1
|
Cabrera-Munguia DA, Gutiérrrez-Alejandre A, Romero-Galarza A, Morales-Martínez TK, Ríos-González LJ, Sifuentes-López J. Function of Brønsted and Lewis acid sites in xylose conversion into furfural. RSC Adv 2023; 13:30649-30664. [PMID: 37859779 PMCID: PMC10583826 DOI: 10.1039/d3ra05774g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
In this work, the xylose conversion and the selectivity to furfural were assessed over mesoporous sulfonic silica SBA-15-(X)SO3H catalysts doped with metal ions (X = Al(iii), Ti(iv) or Zr(iv)). The type and amount of acid sites were analyzed by adsorption of pivalonitrile. The SBA-15-(X)SO3H materials show Lewis acid sites (LAS) and two types of Brønsted acid sites (BAS) with different strengths. Type I (BAS I) belongs to terminal silanol groups, type II (BAS II) is ascribed to hydroxyl groups bonded to sulfur or transition metal, and the LAS is related to M-O bonds. Optimal reaction conditions for the most active catalyst (SBA-15-(Zr)SO3H) were 120 minutes of reaction at 160 °C, 20 wt% of catalyst, and 2.5% of xylose/solvent. Additionally, a kinetic study was carried out to calculate the rate constants, the activation energy, and the pre-exponential factor for the xylose dehydration reaction. It was found that the selectivity to furfural in sulfonic silica SBA-15-(X)SO3H catalysts was directly related to the BAS II fraction. While LAS negatively impacts the selectivity to furfural leading to the undesired reaction between furfural and xylose obtaining humins as secondary products.
Collapse
Affiliation(s)
- Denis A Cabrera-Munguia
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. J. Cárdenas s/n Saltillo Coahuila 25280 Mexico +52 8441894706
| | | | - Adolfo Romero-Galarza
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. J. Cárdenas s/n Saltillo Coahuila 25280 Mexico +52 8441894706
| | - Thelma K Morales-Martínez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. J. Cárdenas s/n Saltillo Coahuila 25280 Mexico +52 8441894706
| | - Leopoldo J Ríos-González
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. J. Cárdenas s/n Saltillo Coahuila 25280 Mexico +52 8441894706
| | - Jesús Sifuentes-López
- Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Coahuila Carretera Torreón-Matamoros km 7.5 CU Torreón Coahuila 27087 Mexico
| |
Collapse
|
2
|
Nitrogen doped carbon solid acid for improving its catalytic transformation of xylose and agricultural biomass residues to furfural. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Heydari N, Bikas R, Shaterian M, Lis T. Green solvent free epoxidation of olefins by a heterogenised hydrazone-dioxidotungsten(vi) coordination compound. RSC Adv 2022; 12:4813-4827. [PMID: 35425511 PMCID: PMC8981271 DOI: 10.1039/d1ra09217k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
A new mononuclear tungsten coordination compound, [WO2L(CH3OH)] (1), was synthesized by the reaction of WCl6 and H2L (H2L = (E)-4-amino-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide) in methanol. Both the H2L and compound 1 were characterized by elemental analysis and UV-Vis, FT-IR and NMR spectroscopic methods. The molecular structure of compound 1 was also determined by single crystal X-ray analysis which confirmed the compound is a mononuclear coordination compound of cis-dioxidotungsten(vi) containing a free amine functionality on the ligand. Compound 1 was supported on propionyl chloride-functionalized silica gel by amidification reaction to obtain a heterogeneous catalyst. The obtained heterogeneous catalyst was characterized by FT-IR spectroscopy, thermal gravimetric analysis (TGA), diffuse-reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) and its catalytic activity was investigated in the epoxidation of olefins with hydrogen peroxide under solvent free conditions. The catalyst was successfully recovered several times and the recovered catalyst was also characterized by various methods including FT-IR, DRS, TGA, SEM and EDX analyses. The results indicated this heterogeneous catalytic system is an effective and selective catalyst for epoxidation of olefins and can be reused several times without significant change in its catalytic activity.
Collapse
Affiliation(s)
- Neda Heydari
- Department of Chemistry, Faculty of Science, University of Zanjan 45371-38791 Zanjan Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University 34148-96818 Qazvin Iran
| | - Maryam Shaterian
- Department of Chemistry, Faculty of Science, University of Zanjan 45371-38791 Zanjan Iran
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw Joliot-Curie 14 Wroclaw 50-383 Poland
| |
Collapse
|
4
|
Sudarsanam P, Gupta NK, Mallesham B, Singh N, Kalbande PN, Reddy BM, Sels BF. Supported MoO x and WO x Solid Acids for Biomass Valorization: Interplay of Coordination Chemistry, Acidity, and Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Putla Sudarsanam
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Navneet Kumar Gupta
- Technical University of Darmstadt, Department of Chemistry, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Baithy Mallesham
- Chemical Engineering Department, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Nittan Singh
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Pavan Narayan Kalbande
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Benjaram M. Reddy
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
| | - Bert F. Sels
- Center for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
5
|
Nia RH, Mamaghani M, Tavakoli F. Ag-Catalyzed Multicomponent Synthesis of Heterocyclic Compounds: A Review. Curr Org Synth 2021; 19:COS-EPUB-117839. [PMID: 34515006 DOI: 10.2174/1570179418666210910105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
The investigation of the procedures for the multi-component synthesis of heterocycles has attracted the interest of organic and medicinal chemists. The use of heterogeneous catalysts, especially transition metal catalysts in organic synthesis, can provide a new, improved alternative to traditional methods in modern synthetic chemistry. The main focus is on the utilization of silver as a catalyst for the multi-component synthesis of heterocyclic compounds. The present review describes some important reported studies for the period of 2010 to 2020. Conclusion: The present review addresses some of the important reported studies on multi-component synthesis of heterocycles in the period of 2010-2020. These approaches were performed under classical and nonclassical conditions, using Ag salts, Ag NPs, Ag on the support, Ag as co-catalysts with other transition metals, ionic liquids, acidic or basic materials. Most of the reported reactions were performed under solvent-free conditions or in green solvents and the utilized catalysts were mostly recyclable. The main aim of the present review is to provide the organic chemists with the most appropriate procedures in the multi-component synthesis of desired heterocycles using silver catalysts.
Collapse
Affiliation(s)
- Roghayeh Hossein Nia
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| | - Manouchehr Mamaghani
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| | - Fatemeh Tavakoli
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| |
Collapse
|
6
|
Kousik SR, Sipp D, Abitaev K, Li Y, Sottmann T, Koynov K, Atanasova P. From Macro to Mesoporous ZnO Inverse Opals: Synthesis, Characterization and Tracer Diffusion Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:196. [PMID: 33466679 PMCID: PMC7828802 DOI: 10.3390/nano11010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 11/16/2022]
Abstract
Oxide inverse opals (IOs) with their high surface area and open porosity are promising candidates for catalyst support applications. Supports with confined mesoporous domains are of added value to heterogeneous catalysis. However, the fabrication of IOs with mesoporous or sub-macroporous voids (<100 nm) continues to be a challenge, and the diffusion of tracers in quasi-mesoporous IOs is yet to be adequately studied. In order to address these two problems, we synthesized ZnO IOs films with tunable pore sizes using chemical bath deposition and template-based approach. By decreasing the size of polystyrene (PS) template particles towards the mesoporous range, ZnO IOs with 50 nm-sized pores and open porosity were synthesized. The effect of the template-removal method on the pore geometry (spherical vs. gyroidal) was studied. The infiltration depth in the template was determined, and the factors influencing infiltration were assessed. The crystallinity and photonic stop-band of the IOs were studied using X-Ray diffraction and UV-Vis, respectively. The infiltration of tracer molecules (Alexa Fluor 488) in multilayered quasi-mesoporous ZnO IOs was confirmed via confocal laser scanning microscopy, while fluorescence correlation spectroscopy analysis revealed two distinct diffusion times in IOs assigned to diffusion through the pores (fast) and adsorption on the pore walls (slow).
Collapse
Affiliation(s)
- Shravan R. Kousik
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (S.R.K.); (D.S.); (Y.L.)
| | - Diane Sipp
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (S.R.K.); (D.S.); (Y.L.)
| | - Karina Abitaev
- Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany; (K.A.); (T.S.)
| | - Yawen Li
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (S.R.K.); (D.S.); (Y.L.)
| | - Thomas Sottmann
- Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany; (K.A.); (T.S.)
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Petia Atanasova
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (S.R.K.); (D.S.); (Y.L.)
| |
Collapse
|
7
|
Gómez Millán G, Hellsten S, Llorca J, Luque R, Sixta H, Balu AM. Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem 2019. [DOI: 10.1002/cctc.201801843] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gerardo Gómez Millán
- Department of Bioproducts and Biosystems School of Chemical EngineeringAalto University Vuorimiehentie 1 02150 Espoo Finland
- Department of Chemical Engineering, Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Eduard Maristany 10–14 08019 Barcelona Spain
| | - Sanna Hellsten
- Department of Bioproducts and Biosystems School of Chemical EngineeringAalto University Vuorimiehentie 1 02150 Espoo Finland
| | - Jordi Llorca
- Department of Chemical Engineering, Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Eduard Maristany 10–14 08019 Barcelona Spain
| | - Rafael Luque
- Departamento de Química OrgánicaUniversidad de Cordoba Campus Rabanales Edificio Marie Curie (C-3), Ctra Nnal IV−A, km 396 Cordoba Spain
- Peoples Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya str. 117198 Moscow Russia
| | - Herbert Sixta
- Department of Bioproducts and Biosystems School of Chemical EngineeringAalto University Vuorimiehentie 1 02150 Espoo Finland
| | - Alina M. Balu
- Departamento de Química OrgánicaUniversidad de Cordoba Campus Rabanales Edificio Marie Curie (C-3), Ctra Nnal IV−A, km 396 Cordoba Spain
| |
Collapse
|
8
|
Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application. ADVANCES IN BIOENERGY 2018. [DOI: 10.1016/bs.aibe.2018.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Mika LT, Cséfalvay E, Németh Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem Rev 2017; 118:505-613. [DOI: 10.1021/acs.chemrev.7b00395] [Citation(s) in RCA: 662] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- László T. Mika
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary
| | - Edit Cséfalvay
- Department
of Energy Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Áron Németh
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
| |
Collapse
|
10
|
Matsagar BM, Dhepe PL. Effects of cations, anions and H+ concentration of acidic ionic liquids on the valorization of polysaccharides into furfural. NEW J CHEM 2017. [DOI: 10.1039/c7nj00342k] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The valorization of hemicellulose into valuable chemicals, such as C5 sugars and furfural, in a one-pot fashion.
Collapse
Affiliation(s)
- Babasaheb M. Matsagar
- Catalysis and Inorganic Chemistry Division CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi
| | - Paresh L. Dhepe
- Catalysis and Inorganic Chemistry Division CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi
| |
Collapse
|
11
|
Bhaumik P, Dhepe PL. From Lignocellulosic Biomass to Furfural: Insight into the Active Species of a Silica-Supported Tungsten Oxide Catalyst. ChemCatChem 2016. [DOI: 10.1002/cctc.201600784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Prasenjit Bhaumik
- Catalysis & Inorganic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune 411008 India
| | - Paresh Laxmikant Dhepe
- Catalysis & Inorganic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune 411008 India
| |
Collapse
|
12
|
Bhaumik P, Dhepe PL. Solid acid catalyzed synthesis of furans from carbohydrates. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2016. [DOI: 10.1080/01614940.2015.1099894] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Jeon W, Ban C, Park G, Woo HC, Kim DH. Hydrothermal conversion of macroalgae-derived alginate to lactic acid catalyzed by metal oxides. Catal Sci Technol 2016. [DOI: 10.1039/c5cy00966a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macroalgae-derived alginate was used as a renewable biomass feedstock for producing lactic acid in a hydrothermal reaction catalyzed by metal oxides.
Collapse
Affiliation(s)
- Wonjin Jeon
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul
- Republic of Korea
| | - Chunghyeon Ban
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul
- Republic of Korea
| | - Geonu Park
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul
- Republic of Korea
| | - Hee Chul Woo
- Department of Chemical Engineering
- Pukyong National University
- Busan
- Republic of Korea
| | - Do Heui Kim
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul
- Republic of Korea
| |
Collapse
|
14
|
Ag/SiO2 as a recyclable catalyst for the facile green synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2167-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Marakatti VS, Mumbaraddi D, Shanbhag GV, Halgeri AB, Maradur SP. Molybdenum oxide/γ-alumina: an efficient solid acid catalyst for the synthesis of nopol by Prins reaction. RSC Adv 2015. [DOI: 10.1039/c5ra12106j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prins condensation of β-pinene with paraformaldehyde was carried out over MoOx/γ-Al2O3 catalyst in liquid phase.
Collapse
Affiliation(s)
- Vijaykumar S. Marakatti
- Materials Science Division
- Poornaprajna Institute of Scientific Research (PPISR)
- Bangalore-562110
- India
| | - Dundappa Mumbaraddi
- Materials Science Division
- Poornaprajna Institute of Scientific Research (PPISR)
- Bangalore-562110
- India
| | - Ganapati V. Shanbhag
- Materials Science Division
- Poornaprajna Institute of Scientific Research (PPISR)
- Bangalore-562110
- India
| | - Anand B. Halgeri
- Materials Science Division
- Poornaprajna Institute of Scientific Research (PPISR)
- Bangalore-562110
- India
| | - Sanjeev P. Maradur
- Materials Science Division
- Poornaprajna Institute of Scientific Research (PPISR)
- Bangalore-562110
- India
| |
Collapse
|
16
|
Li XL, Pan T, Deng J, Fu Y, Xu HJ. Catalytic dehydration of d-xylose to furfural over a tantalum-based catalyst in batch and continuous process. RSC Adv 2015. [DOI: 10.1039/c5ra11411j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The conversion of d-xylose to furfural was developed through a batch and continuous process in water–organic biphasic system using TA-p as a catalyst.
Collapse
Affiliation(s)
- Xing-Long Li
- School of Medical Engineering, and Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
- China
| | - Tao Pan
- University of Science and Technology of China
- Hefei 230026
- China
| | - Jin Deng
- University of Science and Technology of China
- Hefei 230026
- China
| | - Yao Fu
- University of Science and Technology of China
- Hefei 230026
- China
| | - Hua-Jian Xu
- School of Medical Engineering, and Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
- China
| |
Collapse
|