1
|
Lin F, Xu M, Ramasamy KK, Li Z, Klinger JL, Schaidle JA, Wang H. Catalyst Deactivation and Its Mitigation during Catalytic Conversions of Biomass. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fan Lin
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| | - Mengze Xu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| | - Karthikeyan K. Ramasamy
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| | - Zhenglong Li
- Energy and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | | | - Joshua A. Schaidle
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| |
Collapse
|
2
|
Kalagara S, Orozco G, Mito S. The efficient synthesis of d-xylulose and formal synthesis of Syringolide 1. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Yu Z, Wu H, Li Y, Xu Y, Li H, Yang S. Advances in Heterogeneously Catalytic Degradation of Biomass Saccharides with Ordered-Nanoporous Materials. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zhaozhuo Yu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yan Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yufei Xu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
4
|
Istasse T, Richel A. Mechanistic aspects of saccharide dehydration to furan derivatives for reaction media design. RSC Adv 2020; 10:23720-23742. [PMID: 35517323 PMCID: PMC9055118 DOI: 10.1039/d0ra03892j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
The conversion of abundant hexoses (e.g. glucose, mannose and galactose) and pentoses (e.g. xylose and arabinose) to 5-hydroxymethylfurfural (5-HMF) and 2-furfural (2-F) is subject to intensive research in the hope of achieving competitive production of diverse materials from renewable resources. However, the abundance of literature on this topic as well as the limited number of studies systematically comparing numerous monosaccharides hinder progress tracking. Herein, we compare and rationalize reactivities of different ketoses and aldoses. Dehydration mechanisms of both monosaccharide types are reviewed regarding the existing experimental evidence. Ketose transformation to furan derivatives likely proceeds through cyclic intermediates and is hindered by side-reactions such as isomerization, retro-aldol reactions and polymerization. Different strategies can improve furan derivative synthesis from ketoses: limiting the presence of water, improving the dehydration rate, protecting 5-HMF and 2-F reactive moieties with derivatization or solvent interactions and extracting 5-HMF and 2-F from the reaction medium. In contrast to ketoses, aldose conversion to furan derivatives is not favored compared to polymerization reactions because it involves their isomerization or a ring contraction. Enhancing aldose isomerization is possible with metal catalysts (e.g. CrCl3) promoting a hydride shift mechanism or with boric/boronic acids promoting an enediol mechanism. This catalysis is however far more challenging than ketose dehydration because catalyst activity depends on numerous factors: Brønsted acidity of the medium, catalyst ligands, catalyst affinity for monosaccharides and their accessibility to several chemical species simultaneously. Those aspects are methodically addressed to support the design of new monosaccharide dehydration systems.
Collapse
Affiliation(s)
- Thibaut Istasse
- Laboratory of Biomass and Green Technologies, University of Liege - Gembloux Agro-Bio Tech Passage des Déportés 2, B-5030 Gembloux Belgium
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege - Gembloux Agro-Bio Tech Passage des Déportés 2, B-5030 Gembloux Belgium
| |
Collapse
|
5
|
Risi C, Zhao F, Castagnolo D. Chemo-Enzymatic Metathesis/Aromatization Cascades for the Synthesis of Furans: Disclosing the Aromatizing Activity of Laccase/TEMPO in Oxygen-Containing Heterocycles. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02452] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Caterina Risi
- School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin Wilkins Building, 150 Stamford Street, SE1 9NH London, United Kingdom
| | - Fei Zhao
- School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin Wilkins Building, 150 Stamford Street, SE1 9NH London, United Kingdom
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin Wilkins Building, 150 Stamford Street, SE1 9NH London, United Kingdom
| |
Collapse
|
6
|
Agrawal K, Verma AM, Kishore N. DFT investigation on thermochemical analyses of conversion of xylose to linear alkanes in aqueous phase. J Mol Graph Model 2019; 90:199-209. [PMID: 31102944 DOI: 10.1016/j.jmgm.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Xylose is an integral part of hemicellulose fraction of lignocellulosic biomass. Its abundance in the lignocellulose makes it a desirable component for converting into various value-added compounds. In this study, conversion of xylose to four linear alkanes has been discussed by five different schemes including their thermochemistry under the framework of density functional theory. Main products are butane, pentane, octane and tridecane whereas the intermediate products include furfural, tetrahydrofuran, pentane-1,5-diol, etc. The simulations have been performed at B3LYP/6-31 + g(d,p) and M06-2X/6-31 + g(d,p) level of theories in aqueous phase using SMD solvation model. Thermochemical parameters (ΔG, ΔH and Keq) are obtained at a wide range of temperature, i.e. 298-698 K. Single point energy change (ΔE) of all the conversion steps has also been calculated at M05-2X/6-311++g(3df,2p) level of theory in the aqueous phase. It is observed that temperature plays a vital role in the formation of products. At high temperature, only scheme RS 1 (i.e. xylose to butane) can proceed to produce butane. The absolute difference between two functionals, B3LYP and M06-2X, was found to be small (<2 kcal/mol) for ring opening reactions making both the functionals suitable for a qualitative study. For saturation of cyclic compounds, a large difference (>10 kcal/mol) was observed between the two functionals making higher accuracy method more suitable for them. For all other reactions, use of M06-2X can be preferred.
Collapse
|
7
|
Xu M, Célérier S, Comparot JD, Rousseau J, Corbet M, Richard F, Clacens JM. Upgrading of furfural to biofuel precursors via aldol condensation with acetone over magnesium hydroxide fluorides MgF 2−x(OH) x. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01259a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MgF2−x(OH)x catalysts involving neighboring Lewis acid sites and moderate strength basic sites were used successfully in aldol condensation of furfural.
Collapse
Affiliation(s)
- Minrui Xu
- Institut de Chimie des Milieux et Matériaux de Poitiers
- UMR 7285 Université de Poitiers – CNRS
- 86022 Poitiers Cedex
- France
| | - Stéphane Célérier
- Institut de Chimie des Milieux et Matériaux de Poitiers
- UMR 7285 Université de Poitiers – CNRS
- 86022 Poitiers Cedex
- France
| | - Jean-Dominique Comparot
- Institut de Chimie des Milieux et Matériaux de Poitiers
- UMR 7285 Université de Poitiers – CNRS
- 86022 Poitiers Cedex
- France
| | - Julie Rousseau
- Institut de Chimie des Milieux et Matériaux de Poitiers
- UMR 7285 Université de Poitiers – CNRS
- 86022 Poitiers Cedex
- France
| | | | - Frédéric Richard
- Institut de Chimie des Milieux et Matériaux de Poitiers
- UMR 7285 Université de Poitiers – CNRS
- 86022 Poitiers Cedex
- France
| | - Jean-Marc Clacens
- Institut de Chimie des Milieux et Matériaux de Poitiers
- UMR 7285 Université de Poitiers – CNRS
- 86022 Poitiers Cedex
- France
| |
Collapse
|
8
|
Tang H, Dang M, Li Y, Li L, Han W, Liu Z, Li Y, Li X. Rational design of MgF2 catalysts with long-term stability for the dehydrofluorination of 1,1-difluoroethane (HFC-152a). RSC Adv 2019; 9:23744-23751. [PMID: 35530601 PMCID: PMC9069504 DOI: 10.1039/c9ra04250d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022] Open
Abstract
In this study, three different approaches, i.e. the sol–gel method, precipitation method and hard-template method, were applied to synthesize MgF2 catalysts with improved stability towards the dehydrofluorination of hydrofluorocarbons (HFCs); the in situ XRD technique was employed to investigate the relationship between the calcination temperature and the crystallite size of precursors to determine optimal calcination temperature for the preparation of the MgF2 catalysts. Moreover, the physicochemical properties of MgF2 catalysts were examined via BET, XRD, EDS and TPD of NH3 and compared. Undoubtedly, the application of different methods had a significant influence on the surface properties and catalytic performances of MgF2 catalysts. The surface areas of the catalysts prepared by the precipitation method, sol–gel method and template method were 120, 215 and 304 m2 g−1, respectively, upon calcination at 200 °C. However, the surface area of the MgF2 catalysts decreased significantly when the calcination temperatures of 300 and 350 °C were applied. The catalytic performance of these catalysts was evaluated via the dehydrofluorination of 1,1-difluoroethane (HFC-152a). The MgF2 catalyst prepared by the precipitation method showed the lowest catalytic activity among all the MgF2 catalysts. When the calcination temperature was above 300 °C, the MgF2 catalysts prepared via the template method demonstrated the highest catalytic conversion rate with catalytic activity following the order: MgF2-T (template method) > MgF2-S (sol–gel method) > MgF2-P (precipitation method). The conversion rate generally agreed with the total amount of acid on the surface of the catalysts, which was measured by the NH3-TPD technique. The MgF2-T catalysts were further examined for the dehydrofluorination of HFC-152a for 600 hours, and a conversion rate greater than 45% was maintained, demonstrating superior long-term stability of these catalysts. In this study, sol–gel, precipitation and hard-template methods were applied to synthesize MgF2 catalysts with improved stability towards dehydrofluorination of hydrofluorocarbons and MgF2-T catalysts demonstrated superior long-term stability.![]()
Collapse
Affiliation(s)
- Haodong Tang
- Institute of Industrial Catalysis
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Mingming Dang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Yuzhen Li
- Institute of Industrial Catalysis
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Lichun Li
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Wenfeng Han
- Institute of Industrial Catalysis
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Zongjian Liu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Ying Li
- Institute of Industrial Catalysis
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Xiaonian Li
- Institute of Industrial Catalysis
- Zhejiang University of Technology
- Hangzhou
- PR China
| |
Collapse
|
9
|
Analysis and research on the formative factors and properties of nano-MgF2 crystals with different morphologies. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.09.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Delbecq F, Wang Y, Muralidhara A, El Ouardi K, Marlair G, Len C. Hydrolysis of Hemicellulose and Derivatives-A Review of Recent Advances in the Production of Furfural. Front Chem 2018; 6:146. [PMID: 29868554 PMCID: PMC5964623 DOI: 10.3389/fchem.2018.00146] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022] Open
Abstract
Biobased production of furfural has been known for decades. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve production modes and expand potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of furfural production from sugars and polysaccharides feedstocks. The review discusses advances obtained in major production pathways recently explored splitting in the following categories: (i) non-catalytic routes like use of critical solvents or hot water pretreatment, (ii) use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, (iii) feedstock dehydration making use of various solid acid catalysts; (iv) feedstock dehydration making use of supported catalysts, (v) other heterogeneous catalytic routes. The paper also briefly overviews current understanding of furfural chemical synthesis and its underpinning mechanism as well as safety issues pertaining to the substance. Eventually, some remaining research topics are put in perspective for further optimization of biobased furfural production.
Collapse
Affiliation(s)
- Frederic Delbecq
- Ecole Superieure de Chimie Organique et Minerale, Compiègne, France
| | - Yantao Wang
- Sorbonne Universités, Universite de Technologie de Compiegne, Compiègne, France
| | - Anitha Muralidhara
- Sorbonne Universités, Universite de Technologie de Compiegne, Compiègne, France.,Institut National de l'Environnement Industriel et des Risques, Verneuil-en-Halatte, France.,Avantium Chemicals, Amsterdam, Netherlands
| | - Karim El Ouardi
- Materials Science and Nano-Engineering Department, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Guy Marlair
- Institut National de l'Environnement Industriel et des Risques, Verneuil-en-Halatte, France
| | - Christophe Len
- Sorbonne Universités, Universite de Technologie de Compiegne, Compiègne, France.,Institut de Recherche de Chimie Paris, PSL University, Chimie ParisTech, Paris, France
| |
Collapse
|
11
|
Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application. ADVANCES IN BIOENERGY 2018. [DOI: 10.1016/bs.aibe.2018.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Yang KL, Huang S, Pan H, Zhang H, Liu XF, Yang S. Polyoxometalate-MgF2 hybrids as heterogeneous solid acid catalysts for efficient biodiesel production. RSC Adv 2017. [DOI: 10.1039/c7ra06080g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of highly active and stable Keggin heteropolyacid catalysts were prepared through mixing of 12-tungstophosphoric acid (TPA) with magnesium fluoride (MgF2).
Collapse
Affiliation(s)
- Kai-Li Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering
- Key Laboratory of Green Pesticide & Agricultural Bioengineering
- Ministry of Education
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research & Development of Fine Chemicals
| | - Shan Huang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering
- Key Laboratory of Green Pesticide & Agricultural Bioengineering
- Ministry of Education
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research & Development of Fine Chemicals
| | - Hu Pan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering
- Key Laboratory of Green Pesticide & Agricultural Bioengineering
- Ministry of Education
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research & Development of Fine Chemicals
| | - Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering
- Key Laboratory of Green Pesticide & Agricultural Bioengineering
- Ministry of Education
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research & Development of Fine Chemicals
| | - Xiao-Fang Liu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering
- Key Laboratory of Green Pesticide & Agricultural Bioengineering
- Ministry of Education
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research & Development of Fine Chemicals
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering
- Key Laboratory of Green Pesticide & Agricultural Bioengineering
- Ministry of Education
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research & Development of Fine Chemicals
| |
Collapse
|
13
|
Scalise V, Scholz G, Kemnitz E. Mechanochemical synthesis of low-fluorine doped aluminum hydroxide fluorides. J SOLID STATE CHEM 2016. [DOI: 10.1016/j.jssc.2016.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Mahajani SM, Saha B. Catalysis in Multifunctional Reactors. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2015-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Bhaumik P, Dhepe PL. Solid acid catalyzed synthesis of furans from carbohydrates. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2016. [DOI: 10.1080/01614940.2015.1099894] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Lu YM, Li H, He J, Liu YX, Wu ZB, Hu DY, Yang S. Efficient conversion of glucose to 5-hydroxymethylfurfural using bifunctional partially hydroxylated AlF3. RSC Adv 2016. [DOI: 10.1039/c5ra24013a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mesoporous AlF3 material bearing both Lewis and Brønsted acid sites exhibits high catalytic performance in glucose-to-fructose isomerization and subsequent dehydration to HMF (57.3% yield).
Collapse
Affiliation(s)
- Ye-Min Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research and Development of Fine Chemicals
- Guizhou University
- Guiyang 550025
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research and Development of Fine Chemicals
- Guizhou University
- Guiyang 550025
| | - Jian He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research and Development of Fine Chemicals
- Guizhou University
- Guiyang 550025
| | - Yan-Xiu Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research and Development of Fine Chemicals
- Guizhou University
- Guiyang 550025
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research and Development of Fine Chemicals
- Guizhou University
- Guiyang 550025
| | - De-Yu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research and Development of Fine Chemicals
- Guizhou University
- Guiyang 550025
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass
- Center for Research and Development of Fine Chemicals
- Guizhou University
- Guiyang 550025
| |
Collapse
|
17
|
Scholz G, Dreger M, Bertram R, Kemnitz E. Nanoscopic yttrium oxide fluorides: non-aqueous fluorolytic sol-gel synthesis and structural insights by 19F and 89Y MAS NMR. Dalton Trans 2015; 44:13522-9. [PMID: 26133504 DOI: 10.1039/c5dt00710k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoscopic yttrium acetate fluorides Y(CH(3)COO)(3-z)F(z) and yttrium oxide fluorides YO(3-z)/(2)F(z )were prepared with tunable Y/F molar ratios via the fluorolytic sol-gel route. All samples were characterized by X-ray diffraction, elemental analysis and thermal analysis. In addition, local structures of all samples were studied by (19)F MAS, (19)F-(89)Y CP MAS and (1)H-(89)Y CP MAS NMR spectroscopy and the respective chemical shifts are given. For both classes of compounds, only the fluorination using one equivalent of F (z = 1) leads to defined, well crystalline matrices: yttrium acetate fluoride Y(CH(3)COO)(2)F and r-YOF.
Collapse
Affiliation(s)
- G Scholz
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook - Taylor - Strasse 2, D - 12489 Berlin, Germany.
| | | | | | | |
Collapse
|
18
|
Promising heterogeneous catalytic systems based on metal fluorides and oxide hydroxide fluorides: A short review. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2015.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Guo Y, Lippitz A, Saftien P, Unger WES, Kemnitz E. Tuning the surface properties of novel ternary iron(III) fluoride-based catalysts using the template effect of the matrix. Dalton Trans 2015; 44:5076-85. [PMID: 25594157 DOI: 10.1039/c4dt03229b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sol-gel prepared ternary FeF3-MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3-MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3-CaF2 and FeF3-SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties.
Collapse
Affiliation(s)
- Ying Guo
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, D-12489, Berlin, Germany.
| | | | | | | | | |
Collapse
|
20
|
Hemmann F, Agirrezabal-Telleria I, Jaeger C, Kemnitz E. Quantification of acidic sites of nanoscopic hydroxylated magnesium fluorides by FTIR and 15N MAS NMR spectroscopy. RSC Adv 2015. [DOI: 10.1039/c5ra15116c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A new method is described for the calculation of molar extinction coefficients for quantitative FTIR measurements of acidic surface sites.
Collapse
Affiliation(s)
- Felix Hemmann
- Humboldt-Universität zu Berlin
- Department of Chemistry
- D-12489 Berlin
- Germany
- BAM Federal Institute for Materials Research and Testing
| | - Iker Agirrezabal-Telleria
- Department of Chemical and Environmental Engineering
- Engineering School of the University of the Basque Country (UPV/EHU)
- 48013 Bilbao
- Spain
| | - Christian Jaeger
- BAM Federal Institute for Materials Research and Testing
- Division 1
- D-12489 Berlin
- Germany
| | - Erhard Kemnitz
- Humboldt-Universität zu Berlin
- Department of Chemistry
- D-12489 Berlin
- Germany
| |
Collapse
|
21
|
Abstract
Nanoscale metal fluorides and hydroxide fluorides prepared according the fluorolytic sol–gel synthesis represent a powerful class of bi-acidic heterogeneous catalysts.
Collapse
Affiliation(s)
- Erhard Kemnitz
- Department für Chemie
- Humboldt-Universität zu Berlin
- D-12489 Berlin
- Germany
| |
Collapse
|