1
|
Rinn N, Rojas-León I, Peerless B, Gowrisankar S, Ziese F, Rosemann NW, Pilgrim WC, Sanna S, Schreiner PR, Dehnen S. Adamantane-type clusters: compounds with a ubiquitous architecture but a wide variety of compositions and unexpected materials properties. Chem Sci 2024; 15:9438-9509. [PMID: 38939157 PMCID: PMC11206280 DOI: 10.1039/d4sc01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
The research into adamantane-type compounds has gained momentum in recent years, yielding remarkable new applications for this class of materials. In particular, organic adamantane derivatives (AdR4) or inorganic adamantane-type compounds of the general formula [(RT)4E6] (R: organic substituent; T: group 14 atom C, Si, Ge, Sn; E: chalcogenide atom S, Se, Te, or CH2) were shown to exhibit strong nonlinear optical (NLO) properties, either second-harmonic generation (SHG) or an unprecedented type of highly-directed white-light generation (WLG) - depending on their respective crystalline or amorphous nature. The (missing) crystallinity, as well as the maximum wavelengths of the optical transitions, are controlled by the clusters' elemental composition and by the nature of the organic groups R. Very recently, it has been additionally shown that cluster cores with increased inhomogeneity, like the one in compounds [RSi{CH2Sn(E)R'}3], not only affect the chemical properties, such as increased robustness and reversible melting behaviour, but that such 'cluster glasses' form a conceptually new basis for their use in light conversion devices. These findings are likely only the tip of the iceberg, as beside elemental combinations including group 14 and group 16 elements, many more adamantane-type clusters (on the one hand) and related architectures representing extensions of adamantane-type clusters (on the other hand) are known, but have not yet been addressed in terms of their opto-electronic properties. In this review, we therefore present a survey of all known classes of adanmantane-type compounds and their respective synthetic access as well as their optical properties, if reported.
Collapse
Affiliation(s)
- Niklas Rinn
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Irán Rojas-León
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Benjamin Peerless
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Saravanan Gowrisankar
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Ferdinand Ziese
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Nils W Rosemann
- Light Technology Institute, Karlsruhe Institute of Technology Engesserstr. 13 76131 Karlsruhe Germany
| | - Wolf-Christian Pilgrim
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Simone Sanna
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Peter R Schreiner
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Stefanie Dehnen
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
2
|
Wang KY, Zhang S, Liu HW, Cheng L, Wang C. Stepwise Conversion from GeO 2 to [MGe 4S 10] n3n- (M = Cu, Ag) Polymer via Isolatable [Ge 2S 6] 4- and [Ge 4S 10] 4- Anions by Virtue of Templating Technique. Inorg Chem 2019; 58:12832-12842. [PMID: 31490672 DOI: 10.1021/acs.inorgchem.9b01779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational synthesis of inorganic matter remains a great challenge encountered with modern synthetic chemistry. Here we reported the stepwise solvothermal conversion from GeO2 to [MGe4S10]n3n- (M = Cu, Ag) polymer via isolatable [Ge2S6]4- and [Ge4S10]4- anions by virtue of templating technique. The facile sulfuration of GeO2 resulted in the methylammonium-templated dimeric thiogermanate [CH3NH3]4Ge2S6 (1). This was used subsequently as a precursor for the formation of adamantane-like [Ge4S10]4- cluster, which was isolated as a mixed methylammonium/ethylammonium salt [CH3CH2NH3]3[CH3NH3]Ge4S10 (2). Compound 2 was then successfully used as a precursor to react with Cu+ and Ag+ cations in the presence of tetraethylammonium, resulting in alternating copolymeric products [(CH3CH2)4N]3MGe4S10 (M = Cu (3), Ag (4)), whose anionic moieties feature a novel zigzag chainlike structure constructed by [Ge4S10]4- clusters via two-coordinate Cu+/Ag+ linkers. Mixed amine/ethanol or deep eutectic solvents were applied as media for the syntheses of 1-4, and all the products were characterized in the solid state and solution. Crystal structural analysis of the title compounds revealed significant templating roles of the alkylammonium cations as both space-filling agents and hydrogen-bonding donors, suggesting the structure-directing mechanism for the species formation and crystal growth. The design and optimization of multistep structural conversion upon templating effects would be beneficial for drawing rational, predictable pathways for inorganic synthesis.
Collapse
Affiliation(s)
- Kai-Yao Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Shu Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Hua-Wei Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Lin Cheng
- College of Chemistry , Tianjin Normal University , Tianjin 300387 , P. R. China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| |
Collapse
|
3
|
Danker F, Näther C, Pielnhofer F, Bensch W. Room‐Temperature Synthesis of Three Compounds Featuring the [Ge
4
S
10
]
4–
Anion from a Water‐Soluble Thiogermanate Precursor. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Felix Danker
- Institut für Anorganische Chemie Christian‐Albrechts‐Universität zu Kiel Max‐Eyth‐Strasse 2 24118 Kiel Germany
| | - Christian Näther
- Institut für Anorganische Chemie Christian‐Albrechts‐Universität zu Kiel Max‐Eyth‐Strasse 2 24118 Kiel Germany
| | - Florian Pielnhofer
- Institute of Materials Resource Management Universität Augsburg 86135 Augsburg Germany
| | - Wolfgang Bensch
- Institut für Anorganische Chemie Christian‐Albrechts‐Universität zu Kiel Max‐Eyth‐Strasse 2 24118 Kiel Germany
| |
Collapse
|
4
|
Xu J, Xue LJ, Hou JL, Yin ZN, Zhang X, Zhu QY, Dai J. A Strong Donor–Acceptor System Based on a Metal Chalcogenide Cluster and Porphyrin. Inorg Chem 2017; 56:8036-8044. [DOI: 10.1021/acs.inorgchem.7b00775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jing Xu
- College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Li-Jun Xue
- College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jin-Le Hou
- College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhong-Nan Yin
- College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xuan Zhang
- College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jie Dai
- College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
5
|
Lin J, Fu Z, Zhang J, Zhu Y, Hu D, Li D, Wu T. Substituent-Modulated Assembly Formation: An Approach to Enhancing the Photostability of Photoelectric-Sensitive Chalcogenide-Based Ion-Pair Hybrids. Inorg Chem 2017; 56:3119-3122. [PMID: 28244749 DOI: 10.1021/acs.inorgchem.6b03061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of electronically active viologen dications (RV) with tunable substituent groups were utilized to hybridize with [Ge4S10]4- (T2 cluster) to form the hybrids of T2@RV. These hybrids exhibited variable supermolecular assembly formation, tunable optical absorption properties, and different photoelectric response under the influence of different RV dications. Raman testing and time-dependent photocurrent response indicated that the photosensitivity and photostability of T2@RV could be integrated while choosing suitable RV dications. Current research provides a general method to build a tunable hybrid system based on crystalline metal chalcogenide compounds through the replacement of photoinactive cationic organic templates with photoactive ones with different substituent groups.
Collapse
Affiliation(s)
- Jian Lin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, Jiangsu 215123, China
| | - Zhixing Fu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, Jiangsu 215123, China
| | - Jiaxu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, Jiangsu 215123, China
| | - Yujia Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, Jiangsu 215123, China
| | - Dandan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, Jiangsu 215123, China
| | - Dongsheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University , Yichang, Hubei 443002, China
| | - Tao Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, Jiangsu 215123, China
| |
Collapse
|
6
|
Liu JJ, Shan YB, Dai WX, Huang CC, Lin MJ. Assembly of donor–acceptor hybrid heterostructures based on iodoplumbates and viologen coordination polymers. Dalton Trans 2017; 46:11556-11560. [DOI: 10.1039/c7dt02133j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two D–A hybrid heterostructures have been formed by the insertion of electron-rich iodoplumbates into viologen coordination polymers, which exhibit highly effcient photocatalytic degradation RhB under visible light irradiation.
Collapse
Affiliation(s)
- Jian-Jun Liu
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- China
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
| | - Yue-Bin Shan
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- China
| | - Wen-Xin Dai
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- China
| | - Chang-Cang Huang
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- China
| | - Mei-Jin Lin
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- China
| |
Collapse
|
7
|
Liu F, Hao P, Yu T, Guan Q, Fu Y. Four imidazolium iodocuprates based on anion–π and π–π interactions: Structural and spectral modulation. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.04.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Hilbert J, Näther C, Weihrich R, Bensch W. Room-Temperature Synthesis of Thiostannates from {[Ni(tren)]2[Sn2S6]}n. Inorg Chem 2016; 55:7859-65. [PMID: 27479453 DOI: 10.1021/acs.inorgchem.6b00625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The compound {[Ni(tren)]2[Sn2S6]}n (1) (tren = tris(2-aminoethyl)amine, C6H18N4) was successfully applied as source for the room-temperature synthesis of the new thiostannates [Ni(tren)(ma)(H2O)]2[Sn2S6]·4H2O (2) (ma = methylamine, CH5N) and [Ni(tren)(1,2-dap)]2[Sn2S6]·2H2O (3) (1,2-dap = 1,2-diaminopropane, C3H10N2). The Ni-S bonds in the Ni2S2N8 bioctahedron in the structure of 1 are analyzed with density functional theory calculations demonstrating significantly differing Ni-S bond strengths. Because of this asymmetry they are easily broken in the presence of an excess of ma or 1,2-dap immediately followed by Ni-N bond formation to N donor atoms of the amine ligands thus generating [Ni(tren)(amine)](2+) complexes. The chemical reactions are fast, and compounds 2 and 3 are formed within 1 h. The synthesis concept presented here opens hitherto unknown possibilities for preparation of new thiostannates.
Collapse
Affiliation(s)
- Jessica Hilbert
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel , Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Christian Näther
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel , Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Richard Weihrich
- Institute of Inorganic Chemistry, University of Regensburg , Universitätsstraße 31, 93040 Regensburg, Germany
| | - Wolfgang Bensch
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel , Max-Eyth-Str. 2, 24118 Kiel, Germany
| |
Collapse
|
9
|
Zhu Y, Yu T, Hao P, Shen J, Fu Y. Halogen-Dependent Thermochromic Properties in Three Methyl-Viologen/Haloargentate Charge Transfer (CT) Salts. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-0999-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Yue CY, Lei XW, Yin L, Zhai XR, Ba ZR, Niu YQ, Li YP. [Mn(dien)2]MnSnS4, [Mn(1,2-dap)]2Sn2S6 and [Mn(en)2]MnGeS4: from 1D anionic and neutral chains to 3D neutral frameworks. CrystEngComm 2015. [DOI: 10.1039/c4ce02063d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three new organic–inorganic hybrid manganese thiogermanates and thiostannates with 1D anionic or neutral chains and 3D neutral frameworks have been synthesized and feature interesting antiferromagnetic or ferromagnetic properties.
Collapse
Affiliation(s)
- Cheng-Yang Yue
- Key Laboratory of Inorganic Chemistry in Universities of Shandong
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu, China
| | - Xiao-Wu Lei
- Key Laboratory of Inorganic Chemistry in Universities of Shandong
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu, China
| | - Ling Yin
- Key Laboratory of Inorganic Chemistry in Universities of Shandong
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu, China
| | - Xiu-Rong Zhai
- Key Laboratory of Inorganic Chemistry in Universities of Shandong
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu, China
| | - Zhong-Ren Ba
- Key Laboratory of Inorganic Chemistry in Universities of Shandong
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu, China
| | - Yan-Qiang Niu
- Key Laboratory of Inorganic Chemistry in Universities of Shandong
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu, China
| | - Yue-Peng Li
- Key Laboratory of Inorganic Chemistry in Universities of Shandong
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu, China
| |
Collapse
|