1
|
Yoon B, Tai KY, Thomas GM, Ow H, Chang S. Utilizing a Paper-Based Platform for Oilfield Applications: Time-Resolved Fluorescence Imaging and Detection of Interwell Chemical Tracers. ACS OMEGA 2024; 9:8239-8246. [PMID: 38405497 PMCID: PMC10882586 DOI: 10.1021/acsomega.3c08902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
Chemical tracers are indispensable tools for enhancing reservoir characterization and optimizing production processes in the oil and gas industry. Particularly, interwell water tracers provide key data for efficient water flood management and the improvement of production rates. However, the analysis of these water tracers within reservoir fluids is challenging, requiring laborious separation and extraction steps that often rely on complex instruments and skilled operators. Real-time analysis is especially problematic in remote areas with limited access to well-equipped laboratories. To address these challenges, we introduce a paper-based platform for the time-resolved fluorescence detection of dipicolinic acid (DPA) tracers complexed with terbium ion (Tb3+). Our innovation is driven by the need to simplify tracer analysis, make it portable, and enhance accessibility for oilfield applications. By leveraging the unique properties of cyclen-based macrocyclic ligands, we have achieved the stable and sensitive immobilization of Tb3+ on quartz microfilter paper, eliminating the need for extensive laboratory-based procedures. We achieve the stable and sensitive immobilization of Tb3+ on quartz microfilter paper by leveraging the unique properties of cyclen-based macrocyclic ligands. This innovation enables the formation of highly fluorescent, oil-blind, and optically detectable DPA-Tb3+ complexes at the paper surface. We visualize and capture these fluorescence signals using an intensified charge-coupled device camera via time gating, effectively suppressing undesirable fluorescence originating from crude oil. The quantification of DPA concentrations is achievable down to 158 ppb (9.45 × 10-7 M), as confirmed through time-resolved fluorescence microplate reader measurements. We also demonstrate the practicality of our technology by detecting DPA tracers in the presence of crude oil contamination, a common challenge encountered in oil production wells.
Collapse
Affiliation(s)
- Bora Yoon
- Aramco Americas: Aramco
Research Center, Boston 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Kiera Y. Tai
- Aramco Americas: Aramco
Research Center, Boston 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Gawain M. Thomas
- Aramco Americas: Aramco
Research Center, Boston 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Hooisweng Ow
- Aramco Americas: Aramco
Research Center, Boston 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Sehoon Chang
- Aramco Americas: Aramco
Research Center, Boston 400 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Kachi-Terajima C, Okubo M, Ikeda M, Habata Y. Luminescence switch based on the acid/base induced reversibility of covalent bonds in lanthanide(III) complexes. Chem Commun (Camb) 2021; 57:10939-10942. [PMID: 34596172 DOI: 10.1039/d1cc04567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an exceptional example of Tb(III) luminescence switching using a reversible covalent bond. The antenna and quencher moieties attached to a ligand of a Tb(III) complex undergo acid/base-driven exchange based on the reversible formation of a hemiaminal ether structure to achieve on-off regulation of luminescence.
Collapse
Affiliation(s)
- Chihiro Kachi-Terajima
- Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan. .,Research Center for Materials with Integrated Properties, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Miku Okubo
- Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Mari Ikeda
- Education Centre, Faculty of Engineering, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275-0023, Japan
| | - Yoichi Habata
- Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan. .,Research Center for Materials with Integrated Properties, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
3
|
Detection of Gadolinium with an Impedimetric Platform Based on Gold Electrodes Functionalized by 2-Methylpyridine-Substituted Cyclam. SENSORS 2021; 21:s21051658. [PMID: 33670860 PMCID: PMC7957611 DOI: 10.3390/s21051658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022]
Abstract
Gadolinium is extensively used in pharmaceuticals and is very toxic, so its sensitive detection is mandatory. This work presents the elaboration of a gadolinium chemical sensor based on 2-methylpyridine-substituted cyclam thin films, deposited on gold electrodes, using electrochemical impedance spectroscopy (EIS). The 2-methylpyridine-substituted cyclam (bis-N-MPyC) was synthesized in three steps, including the protection of cyclam by the formation of its CH2-bridged aminal derivative; the product was characterized by liquid 1H and 13C NMR spectroscopy. Spin-coated thin films of bis-N-MPyC on gold wafers were characterized by means of infrared spectroscopy in ATR (Attenuated Total Reflectance) mode, contact angle measurements and atomic force microscopy. The impedimetric chemical sensor was studied in the presence of increasing concentrations of lanthanides (Gd3+, Eu3+, Tb3+, Dy3+). Nyquist plots were fitted with an equivalent electrical circuit including two RC circuits in series corresponding to the bis-N-MPyC film and its interface with the electrolyte. The main parameter that varies with gadolinium concentration is the resistance of the film/electrolyte interface (Rp), correlated to the rate of exchange between the proton and the lanthanide ion. Based on this parameter, the detection limit obtained is 35 pM. The bis-N-MPyC modified gold electrode was tested for the detection of gadolinium in spiked diluted negative urine control samples.
Collapse
|
4
|
Wang WH, Wang H, Yang Y, Lai X, Li Y, Wang J, Himeda Y, Bao M. Synergistic Effect of Pendant N Moieties for Proton Shuttling in the Dehydrogenation of Formic Acid Catalyzed by Biomimetic Ir III Complexes. CHEMSUSCHEM 2020; 13:5015-5022. [PMID: 32662920 DOI: 10.1002/cssc.202001190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Formic acid (FA) is among the most promising hydrogen storage materials. The development of efficient catalysts for the dehydrogenation of FA via molecular-level control and precise tuning remains challenging. A series of biomimetic Ir complexes was developed for the efficient dehydrogenation of FA in an aqueous solution without base addition. A high turnover frequency of 46510 h-1 was achieved at 90 °C in 1 m FA solution with complex 1 bearing pendant pyridine. Experimental and mechanistic studies revealed that the integrated pendant pyridine and pyrazole moieties of complex 1 could act as proton relay and facilitate proton shuttling in the outer coordination sphere. This study provides a new strategy to control proton transfer accurately and a new principle for the design of efficient catalysts for FA dehydrogenation.
Collapse
Affiliation(s)
- Wan-Hui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Hong Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Yajing Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Xiaoling Lai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Jiasheng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Yuichiro Himeda
- National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8569, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| |
Collapse
|
5
|
Drahoš B, Císařová I, Laguta O, Santana VT, Neugebauer P, Herchel R. Structural, magnetic, redox and theoretical characterization of seven-coordinate first-row transition metal complexes with a macrocyclic ligand containing two benzimidazolyl N-pendant arms. Dalton Trans 2020; 49:4425-4440. [PMID: 32176762 DOI: 10.1039/d0dt00166j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A structurally new heptadentate derivative of a 15-membered pyridine-based macrocycle containing two benzimidazol-2-yl-methyl N-pendant arms (L = 3,12-bis((1H-benzimidazol-2-yl)methyl)-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]octadeca-1(18),14,16-triene) was synthesized and its complexes with the general formula [M(L)](ClO4)2·1.5CH3NO2 (M = MnII (1), FeII (2), CoII (3) and NiII (4)) were thoroughly investigated. X-ray crystal structures confirmed that all complexes are seven-coordinate with axially compressed pentagonal bipyramidal geometry having the largest distortion for NiII complex 4. FeII, CoII and NiII complexes 2, 3 and 4 show rather large magnetic anisotropy manifested by moderate to high obtained values of the axial zero-field splitting parameter D (7.9, 40.3, and -17.2 cm-1, respectively). Magneto-structural correlation of the FeII, CoII and NiII complexes with L and with previously studied structurally similar ligands revealed a significant impact of the functional group in pendant arms on the magnetic anisotropy especially that of the CoII and NiII complexes and some recommendations concerning the ligand-field design important for anisotropy tuning in future. Furthermore, complex 3 showed field-induced single-molecule magnet behavior described with the Raman (C = 507 K-n s-1 for n = 2.58) relaxation process. The magnetic properties of the studied complexes were supported by theoretical calculations, which very well correspond with the experimental data of magnetic anisotropy. Electrochemical measurements revealed high positive redox potentials for M3+/2+ couples and high negative redox potentials for M2+/+ couples, which indicate the stabilization of the oxidation state +ii expected for the σ-donor/π-acceptor ability of benzimidazole functional groups.
Collapse
Affiliation(s)
- Bohuslav Drahoš
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00, Prague, Czech Republic
| | - Oleksii Laguta
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200, Brno, Czech Republic
| | - Vinicius T Santana
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200, Brno, Czech Republic
| | - Petr Neugebauer
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200, Brno, Czech Republic
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
6
|
Mewis RE, Archibald SJ. Side-bridged cyclam transition metal complexes bearing a phenolic ether or a phenolate pendent arm. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Connah L, Truffault V, Platas-Iglesias C, Angelovski G. Investigations into the effects of linker length elongation on the behaviour of calcium-responsive MRI probes. Dalton Trans 2019; 48:13546-13554. [DOI: 10.1039/c9dt02672j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effects of subtle structural changes on the coordination behaviour and subsequent relaxometric properties of two novel calcium-responsive magnetic resonance imaging probes have been assessed via a range of physicochemical techniques.
Collapse
Affiliation(s)
- Liam Connah
- MR Neuroimaging Agents
- Max Planck Institute for Biological Cybernetics
- 72076 Tuebingen
- Germany
| | - Vincent Truffault
- Max Planck Institute for Developmental Biology
- 72076 Tuebingen
- Germany
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Goran Angelovski
- MR Neuroimaging Agents
- Max Planck Institute for Biological Cybernetics
- 72076 Tuebingen
- Germany
| |
Collapse
|
8
|
Howard JL, Cao Q, Browne DL. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem Sci 2018; 9:3080-3094. [PMID: 29780455 PMCID: PMC5933221 DOI: 10.1039/c7sc05371a] [Citation(s) in RCA: 411] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Mechanochemistry is becoming more widespread as a technique for molecular synthesis with new mechanochemical reactions being discovered at increasing frequency. Whilst mechanochemical methods are solvent free and can therefore lead to improved sustainability metrics, it is more likely that the significant differences between reaction outcomes, reaction selectivities and reduced reaction times will make it a technique of interest to synthetic chemists. Herein, we provide an overview of mechanochemistry reaction examples, with 'direct' comparators to solvent based reactions, which collectively seemingly show that solid state grinding can lead to reduced reaction times, different reaction outcomes in product selectivity and in some instances different reaction products, including products not accessible in solution.
Collapse
Affiliation(s)
- Joseph L Howard
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Qun Cao
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Duncan L Browne
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| |
Collapse
|
9
|
Rashid HU, Martines MAU, Jorge J, de Moraes PM, Umar MN, Khan K, Rehman HU. Cyclen-based Gd 3+ complexes as MRI contrast agents: Relaxivity enhancement and ligand design. Bioorg Med Chem 2016; 24:5663-5684. [PMID: 27729196 DOI: 10.1016/j.bmc.2016.09.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/25/2016] [Accepted: 09/28/2016] [Indexed: 12/23/2022]
Abstract
Magnetic Resonance Imaging (MRI) is a noninvasive radiology technique used to examine the internal organs of human body. It is useful for the diagnosis of structural abnormalities in the body. Contrast agents are used to increase the sensitivity of this technique. 1,4,7,10-Tetraazacyclododecane (cyclen) is a macrocyclic tetraamine. Its derivatives act as useful ligands to produce stable complexes with Gd3+ ion. Such chelates are investigated as MRI contrast agents. Free Gd3+ ion is extremely toxic for in vivo use. Upon complexation with a cyclen-based ligand, it is trapped in the preformed central cavity of the ligand resulting in the formation of a highly stable Gd3+-chelate. Better kinetic and thermodynamic stability of cyclen-based MRI contrast agents decrease their potential toxicity for in vivo use. Consequently, such agents have proved to be safest for clinical applications. Relaxivity is the most important parameter used to measure the effectiveness of a contrast agent. A number of factors influence this parameter. This article elucidates detailed strategies to increase relaxivity of cyclen-based MRI contrast agents. 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) are two key ligands derived from cyclen. They also act as building blocks for the synthesis of novel ligands. A few important methodologies for the synthesis of DOTA and DO3A derivatives are described. Moreover, the coordination geometry of chelates formed by these ligands and their derivatives is discussed as well. Novel ligands can be developed by the appropriate derivatization of DOTA and DO3A. Gd3+-chelates of such ligands prove to be useful MRI contrast agents of enhanced relaxivity, greater stability, better clearance, lesser toxicity and higher water solubility.
Collapse
Affiliation(s)
- Haroon Ur Rashid
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan; Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil.
| | | | - Juliana Jorge
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Paula Martin de Moraes
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Muhammad Naveed Umar
- Department of Chemistry, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan
| | - Kamin Khan
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Hanif Ur Rehman
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
10
|
Agbo P, Abergel RJ. Ligand-Sensitized Lanthanide Nanocrystals: Merging Solid-State Photophysics and Molecular Solution Chemistry. Inorg Chem 2016; 55:9973-9980. [DOI: 10.1021/acs.inorgchem.6b00879] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peter Agbo
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J. Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Abdulwahaab BH, Burke BP, Domarkas J, Silversides JD, Prior TJ, Archibald SJ. Mono- and Bis-Alkylation of Glyoxal-Bridged Tetraazamacrocycles Using Mechanochemistry. J Org Chem 2016; 81:890-8. [DOI: 10.1021/acs.joc.5b02464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bassim H. Abdulwahaab
- Department of Chemistry and ‡Positron Emission
Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Benjamin P. Burke
- Department of Chemistry and ‡Positron Emission
Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Juozas Domarkas
- Department of Chemistry and ‡Positron Emission
Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Jon D. Silversides
- Department of Chemistry and ‡Positron Emission
Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Timothy J. Prior
- Department of Chemistry and ‡Positron Emission
Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Stephen J. Archibald
- Department of Chemistry and ‡Positron Emission
Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| |
Collapse
|
12
|
Burke BP, Seemann J, Archibald SJ. Advanced Chelator Design for Metal Complexes in Imaging Applications. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Burke BP, Baghdadi N, Kownacka AE, Nigam S, Clemente GS, Al-Yassiry MM, Domarkas J, Lorch M, Pickles M, Gibbs P, Tripier R, Cawthorne C, Archibald SJ. Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions. NANOSCALE 2015; 7:14889-14896. [PMID: 26292197 DOI: 10.1039/c5nr02753e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging.
Collapse
Affiliation(s)
- Benjamin P Burke
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shavaleev NM, Eliseeva SV, Scopelliti R, Bünzli JCG. Influence of Symmetry on the Luminescence and Radiative Lifetime of Nine-Coordinate Europium Complexes. Inorg Chem 2015; 54:9166-73. [DOI: 10.1021/acs.inorgchem.5b01580] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nail M. Shavaleev
- École Polytechnique Fédérale de
Lausanne, Institut des Sciences et Ingénierie Chimiques, Avenue Forel
2, BCH, CH-1015 Lausanne, Switzerland
| | - Svetlana V. Eliseeva
- École Polytechnique Fédérale de
Lausanne, Institut des Sciences et Ingénierie Chimiques, Avenue Forel
2, BCH, CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- École Polytechnique Fédérale de
Lausanne, Institut des Sciences et Ingénierie Chimiques, Avenue Forel
2, BCH, CH-1015 Lausanne, Switzerland
| | - Jean-Claude G. Bünzli
- École Polytechnique Fédérale de
Lausanne, Institut des Sciences et Ingénierie Chimiques, Avenue Forel
2, BCH, CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Shavaleev NM, Eliseeva SV. Synthesis and spectroscopy of anionic tridentate benzimidazole-pyridine carboxylate and tetrazolate chromophore ligands. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2014.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Nakai H, Nonaka K, Goto T, Seo J, Matsumoto T, Ogo S. A macrocyclic tetraamine bearing four phenol groups: a new class of heptadentate ligands to provide an oxygen-sensitive luminescent Tb(iii) complex with an extendable phenol pendant arm. Dalton Trans 2015; 44:10923-7. [DOI: 10.1039/c5dt00816f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potentially N4O4-octadentate ligand unprecedentedly coordinates to the Tb3+ion in a N4O3-heptadentate fashion and provides a highly luminescent and highly oxygen-sensitive terbium(iii) complex.
Collapse
Affiliation(s)
- Hidetaka Nakai
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Kyoshiro Nonaka
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Takahiro Goto
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Juncheol Seo
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Takahiro Matsumoto
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|