1
|
Yamauchi Y, Mondori Y, Uetake Y, Takeichi Y, Kawakita T, Sakurai H, Ogoshi S, Hoshimoto Y. Reversible Modulation of the Electronic and Spatial Environment around Ni(0) Centers Bearing Multifunctional Carbene Ligands with Triarylaluminum. J Am Chem Soc 2023. [PMID: 37467307 PMCID: PMC10401715 DOI: 10.1021/jacs.3c06267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Designing and modulating the electronic and spatial environments surrounding metal centers is a crucial issue in a wide range of chemistry fields that use organometallic compounds. Herein, we demonstrate a Lewis-acid-mediated reversible expansion, contraction, and transformation of the spatial environment surrounding nickel(0) centers that bear N-phosphine oxide-substituted N-heterocyclic carbenes (henceforth referred to as (S)PoxIms). Reaction between tetrahedral (syn-κ-C,O-(S)PoxIm)Ni(CO)2 and Al(C6F5)3 smoothly afforded heterobimetallic Ni/Al species such as trigonal-planar {κ-C-Ni(CO)2}(μ-anti-(S)PoxIm){κ-O-Al(C6F5)3} via a complexation-induced rotation of the N-phosphine oxide moieties, while the addition of 4-dimethylaminopyridine resulted in the quantitative regeneration of the former Ni complexes. The corresponding interconversion also occurred between (SPoxIm)Ni(η2:η2-diphenyldivinylsilane) and {κ-C-Ni(η2:η2-diene)}(μ-anti-SPoxIm){κ-O-Al(C6F5)3} via the coordination and dissociation of Al(C6F5)3. The shape and size of the space around the Ni(0) center was drastically changed through this Lewis-acid-mediated interconversion. Moreover, the multinuclear NMR, IR, and XAS analyses of the aforementioned carbonyl complexes clarified the details of the changes in the electronic states on the Ni centers; i.e., the electron delocalization was effectively enhanced among the Ni atom and CO ligands in the heterobimetallic Ni/Al species. The results presented in this work thus provide a strategy for reversibly modulating both the electronic and spatial environment of organometallic complexes, in addition to the well-accepted Lewis-base-mediated ligand-substitution methods.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaka Mondori
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuta Uetake
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Takeichi
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Kawakita
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Future Innovation (CFi), Division of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Nechaev IV, Cherkaev GV. Indolizin-1-ols with Charged Electron Acceptors: A Direct Way to 3 H-Indolizinium-1-olates with Donor Functions. J Org Chem 2022; 87:14137-14154. [PMID: 36222876 DOI: 10.1021/acs.joc.2c01700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of cyclopropenones with pyridines, having an attached integer-charged electron-withdrawing group (pyridinium, imidazolium, and phosphonium) was discovered to afford novel indolizin-1-ol derivatives in high yields with no chromatographic purification required. While being stable as solids, these indolizin-1-ols have a limited lifetime in solution. The study of reasons for such instability uncovered an aerobic oxidative pathway, eventually resulting in indolizine-1,7-dione dimers. The exploration of N-(1-hydroxyindolizin-7-yl)pyridinium salts' chemistry led to a reaction discovery, affording a new type of rare pseudo-cross-conjugated mesomeric betaines (3H-indolizin-4-ium-1-olates with an electron-donating function at C7 position) inaccessible by other means. In this reaction, a sequential introduction of nucleophiles takes place: the first one (Nu1) is represented by simple anilines, whereas Nu2 extends to primary, secondary, aliphatic, aromatic amines, and phenols. For the obtained betaines having unsymmetrical aliphatic amino groups at C7 position an increased order of the C7-Nu2 bond resulting in existence of amide type E/Z-forms (∼1:1 at room temperature) was demonstrated. For aryl amino groups, with typically reduced nitrogen's lone-pair donation, the barrier of rotation around the C7-Nu2 bond was lower, and for the C7-oxy betaines, no such E/Z-isomerism was revealed. Although primary amines (as Nu2) introduce a hydrogen atom in the conjugated betaine system, allowing prototropic tautomerism in this way, non-zwitterionic tautomers (3-amino-7-iminoindolizin-1-ones) were rejected by nuclear Overhauser effect spectroscopy experiments.
Collapse
Affiliation(s)
- Ilya V Nechaev
- Asinex Limited, 20 Geroev Panfilovtsev Street, 125480 Moscow, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Georgij V Cherkaev
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya Street, 117393 Moscow, Russia
| |
Collapse
|
3
|
Ruiz J, Mateo MA. The first synthesis of an isocyanide-functionalized imidazolium salt and transition metal complexes thereof. Dalton Trans 2022; 51:13199-13203. [PMID: 36043364 DOI: 10.1039/d2dt02119f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An isocyanide-functionalized imidazole was obtained from 4-(1H-imidazol-1-yl)aniline by the Ugi method and subsequently transformed into the corresponding imidazolium salt by treatment with MeI. Coordination of the isocyanide residue allowed the synthesis of several transition metal complexes containing a peripheral imidazolium cation, which are suitable starting materials for the formation of mixed ligand isocyanide-NHC heterometallic complexes.
Collapse
Affiliation(s)
- Javier Ruiz
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain.
| | - María A Mateo
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
4
|
Rawat VK, Higashida K, Sawamura M. Construction of Heterobimetallic Catalytic Scaffold with a Carbene-Bipyridine Ligand: Gold–Zinc Two-Metal Catalysis for Intermolecular Addition of O-Nucleophiles to Nonactivated Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vishal Kumar Rawat
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kosuke Higashida
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
5
|
Narayana BK, Keri RS, Hanumantharayudu ND, Budagumpi S. Metal‐Metal Interactions in Bi‐, Tri‐ and Multinuclear Fe, Ru and Os N‐Heterocyclic Carbene Complexes and their Catalytic Applications. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brinda Kadur Narayana
- Centre for Nano and Material Sciences Jain University, Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562 112 Karnataka India
| | - Rangappa S. Keri
- Centre for Nano and Material Sciences Jain University, Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562 112 Karnataka India
| | | | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences Jain University, Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562 112 Karnataka India
| |
Collapse
|
6
|
Kaur M, U Din Reshi N, Patra K, Bhattacherya A, Kunnikuruvan S, Bera JK. A Proton-Responsive Pyridyl(benzamide)-Functionalized NHC Ligand on Ir Complex for Alkylation of Ketones and Secondary Alcohols. Chemistry 2021; 27:10737-10748. [PMID: 33998720 DOI: 10.1002/chem.202101360] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 12/22/2022]
Abstract
A Cp*Ir(III) complex (1) of a newly designed ligand L1 featuring a proton-responsive pyridyl(benzamide) appended on N-heterocyclic carbene (NHC) has been synthesized. The molecular structure of 1 reveals a dearomatized form of the ligand. The protonation of 1 with HBF4 in tetrahydrofuran gives the corresponding aromatized complex [Cp*Ir(L1 H)Cl]BF4 (2). Both compounds are characterized spectroscopically and by X-ray crystallography. The protonation of 1 with acid is examined by 1 H NMR and UV-vis spectra. The proton-responsive character of 1 is exploited for catalyzing α-alkylation of ketones and β-alkylation of secondary alcohols using primary alcohols as alkylating agents through hydrogen-borrowing methodology. Compound 1 is an effective catalyst for these reactions and exhibits a superior activity in comparison to a structurally similar iridium complex [Cp*Ir(L2 )Cl]PF6 (3) lacking a proton-responsive pendant amide moiety. The catalytic alkylation is characterized by a wide substrate scope, low catalyst and base loadings, and a short reaction time. The catalytic efficacy of 1 is also demonstrated for the syntheses of quinoline and lactone derivatives via acceptorless dehydrogenation, and selective alkylation of two steroids, pregnenolone and testosterone. Detailed mechanistic investigations and DFT calculations substantiate the role of the proton-responsive ligand in the hydrogen-borrowing process.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Noor U Din Reshi
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Kamaless Patra
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Arindom Bhattacherya
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sooraj Kunnikuruvan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Jitendra K Bera
- Department of Chemistry and Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
7
|
van Vuuren E, Malan FP, Landman M. Multidentate NHC complexes of group IX metals featuring carbon-based tethers: Synthesis and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Remote coordination approach for electronic tuning of a rhodium(I)-N-heterocyclic carbene (NHC)-complex. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Sun R, Chu X, Zhang S, Li T, Wang Z, Zhu B. Synthesis, Structure, Reactivity, and Catalytic Activity of Cyclometalated (Phosphine)- and (Phosphinite)ruthenium Complexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ruichen Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Xiaodan Chu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Shaowei Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Tongyu Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Zhuo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Ministry of Education; College of Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| |
Collapse
|
10
|
Abstract
It is well-recognized that N-heterocyclic carbene (NHC) ligands have provided a new dimension to the design of homogeneous catalysts. Part of the success of this type of ligands resides in the limitless access to a variety of topologies with tuned electronic properties, but also in the ability of a family of NHCs that are able to adapt their properties to the specific requirements of individual catalytic transformations. The term "smart" is used here to refer to switchable, multifunctional, adaptable, or tunable ligands and, in general, to all those ligands that are able to modify their steric or electronic properties to fulfill the requirements of a defined catalytic reaction. The purpose of this review is to comprehensively describe all types of smart NHC ligands by focusing attention on the catalytically relevant ligand-based reactivity.
Collapse
Affiliation(s)
- Eduardo Peris
- Institute of Advanced Materials , Universitat Jaume I , Avenida Vicente Sos Baynat s/n , Castellón E-12071 , Spain
| |
Collapse
|
11
|
Schleicher D, Tronnier A, Leopold H, Borrmann H, Strassner T. Unusual dimer formation of cyclometalated ruthenium NHC p-cymene complexes. Dalton Trans 2016; 45:3260-3. [DOI: 10.1039/c6dt00100a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstraction of a chloride ion in p-cymene ruthenium(ii) complexes bearing cyclometalated NHC ligands selectively leads to the formation of mono-ion-bridged ruthenium dimers.
Collapse
Affiliation(s)
- David Schleicher
- Physikalische Organische Chemie
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Alexander Tronnier
- Physikalische Organische Chemie
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Hendrik Leopold
- Physikalische Organische Chemie
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Horst Borrmann
- Max-Planck-Institut für Chemische Physik fester Stoffe
- 01187 Dresden
- Germany
| | - Thomas Strassner
- Physikalische Organische Chemie
- Technische Universität Dresden
- 01069 Dresden
- Germany
| |
Collapse
|
12
|
Li R, Hu Y, Liu R, Hu R, Li B, Wang B. Ruthenium(II)-Catalyzed Oxidative Annulation Reactions of Arylimidazolium SaltsviaN-Heterocyclic Carbene-Directed CH Activation. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500788] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Gupta SK, Choudhury J. Templating an N-heterocyclic carbene (NHC)-cyclometalated Cp*IrIII-based oxidation precatalyst on a pendant coordination platform: assessment of the oxidative behavior via electrochemical, spectroscopic and catalytic probes. Dalton Trans 2015; 44:1233-9. [DOI: 10.1039/c4dt03161j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cp*IrIII(NHC)-based precatalyst does not compromise on its efficiency in catalytic C–H oxidation activity when templated on a coordination platform.
Collapse
Affiliation(s)
- Suraj K. Gupta
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462 066
- India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462 066
- India
| |
Collapse
|
14
|
Semwal S, Ghorai D, Choudhury J. Wingtip-Dictated Cyclometalation of N-Heterocyclic Carbene Ligand Framework and Its Implication toward Tunable Catalytic Activity. Organometallics 2014. [DOI: 10.1021/om500876k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shrivats Semwal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Indore By-pass Road, Bhopal 462 066, India
| | - Debasish Ghorai
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Indore By-pass Road, Bhopal 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Indore By-pass Road, Bhopal 462 066, India
| |
Collapse
|