soil and water bodies with acute consequences. Therefore, the detection of group 10 metal ions in biological as well as environmental samples is of huge significance from the human health point of view. Related to this, considerable efforts are underway to develop adequately efficient and facile methods to achieve their selective detection. Optical sensing of metal ions has gained increasing attention of researchers, particularly in the environmental and biological settings. Innovatively designed optical probes (fluorescent or colorimetric) are usually comprised of three basic components: an explicitly tailored receptor unit, a signalling unit and a clearly defined reporter unit. This review deals with the recent progress in the design and fabrication of fluorescent or colorimetric organic sensors for the detection of group 10 metal ions (Ni(II), Pd(II) and Pt(II)), with attention to the general aspects for design of such sensors.
Collapse
Affiliation(s)
- Nidhi Goswami
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sudhanshu Naithani
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Jimmy Mangalam
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Ritesh Dubey
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Pramod Kumar
- Department of Chemistry, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India
| | - Pankaj Kumar
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sushil Kumar
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
11
|
Jian Y, Li H, Luo X, An Y, Yang M, Gao J, Luo J, Li X, Lv J, Yuan Z. A sensitive ratiometric fluorescence probe with a large spectral shift for sensing and imaging of palladium. Analyst 2023; 148:4195-4202. [PMID: 37534860 DOI: 10.1039/d3an01158e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Palladium (Pd) is an important heavy metal with excellent catalytic properties and widely used in organic chemistry and the pharmaceutical industry. Efficient and convenient analytical techniques for Pd are urgently needed due to the hazardous effects of Pd on the environment and human health. Herein, we have developed five new ratiometric probes for the selective detection of Pd0 based on the Pd-catalyzed Tsuji-Trost reaction. Among them, the F-substituted probe PF-Pd showed the largest spectral shift (148 nm) and the most sensitive response (detection limit 2.11 nM). PF-Pd was employed to determine Pd0 in tap water or lake water samples, which presented satisfactory accuracy and precision. In addition, profiting from its distinct colorimetric response, visual detection of Pd0 was performed on PF-Pd loaded test strips or in field soil samples. Furthermore, fluorescence imaging of living 4T1 cells demonstrated that PF-Pd is suitable for imaging of intracellular Pd0. The good analytical performance of PF-Pd may enable it to be widely used in the convenient, rapid, sensitive and selective detection of Pd0 in environmental or biological analysis.
Collapse
Affiliation(s)
- Yue Jian
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Hongyu Li
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Xue Luo
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Yan An
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Mingyan Yang
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Jie Gao
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Junjun Luo
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Xinmin Li
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Jiajia Lv
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| | - Zeli Yuan
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, China
| |
Collapse
|
12
|
Chasteen JL, Padilla-Coley S, Li DH, Smith BD. Palladium responsive liposomes for triggered release of aqueous contents. Bioorg Med Chem Lett 2023; 84:129215. [PMID: 36870622 PMCID: PMC10023436 DOI: 10.1016/j.bmcl.2023.129215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Palladium (Pd) is a promising metal catalyst for novel bioorthogonal chemistry and prodrug activation. This report describes the first example of palladium responsive liposomes. The key molecule is a new caged phospholipid called Alloc-PE that forms stable liposomes (large unilamellar vesicles, ∼220 nm diameter). Liposome treatment with PdCl2 removes the chemical cage, liberates membrane destabilizing dioleoylphosphoethanolamine (DOPE), and triggers liposome leakage of encapsulated aqueous contents. The results indicate a path towards liposomal drug delivery technologies that exploit transition metal triggered leakage.
Collapse
Affiliation(s)
- Jordan L Chasteen
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Sasha Padilla-Coley
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Dong-Hao Li
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
13
|
Lim SY, Low ZE, Tan RPW, Lim ZC, Ang WH, Kubota T, Yamanaka M, Pang S, Simsek E, Li SFY. Single-cell and bulk ICP-MS investigation of accumulation patterns of Pt-based metallodrugs in cisplatin-sensitive and -resistant cell models. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6769858. [PMID: 36271844 DOI: 10.1093/mtomcs/mfac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/15/2022] [Indexed: 12/14/2022]
Abstract
In research enabling preclinical development and attaining a deeper understanding of the behavior of metallodrugs in cancer cells with acquired resistance, intracellular Pt accumulation could be considered an important biomarker and analytical focus. In this work, Pt accumulation patterns in terms of the number of cells and Pt mass in single cells were precisely defined by using inductively coupled plasma-mass spectrometry (ICP-MS) operating in a fast time-resolved analysis mode. This technique is otherwise known as single-cell (SC)-ICP-MS. By applying the nascent and validated SC-ICP-MS technique, comparisons across three Pt drugs (cisplatin, carboplatin, and oxaliplatin) in the A2780 and A2780cis ovarian cancer cell models could be made. Additional roles of transporters on top of passive diffusion and the drugs' bioactivity could be postulated. The SC-ICP-MS-based observations also served as a cross-validation point to augment preexisting research findings on Pt-resistance mechanisms. Conjectures regarding S and Fe metabolism were also derived based on an additional and direct ICP-MS analysis of endogenous elements. Overall, our work not only confirms the utility of SC-ICP-MS in chemotherapeutic research, but also provided insights into further ICP-MS-based analytical capacities to be developed.
Collapse
Affiliation(s)
- Si Ying Lim
- NUS Graduate School's Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zhi En Low
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Regina Pei Woon Tan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zhi Chiaw Lim
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wee Han Ang
- NUS Graduate School's Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Tetsuo Kubota
- Agilent Technologies Japan Ltd., 9-1 Takakura-machi, Hachioji-shi, Tokyo 192-8510, Japan
| | - Michiko Yamanaka
- Agilent Technologies Japan Ltd., 9-1 Takakura-machi, Hachioji-shi, Tokyo 192-8510, Japan
| | - Steven Pang
- Agilent Technologies Singapore Pte. Ltd., Singapore768923, Singapore
| | - Erhan Simsek
- Agilent Technologies Singapore Pte. Ltd., Singapore768923, Singapore
| | - Sam Fong Yau Li
- NUS Graduate School's Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
14
|
Choi MG, Seo JY, Cho EJ, Chang SK. Colorimetric analysis of palladium using thiocarbamate hydrolysis and its application for detecting residual palladium in drugs. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Liu Q, Liu C, Cai S, He S, Zhao L, Zeng X, Gong J. A highly sensitive sensor for colorimetric detection of palladium(II) in lysosomes and its applications. Dalton Trans 2022; 51:3116-3121. [PMID: 35137740 DOI: 10.1039/d1dt03900h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Considering the scarcity of palladium ion probes with subcellular organelle targeting, especially probes with near-infrared (NIR) emission wavelength fluorophores, our group has been working to overcome this problem and looking forward to providing potential practical tools for exploring the toxicity of palladium ions at the subcellular level. In this paper, a novel colorimetric and NIR fluorescent probe, BHCy-Pd, for the specific detection of palladium ions (Pd2+) in lysosomes via an internal charge-transfer (ICT) mechanism was designed and synthesized. As expected, BHCy-Pd exhibited a rapid, selective, and sensitive response for palladium with an ultralow limit of detection at 5.9 nM, accompanied by a distinct color change from purple to blue. Furthermore, BHCy-Pd can be made into a simple test strip for rapid and easy detection of Pd2+ in practical applications. Importantly, BHCy-Pd is capable of specific distribution in lysosomes, and thus can detect Pd2+ in real-time, thereby providing a potential tool for studying the cytotoxicity of Pd2+ ions at the subcellular level.
Collapse
Affiliation(s)
- Qiuchen Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China. .,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China.
| | - Songtao Cai
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China.
| | - Liancheng Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China. .,School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China. .,School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jin Gong
- School of Pharmacy, Weifang Medical University, Weifang, 261053, P. R. China. .,Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China.
| |
Collapse
|
16
|
Gai F, Ding G, Wang X, Zuo Y. Functional Polysiloxane Enables Visualization of the Presence of Carbon Monoxide in Biological Systems and Films. Anal Chem 2021; 93:12899-12905. [PMID: 34523925 DOI: 10.1021/acs.analchem.1c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As an essential gasotransmitter, carbon monoxide (CO) had gradually become a research hotspot in that it possessed important physiological functions and unique pharmacological properties. However, to date, no report has focused on the topic of detecting CO both in vivo and using films. To open up a new field of CO probes, for the first time, we designed a probe (PMAH-CO) that showed a distinctive ratio emission characteristic and displayed the quantitative distribution of CO in HeLa cells and zebrafish with a higher signal-to-noise ratio. Meanwhile, the fluorescent polysiloxane-based film (PMF) containing PMAH-CO exhibited an excellent response to CO. Due to the addition of the Si-O bond, the probe exhibited a broad transparency in the visible light range and had excellent photostability. Moreover, the probe was economically viable, easy to handle, and suitable for biological research. Hence, PMAH-CO and PMF would open up the road to broaden the application of silicone materials in the field of fluorescence imaging.
Collapse
Affiliation(s)
- Fengqing Gai
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Guowei Ding
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Xiaoni Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
17
|
|
18
|
Schlagintweit JF, Jakob CHG, Meighen-Berger K, Gronauer TF, Weigert Muñoz A, Weiß V, Feige MJ, Sieber SA, Correia JDG, Kühn FE. Fluorescent palladium(II) and platinum(II) NHC/1,2,3-triazole complexes: antiproliferative activity and selectivity against cancer cells. Dalton Trans 2021; 50:2158-2166. [PMID: 33496310 DOI: 10.1039/d0dt04114a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescent Pd(ii) and Pt(ii) complexes bearing 4-methylene-7-methoxycoumarin (MMC) and 2,6-diispropylphenyl (Dipp) substituted NHC/1,2,3-triazole hybrid ligands are described. Depending on the reaction conditions two different ligand coordination modes are observed, i.e., bidentate solely coordinating via NHCs or tetradentate coordinating via NHCs and 1,2,3-triazoles. All Dipp substituted complexes show antiproliferative activity against cervix (HeLa) and breast (MCF-7) human carcinoma cells. The activity significantly depends on the coordination mode, with the tetradentate motif being notably more effective (HeLa: IC50 = 3.9 μM to 4.7 μM; MCF-7: IC50 = 2.07 μM to 2.35 μM). Amongst the MMC series, only the Pd(ii) complex featuring the bidentate coordination mode is active against HeLa (IC50 = 6.1 μM). In contrast to its structurally related Dipp derivative (SI = 0.6), it shows a high selectivity for HeLa (SI > 16) compared to healthy skin cells (HaCaT). According to fluorescence microscopy, this compound is presumably located in late endosomes or lysosomes.
Collapse
Affiliation(s)
- Jonas F Schlagintweit
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching bei München, Germany.
| | - Christian H G Jakob
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching bei München, Germany.
| | - Kevin Meighen-Berger
- Cellular Protein Biochemistry, Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching bei München, Germany
| | - Thomas F Gronauer
- Chair of Organic Chemistry II, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching bei München, Germany
| | - Angela Weigert Muñoz
- Chair of Organic Chemistry II, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching bei München, Germany
| | - Vanessa Weiß
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching bei München, Germany. and Ausbildungszentrum der Technischen Universität München, Lichtenbergstraße 4, D-85748 Garching bei München, Germany
| | - Matthias J Feige
- Cellular Protein Biochemistry, Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching bei München, Germany
| | - Stephan A Sieber
- Chair of Organic Chemistry II, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching bei München, Germany
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional N°10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - Fritz E Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching bei München, Germany.
| |
Collapse
|
19
|
Murale DP, Haque MM, Hong KT, Lee J. A Pyridinyl‐Pyrazole
BODIPY
as Lipid Droplets Probe. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Dhiraj P. Murale
- Molecular Recognition Research Center Korea Institute of Science and Technology (KIST) Hwarang‐ro 14‐gil, Seongbuk‐gu, Seoul South Korea
| | - Md Mamunul Haque
- Molecular Recognition Research Center Korea Institute of Science and Technology (KIST) Hwarang‐ro 14‐gil, Seongbuk‐gu, Seoul South Korea
| | - Kyung Tae Hong
- Molecular Recognition Research Center Korea Institute of Science and Technology (KIST) Hwarang‐ro 14‐gil, Seongbuk‐gu, Seoul South Korea
- Bio‐Med Division KIST‐School UST, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul South Korea
| | - Jun‐Seok Lee
- Molecular Recognition Research Center Korea Institute of Science and Technology (KIST) Hwarang‐ro 14‐gil, Seongbuk‐gu, Seoul South Korea
- Bio‐Med Division KIST‐School UST, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul South Korea
| |
Collapse
|
20
|
Jakob CHG, Dominelli B, Schlagintweit JF, Fischer PJ, Schuderer F, Reich RM, Marques F, Correia JDG, Kühn FE. Improved Antiproliferative Activity and Fluorescence of a Dinuclear Gold(I) Bisimidazolylidene Complex via Anthracene-Modification. Chem Asian J 2020; 15:4275-4279. [PMID: 33405335 PMCID: PMC7756789 DOI: 10.1002/asia.202001104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Indexed: 12/26/2022]
Abstract
A straightforward modification route to obtain mono- and di-substituted anthroyl ester bridge functionalized dinuclear Au(I) bis-N-heterocyclic carbene complexes is presented. The functionalization can be achieved starting from a hydroxyl-functionalized ligand precursor followed by transmetallation of the corresponding Ag complex or via esterification of the hydroxyl-functionalized gold complex. The compounds are characterized by NMR-spectroscopy, ESI-MS, elemental analysis and SC-XRD. The mono-ester Au complex shows quantum yields around 18%. In contrast, the corresponding syn-di-ester Au complex, exhibits significantly lower quantum yields of around 8%. Due to insufficient water solubility of the di-ester, only the mono-ester complex has been tested regarding its antiproliferative activity against HeLa- (cervix) and MCF-7- (breast) cancer cell lines and a healthy fibroblast cell line (V79). IC50 values of 7.26 μM in the HeLa cell line and 7.92 μM in the MCF-7 cell line along with selectivity indices of 8.8 (HeLa) and 8.0 (MCF-7) are obtained. These selectivity indices are significantly higher than those obtained for the reference drugs cisplatin or auranofin.
Collapse
Affiliation(s)
- Christian H. G. Jakob
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Bruno Dominelli
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Jonas F. Schlagintweit
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Pauline J. Fischer
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Franziska Schuderer
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Robert M. Reich
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior TécnicoUniversidade de LisboaCampus Tecnológico e Nuclear, Estrada Nacional N° 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior TécnicoUniversidade de LisboaCampus Tecnológico e Nuclear, Estrada Nacional N° 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - Fritz E. Kühn
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| |
Collapse
|
21
|
Chen XF, Ma Q, Wang Z, Xie Z, Song Y, Ma Y, Yang Z, Zhao X. A Boron Dipyrromethene-Based Fluorescence 'OFF-ON' Probe for Sensitive and Selective Detection of Palladium(II) Ions and Its Application in Live Cell Imaging. Chem Asian J 2020; 15:4104-4112. [PMID: 33107211 DOI: 10.1002/asia.202001144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/23/2020] [Indexed: 11/10/2022]
Abstract
A novel boron dipyrromethene (BODIPY)-based fluorescent probe BDP-Pd was designed and synthesized. Upon coordination with Pd2+ , the emission of the probe at 508 nm significantly increased, showing an 'OFF-ON' fluorescence response. The complexation of BDP-Pd with Pd2+ in both acetonitrile and aqueous solution were then studied by absorption and fluorescence spectra. The binding stoichiometry between the probe and Pd2+ was found to be 1 : 2, and the binding constant was determined to be 8.5×1010 M-2 and 8.2×1010 M-2 in acetonitrile and aqueous solution, respectively. The probe exhibited a detection limit as low as 0.72 ppb toward Pd2+ with no obvious interference from up to 21 species of common metal ions, suggesting BDP-Pd as a sensitive and selective fluorescent probe for Pd2+ detection. The fast fluorescence 'OFF-ON' phenomenon of the probe upon coordination with Pd2+ ions could be easily observed by a hand-hold UV lamp under naked eye in solution as well as on homemade test trips. Density functional theory (DFT) calculations were carried out to give the optimized structure of complex BDP-Pd : 2Pd2+ and rationalize the detection mechanism through a prohibited intramolecular photoinduced electron transfer (PET) process. The bio-imaging application of the probe was investigated and it showed excellent cell permeability for fluorescent imaging of Pd2+ ions in A549 human non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, China National Analytical Center, Guangdong Academy of Sciences, Guangzhou, 510070, P. R. China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zhoulang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zeqiang Xie
- School of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yu Song
- Basic Medical College of Beihua University, Jilin, 132013, P. R. China
| | - Yanfang Ma
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, China National Analytical Center, Guangdong Academy of Sciences, Guangzhou, 510070, P. R. China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, China National Analytical Center, Guangdong Academy of Sciences, Guangzhou, 510070, P. R. China
| |
Collapse
|
22
|
Williams JM, Wanner AK, Koide K. Catalysis-Based Fluorometric Method for Trace Palladium Detection with Improved Convenience. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jessica M. Williams
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Annelise K. Wanner
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
23
|
Pham D, Deter CJ, Reinard MC, Gibson GA, Kiselyov K, Yu W, Sandulache VC, St. Croix CM, Koide K. Using Ligand-Accelerated Catalysis to Repurpose Fluorogenic Reactions for Platinum or Copper. ACS CENTRAL SCIENCE 2020; 6:1772-1788. [PMID: 33145414 PMCID: PMC7596870 DOI: 10.1021/acscentsci.0c00676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 05/03/2023]
Abstract
The development of a fluorescent probe for a specific metal has required exquisite design, synthesis, and optimization of fluorogenic molecules endowed with chelating moieties with heteroatoms. These probes are generally chelation- or reactivity-based. Catalysis-based fluorescent probes have the potential to be more sensitive; however, catalytic methods with a biocompatible fluorescence turn-on switch are rare. Here, we have exploited ligand-accelerated metal catalysis to repurpose known fluorescent probes for different metals, a new approach in probe development. We used the cleavage of allylic and propargylic ethers as platforms that were previously designed for palladium. After a single experiment that combinatorially examined >800 reactions with two variables (metal and ligand) for each ether, we discovered a platinum- or copper-selective method with the ligand effect of specific phosphines. Both metal-ligand systems were previously unknown and afforded strong signals owing to catalytic turnover. The fluorometric technologies were applied to geological, pharmaceutical, serum, and live cell samples and were used to discover that platinum accumulates in lysosomes in cisplatin-resistant cells in a manner that appears to be independent of copper distribution. The use of ligand-accelerated catalysis may present a new blueprint for engineering metal selectivity in probe development.
Collapse
Affiliation(s)
- Dianne Pham
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Carly J. Deter
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Mariah C. Reinard
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Gregory A. Gibson
- Department
of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
| | - Kirill Kiselyov
- Department
of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Wangjie Yu
- Bobby
R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Vlad C. Sandulache
- Bobby
R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Claudette M. St. Croix
- Department
of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
| | - Kazunori Koide
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
24
|
Sun Q, Qiu Y, Chen J, Wu FS, Luo XG, Guo YR, Han XY, Wang DW. A colorimetric and fluorescence turn-on probe for the detection of palladium in aqueous solution and its application in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118547. [PMID: 32512339 DOI: 10.1016/j.saa.2020.118547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Palladium has attracted a growing number of attention due to its widely application and environmental toxicity. Consequently, a novel colorimetric and fluorescent turn-on probe (NT-Pd) was designed for sensing of palladium. This probe was capable of detecting palladium in aqueous solution (DMSO was less than 1%, v/v). Under this mild condition, NT-Pd displayed high selectivity and sensitivity for sensing of palladium in both colorimetric and fluorescent strategy, such as low detection limit (5.30 nM) and rapid response time (within 10 min). In addition, NT-Pd was successfully applied for imaging of exogenous palladium in living cells and zebrafishes with good biocompatibility and low toxicity, indicating this probe has satisfactory application potential to track palladium in the complicated biological system.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuan Qiu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jun Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Feng-Shou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiao-Gang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou City 450001, Henan Province, PR China
| | - Yan-Rong Guo
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Xin-Ya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
25
|
Liu L, Fang H, Chen Q, Chan MH, Ng M, Wang K, Liu W, Tian Z, Diao J, Mao Z, Yam VW. Multiple‐Color Platinum Complex with Super‐Large Stokes Shift for Super‐Resolution Imaging of Autolysosome Escape. Angew Chem Int Ed Engl 2020; 59:19229-19236. [DOI: 10.1002/anie.202007878] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hongbao Fang
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Qixin Chen
- Institute of Materia Medica Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250062 P. R. China
| | - Michael Ho‐Yeung Chan
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Maggie Ng
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhiqi Tian
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Jiajie Diao
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Vivian Wing‐Wah Yam
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
26
|
Liu L, Fang H, Chen Q, Chan MH, Ng M, Wang K, Liu W, Tian Z, Diao J, Mao Z, Yam VW. Multiple‐Color Platinum Complex with Super‐Large Stokes Shift for Super‐Resolution Imaging of Autolysosome Escape. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hongbao Fang
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Qixin Chen
- Institute of Materia Medica Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250062 P. R. China
| | - Michael Ho‐Yeung Chan
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Maggie Ng
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhiqi Tian
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Jiajie Diao
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Vivian Wing‐Wah Yam
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
27
|
Li Y, Fu H. Bioorthogonal Ligations and Cleavages in Chemical Biology. ChemistryOpen 2020; 9:835-853. [PMID: 32817809 PMCID: PMC7426781 DOI: 10.1002/open.202000128] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Bioorthogonal reactions including the bioorthogonal ligations and cleavages have become an active field of research in chemical biology, and they play important roles in chemical modification and functional regulation of biomolecules. This review summarizes the developments and applications of the representative bioorthogonal reactions including the Staudinger reactions, the metal-mediated bioorthogonal reactions, the strain-promoted cycloadditions, the inverse electron demand Diels-Alder reactions, the light-triggered bioorthogonal reactions, and the reactions of chloroquinoxalines and ortho-dithiophenols.
Collapse
Affiliation(s)
- Youshan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
28
|
Pekarik V, Peskova M, Duben J, Remes M, Heger Z. Direct fluorogenic detection of palladium and platinum organometallic complexes with proteins and nucleic acids in polyacrylamide gels. Sci Rep 2020; 10:12344. [PMID: 32704011 PMCID: PMC7378192 DOI: 10.1038/s41598-020-69336-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/06/2020] [Indexed: 11/09/2022] Open
Abstract
Allyl- and propargyl ethers of umbelliferone are sensitive probes for palladium and platinum, including anticancer compounds cisplatin, carboplatin and oxaliplatin, and effective for direct visualization of protein and DNA complexes with organometallic compounds in polyacrylamide gels allowing easy detection of interactions with analyzed protein or nucleic acid. Both probes can be used for fast evaluation of Pd/Pt binding to nanocarriers relevant in drug targeted therapy or specific clinically relevant target macromolecules.
Collapse
Affiliation(s)
- Vladimir Pekarik
- Institute of Physiology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic. .,Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic.
| | - Marie Peskova
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
| | - Jakub Duben
- Institute of Physiology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Remes
- Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology (CEITEC), Brno University of Technology, 621 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology (CEITEC), Brno University of Technology, 621 00, Brno, Czech Republic
| |
Collapse
|
29
|
Sharma P, Kaur S, Kaur S, Singh P. Near-IR oxime-based solvatochromic perylene diimide probe as a chemosensor for Pd species and Cu 2+ ions in water and live cells. Photochem Photobiol Sci 2020; 19:504-514. [PMID: 32236245 DOI: 10.1039/c9pp00487d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A near-IR perylene diimide probe (OPR-PDI) containing an oxime-propargyl hybrid moiety at the bay position, was designed and synthesized for detection of Pd species and Cu2+ ions in 90% water, the solid state and MG-63 live cells. The aggregation tendency of OPR-PDI in different polarity solvents transmits solvatochromic and fluorochromic properties to differentiate certain organic solvents. Supramolecular aggregates of OPR-PDI in 90% water act as a dual chemosensor for palladium (Pd) species via de-propargylation or hydrolysis of the Schiff-base and Cu2+ ions via complexation with the O/N binding site with a low limit of detection (LOD) of the order of 7.9 × 10-8 M and 3.4 × 10-7 M respectively. TLC strips coated with OPR-PDI can be applied for sensing of Pd0 and Cu2+ ions in the solid state at levels as low as 34.6 ng cm-2 and 10.5 ng cm-2. OPR-PDI imprinted TLC strips could be used as paper sheets for writing coloured alphabets using Pd0 and Cu2+ ions as ink. Moreover, MTT assay showed that OPR-PDI has very low cytotoxicity (IC50 = 230 μM), good permeability, biocompatibility and can be applied for bio-imaging of Pd species and Cu2+ ions in MG-63 cells. DFT calculations, and cyclic voltammetric (CV) and NMR titration studies have also been discussed.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143 005, India
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143 005, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143 005, India
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143 005, India.
| |
Collapse
|
30
|
Chen C, Zhou L, Liu F, Li Z, Liu W, Liu W. V-shaped bis-coumarin based fluorescent probe for detecting palladium in natural waters. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121943. [PMID: 31884355 DOI: 10.1016/j.jhazmat.2019.121943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
A catalytic fluorescent probe based on V-shaped bis-coumarin has been designed and synthesized for detection of palladium (Pd). The detection mechanism of the probe is based on palladium-catalyzed Tsuji‒Trost reaction process and photoinduced electron transfer (PET), which can distinguish and detect palladium (0, +2/+4) in different valence states under different conditions. The fluorescence intensity of the probe enhances after adding the palladium in about 10 min at room temperature. The limit of detection (LOD) of the probe is as low as 40.0 nM (4.2 ng/g), and it has good selectivity and high sensitivity. Apart from that, it has been successfully applied to detection of palladium in environmental waters.
Collapse
Affiliation(s)
- Chunyang Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Longfei Zhou
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Feilong Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhongguo Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wei Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
31
|
Discrimination of Pd0 and Pd2+ in solution and in live cells by novel light-up fluorescent probe with AIE and ESIPT characteristics. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Kumar K, Kaur S, Kaur S, Bhargava G, Kumar S, Singh P. A multifunctional perylenediimide-based dual-analyte chemodosimeter for specific and rapid detection of H2S and Pd0 in water, biofluids, live cells and solid state. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Lukomski L, Pohorilets I, Koide K. Third-Generation Method for High-Throughput Quantification of Trace Palladium by Color or Fluorescence. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lydia Lukomski
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Ivanna Pohorilets
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
34
|
Ehsan MA, Suliman MH, Rehman A, Hakeem AS, Yamani ZH, Qamar M. Direct deposition of a nanoporous palladium electrocatalyst for efficient hydrogen evolution reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj00507j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The porous palladium directly deposited on metallic substrates by aerosol-assisted chemical vapor deposition exhibits remarkable HER performance in an acidic electrolyte.
Collapse
Affiliation(s)
- Muhammad Ali Ehsan
- Center of Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Munzir H. Suliman
- Center of Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
- Department of Chemistry
| | - Abdul Rehman
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Abbas Saeed Hakeem
- Center of Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Zain H. Yamani
- Center of Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Mohammad Qamar
- Center of Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
- K.A.CARE Energy Research & Innovation Center
| |
Collapse
|
35
|
Zhang Y, Yang M, Ji M. A fluorescent probe based on novel fused four ring quinoxalinamine for palladium detection and bio-imaging. NEW J CHEM 2020. [DOI: 10.1039/d0nj04382f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An “off–on” fluorescent probe was designed to detect palladium of all the typical oxidation states (0, +2, +4) without additional additives.
Collapse
Affiliation(s)
- Yong Zhang
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Min Yang
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Min Ji
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| |
Collapse
|
36
|
Lin Y, Kouznetsova TB, Craig SL. A Latent Mechanoacid for Time-Stamped Mechanochromism and Chemical Signaling in Polymeric Materials. J Am Chem Soc 2019; 142:99-103. [DOI: 10.1021/jacs.9b12861] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yangju Lin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | | | - Stephen L. Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
37
|
Pohorilets I, Tracey MP, LeClaire MJ, Moore EM, Lu G, Liu P, Koide K. Kinetics and Inverse Temperature Dependence of a Tsuji–Trost Reaction in Aqueous Buffer. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ivanna Pohorilets
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew P. Tracey
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J. LeClaire
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Emily M. Moore
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Gang Lu
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
38
|
Wu G, Wang Z, Zhang W, Chen W, Jin X, Lu H. A novel rhodamine B and purine derivative-based fluorescent chemosensor for detection of palladium (II) ion. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.02.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Helal A, Nguyen HL, Al-Ahmed A, Cordova KE, Yamani ZH. An Ultrasensitive and Selective Metal–Organic Framework Chemosensor for Palladium Detection in Water. Inorg Chem 2019; 58:1738-1741. [DOI: 10.1021/acs.inorgchem.8b02871] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Ha L. Nguyen
- Department of Chemistry and Berkeley Global Science Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | | | - Kyle E. Cordova
- Department of Chemistry and Berkeley Global Science Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | | |
Collapse
|
40
|
Gao Y, Lin Y, Liu T, Zhang X, Xu F, Liu P, Du L, Li M. A specific and selective chemiluminescent probe for Pd2+ detection. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Wang L, Ren M, Li Z, Dai L, Lin W. Development of a FRET-based ratiometric fluorescent probe to monitor the changes in palladium(ii) in aqueous solution and living cells. NEW J CHEM 2019. [DOI: 10.1039/c8nj04866e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a new small-molecule based, mitochondrial-targeted ratiometric fluorescent palladium(ii) probe (CR-Pd). Fluorescence imaging shows that CR-Pd is suitable for the ratiometric visualization of palladium(ii) in living cells.
Collapse
Affiliation(s)
- Li Wang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Mingguang Ren
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Zihong Li
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Lixuan Dai
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
42
|
Mondal S, Manna SK, Pathak S, Masum AA, Mukhopadhyay S. A colorimetric and “off–on” fluorescent Pd2+ chemosensor based on a rhodamine-ampyrone conjugate: synthesis, experimental and theoretical studies along with in vitro applications. NEW J CHEM 2019. [DOI: 10.1039/c8nj05194a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We successfully designed and developed a rhodamine based “turn-on” chemosensor L for the detection of Pd2+ ions down to 1.19 × 10−5 M (11.9 μM).
Collapse
Affiliation(s)
- Sanchita Mondal
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | | | - Sudipta Pathak
- Department of Chemistry
- Haldia Government College
- Purba Medinipur
- India
| | - Abdulla Al Masum
- Department of Life Science & Bio-technology
- Jadavpur University
- Kolkata 700032
- India
| | | |
Collapse
|
43
|
Shen Y, Zhang X, Wu Y, Zhang Y, Liu X, Chen Y, Li H, Zhong Y. A lysosome targetable fluorescent probe for palladium species detection base on an ESIPT phthalimide derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:66-71. [PMID: 30007901 DOI: 10.1016/j.saa.2018.06.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
A novel lysosome-targetable phthalimide fluorescent probe was designed for detecting palladium based on ESIPT for signal transduction. The fluorescent probe conjugating with allylcarbamate displayed weak fluorescent due to the ESIPT process hinder by allylcarbamate. But with the addition of palladium, the ESIPT emission was recovery though the palladium-catalyzed deallylation reaction and the fluorescence intensity exhibited 40-fold enhancement at 511 nm. In addition, the probe showed excellent selectivity, high sensitivity, fast responds and low limit detection for palladium with a larger Stoke-shift. Moreover, the targetable probe was also successfully applied for detecting palladium in lysosomes of living cells. Hence, the probe though ESIPT modulation is a promising for monitoring palladium in practical samples.
Collapse
Affiliation(s)
- Youming Shen
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, Collaborative innovation center for efficient and health production of fisheries in Hunan province, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Xiangyang Zhang
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, Collaborative innovation center for efficient and health production of fisheries in Hunan province, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| | - Yanyang Wu
- Food Science and Technology College, Hunan Agricultural University, Changsha 410000, Hunan, PR China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Xuewen Liu
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, Collaborative innovation center for efficient and health production of fisheries in Hunan province, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Yuandao Chen
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, Collaborative innovation center for efficient and health production of fisheries in Hunan province, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yutong Zhong
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, Collaborative innovation center for efficient and health production of fisheries in Hunan province, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| |
Collapse
|
44
|
Zhou J, Xu S, Dong X, Chen Z, Zhao W. Near-infrared off-on fluorescent probe for fast and selective detection of palladium (II) in living cells. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Sarkar S, Peter SC. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00042e] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The electrochemical hydrogen evolution reaction (HER) is a well-studied reaction which involves the reduction of protons for hydrogen production. Pd-based compounds are expected to have activity on par with or better than the expensive state-of-the-art Pt and can be considered as the future materials for the HER.
Collapse
Affiliation(s)
- Shreya Sarkar
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore
- India
- School of Advanced Materials
| | - Sebastian C. Peter
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore
- India
- School of Advanced Materials
| |
Collapse
|
46
|
Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.06.011] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Bhanja AK, Mishra S, Kar K, Naskar K, Maity S, Das Saha K, Sinha C. Use of rhodamine-allyl Schiff base in chemodosimetric processes for total palladium estimation and application in live cell imaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj04519d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An allyl-rhodamine Schiff base shows excellent palladium sensitivity (LOD, 95 nM) irrespective of Pd(0,ii,iv) and practical applicability is judged in living cells of RAW 264.7 (macrophage) cells.
Collapse
Affiliation(s)
| | - Snehasis Mishra
- Cancer Biology & Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata – 700 032
- India
| | - Ketaki Kar
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Kaushik Naskar
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Suvendu Maity
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata – 700 032
- India
| | | |
Collapse
|
48
|
Bai Y, Chen J, Zimmerman SC. Designed transition metal catalysts for intracellular organic synthesis. Chem Soc Rev 2018; 47:1811-1821. [DOI: 10.1039/c7cs00447h] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A review of progress, challenges, and future prospects in developing transition metal catalysts for intracellular organic synthesis.
Collapse
Affiliation(s)
- Yugang Bai
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Junfeng Chen
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | | |
Collapse
|
49
|
Kumar K, Bhargava G, Kumar S, Singh P. Controllable supramolecular self-assemblies (rods–wires–spheres) and ICT/PET based perylene probes for palladium detection in solution and the solid state. NEW J CHEM 2018. [DOI: 10.1039/c7nj03751a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AC-PDIshows solvent dependent self-assembly into nanowires, rods and spheres. It could be used for detection of Pd0in 50% HEPES buffer–DMSO (39 nM, UV-Vis; 45 nM, fluorescence) and the solid state (0.58 pg cm−2).
Collapse
Affiliation(s)
- Kapil Kumar
- Department of Chemistry
- UGC Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar 143 005
- India
| | - Gaurav Bhargava
- Department of Chemical Sciences
- IKG Punjab Technical University
- Kapurthala-144601
- India
| | - Subodh Kumar
- Department of Chemistry
- UGC Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar 143 005
- India
| | - Prabhpreet Singh
- Department of Chemistry
- UGC Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar 143 005
- India
| |
Collapse
|
50
|
A water-soluble near-infrared fluorescent probe for specific Pd 2+ detection. Bioorg Med Chem 2017; 26:931-937. [PMID: 29254898 DOI: 10.1016/j.bmc.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 02/09/2023]
Abstract
Palladium (Pd) is widely used in chemistry, biology, environmental science etc., and Pd2+ is the most plenitudinous oxidation state of the Pd that can exist under physiological conditions or in living cells, which could have adverse effects on both our health and environment. Thus, it is of great significance to monitor the changes of Pd2+. Hence, a novel near-infrared fluorescent probe M-PD has been developed for selective detection of Pd2+ based on naphthofluorescein in this work. The result demonstrated that M-PD exhibited favorable properties for sensing Pd2+ such as excellent water solubility, high selectivity and sensitivity. And the limit of detection was estimated as 10.8 nM, much lower than the threshold in drugs (5-10 ppm) specified by European Directorate for the Quality Control of Medicines. More importantly, detection and recovery experiments of Pd2+ in aspirin aqoeous solution and soil are satisfactory. In addition, M-PD has also been successfully used for near-infrared fluorescence imaging of Pd2+ in living cells, indicating that the probe has better feasibility and application potential in the determination of Pd2+.
Collapse
|