1
|
Gonçalves FS, Macedo LJA, Souza ML, Lehnert N, Crespilho FN, Roveda Jr AC, Cardoso DR. In Situ FT-IR Spectroelectrochemistry Reveals Mechanistic Insights into Nitric Oxide Release from Ruthenium(II) Nitrosyl Complexes. Inorg Chem 2024; 63:21387-21396. [PMID: 39475160 PMCID: PMC11558665 DOI: 10.1021/acs.inorgchem.4c03185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/12/2024]
Abstract
Ruthenium(II) tetraamine nitrosyl complexes with N-heterocyclic ligands are known for their potential as nitric oxide (NO•) donors, capable of releasing NO• through either direct photodissociation or one-electron reduction of the Ru(II)NO+ center. This study delivers a novel insight into the one-electron reduction mechanism for the model complex trans-[RuII(NO)(NH3)4(py)]3+ (RuNOpy, py = pyridine) in phosphate buffer solution (pH 7.4). In situ FT-IR spectroelectrochemistry reveals that the pyridine ligand is readily released upon one-electron reduction of the nitrosyl complex, a finding supported by nuclear magnetic resonance spectroscopy (1H NMR) and electrochemistry coupled to mass spectrometry (EC-MS), which detect free pyridine in solution. However, direct evidence of NO• release from RuNOpy as the primary step following reduction was not observed. Interestingly, FT-IR results indicate that the isomers of the nitrosyl complex, cis-[Ru(NO)(NH3)4(OH)]+ and trans-[Ru(NO)(NH3)4(OH)]+, are formed following reduction and pyridine labilization, initiating an outer-sphere electron transfer process that triggers a chain electron transfer reaction. Finally, nitric oxide is liberated as an end product, arising from the reduction of the hydroxyl isomer complexes cis-[Ru(NO)(NH3)4(OH)]2+ and trans-[Ru(NO)(NH3)4(OH)]2+. This study provides new insights into the reduction mechanism and transformation pathways of ruthenium nitrosyl complexes, contributing to our understanding of their potential as NO• donors.
Collapse
Affiliation(s)
| | - Lucyano J. A. Macedo
- São
Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, SP,Brazil
- Brazilian
Synchrotron Light Laboratory, Brazilian Center for Research in Energy
and Materials, Campinas 13084-971, SP, Brazil
| | - Maykon L. Souza
- São
Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, SP,Brazil
| | - Nicolai Lehnert
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank N. Crespilho
- São
Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, SP,Brazil
| | - Antonio C. Roveda Jr
- São
Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, SP,Brazil
| | - Daniel R. Cardoso
- São
Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, SP,Brazil
| |
Collapse
|
2
|
Stepanenko I, Zalibera M, Schaniel D, Telser J, Arion V. Ruthenium-nitrosyl complexes as NO-releasing molecules and potential anticancer drugs. Dalton Trans 2022; 51:5367-5393. [DOI: 10.1039/d2dt00290f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of new types of mono- and polynuclear ruthenium nitrosyl complexes is driving progress in the field of NO generation for a variety of applications. Light-induced Ru-NO bond dissociation...
Collapse
|
3
|
Guerrero-Almaraz P, Quiroz M, Reibenspies JH, Darensbourg MY. Linear and Bent Nitric Oxide Ligand Binding in an Asymmetric Butterfly Complex: CoMoCo'. Inorg Chem 2021; 60:15975-15979. [PMID: 34157221 DOI: 10.1021/acs.inorgchem.1c00987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two synthetic approaches to install metallodithiolate ligands on molybdenum centers using the synthons [Mo2(CH3CN)10]4+ and (N2S2)Co(NO) [N2S2 = N,N-bis(2-mercaptoethyl)-1,4-diazacycloheptane and NO = nitric oxide], or [Mo(NO)2(CH3CN)4]2+ (CH3CN = acetonitrile) and [(N2S2)Co]2 lead to a bis-nitrosylated, trimetallic dication, CoMoCo'. This unique asymmetric butterfly complex, with S = 1, has a bent NO within the small {Co(NO)}8 wing (denoted as Co), reflecting CoIII(NO-), and is S-bridged to a linear {Mo(NO)}6 diamagnetic unit. The latter is further S-bridged to a pentacoordinate (N2S2)CoIII(CH3CN) donor in the larger wing and is the origin of the two unpaired electrons, denoted as Co'. The asymmetry in Mo-Co distances, 3.33 Å in the Co wing and 2.73 Å in the Co' wing, indicated a Mo-Co' bonding interaction. The transfer of NO from (N2S2)Co(NO) in the former path is needed to cleave the strong quadruple bond in [Mo≣Mo]4+, with the energetic cost compensated for via a one-electron bond between Mo and Co', as indicated by natural bonding orbital analysis.
Collapse
Affiliation(s)
| | - Manuel Quiroz
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Joseph H Reibenspies
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Marcetta Y Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Mikhailov AA, Stolyarova ED, Kostin GA. PHOTOCHEMISTRY OF RUTHENIUM NITROSYL COMPLEXES IN SOLIDS AND SOLUTIONS AND ITS POTENTIAL APPLICATIONS. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621040016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Kraka E, Freindorf M. Characterizing the Metal–Ligand Bond Strength via Vibrational Spectroscopy: The Metal–Ligand Electronic Parameter (MLEP). TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Schaniel D, Casaretto N, Bendeif EE, Woike T, Gallien AKE, Klüfers P, Kutniewska SE, Kamiński R, Bouchez G, Boukheddaden K, Pillet S. Evidence for a photoinduced isonitrosyl isomer in ruthenium dinitrosyl compounds. CrystEngComm 2019. [DOI: 10.1039/c9ce01119f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photo-induced NO rotation from N-bound (blue) to O-bound (red) with blue light at 100 K in the compound [Ru(NO)2(PCy3)2Cl]BF4.
Collapse
Affiliation(s)
| | | | | | - Theo Woike
- Université de Lorraine
- CNRS
- CRM2
- Nancy
- France
| | | | - Peter Klüfers
- Department Chemie der Ludwig-Maximilians-Universität
- 81377 Munich
- Germany
| | | | | | - Guillaume Bouchez
- Groupe d'Etudes de la Matière Condensée
- Université de Versailles
- Université Paris-Saclay
- CNRS UMR 8635
- 78035 Versailles
| | - Kamel Boukheddaden
- Groupe d'Etudes de la Matière Condensée
- Université de Versailles
- Université Paris-Saclay
- CNRS UMR 8635
- 78035 Versailles
| | | |
Collapse
|
7
|
Oppermann A, Laurini L, Etscheidt F, Hollmann K, Strassl F, Hoffmann A, Schurr D, Dittmeyer R, Rinke G, Herres-Pawlis S. Detection of Copper Bisguanidine NO Adducts by UV-vis Spectroscopy and a SuperFocus Mixer. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201600691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alexander Oppermann
- RWTH Aachen University; Institut für Anorganische Chemie; Landoltweg 1 52074 Aachen Germany
| | - Larissa Laurini
- RWTH Aachen University; Institut für Anorganische Chemie; Landoltweg 1 52074 Aachen Germany
| | - Fabian Etscheidt
- RWTH Aachen University; Institut für Anorganische Chemie; Landoltweg 1 52074 Aachen Germany
| | - Katharina Hollmann
- RWTH Aachen University; Institut für Anorganische Chemie; Landoltweg 1 52074 Aachen Germany
| | - Florian Strassl
- RWTH Aachen University; Institut für Anorganische Chemie; Landoltweg 1 52074 Aachen Germany
| | - Alexander Hoffmann
- RWTH Aachen University; Institut für Anorganische Chemie; Landoltweg 1 52074 Aachen Germany
| | - Daniela Schurr
- Karlsruhe Institute of Technology; Institute for Micro Process Engineering; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Roland Dittmeyer
- Karlsruhe Institute of Technology; Institute for Micro Process Engineering; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Günter Rinke
- Karlsruhe Institute of Technology; Institute for Micro Process Engineering; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Sonja Herres-Pawlis
- RWTH Aachen University; Institut für Anorganische Chemie; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
8
|
Cremer D, Kraka E. Generalization of the Tolman electronic parameter: the metal–ligand electronic parameter and the intrinsic strength of the metal–ligand bond. Dalton Trans 2017; 46:8323-8338. [DOI: 10.1039/c7dt00178a] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The MLEP is a new, generally applicable measure of the metal–ligand bond strength based on vibrational spectroscopy, replacing the TEP.
Collapse
Affiliation(s)
- Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO)
- Department of Chemistry
- Southern Methodist University
- Dallas
- USA
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO)
- Department of Chemistry
- Southern Methodist University
- Dallas
- USA
| |
Collapse
|
9
|
Structures and spectroscopic properties of three [RuCl(2mqn) 2 NO] (H2mqn = 2-methyl-8-quinolinol) isomers: An experimental and density functional theoretical study. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Böttcher HC, Mies T, Mayer P. Synthesis and Molecular Structure of trans-[IrCl(NO)(P tBu 2H) 2]BF 4. Z Anorg Allg Chem 2016. [DOI: 10.1002/zaac.201600182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Böttcher HC, Mayer P. Synthesis and Molecular Structure oftrans-[RhCl(NO)(PtBu2H)2]BF4. Z Anorg Allg Chem 2016. [DOI: 10.1002/zaac.201500828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Casaretto N, Fournier B, Pillet S, Bendeif EE, Schaniel D, Gallien AKE, Klüfers P, Woike T. Photo-induced linkage NO isomers in the dinitrosyl complex [Ru(NO)2(PCy3)2Cl](BF4) identified by photocrystallography and IR-spectroscopy. CrystEngComm 2016. [DOI: 10.1039/c6ce00735j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Casaretto N, Pillet S, Bendeif EE, Schaniel D, Gallien AKE, Klüfers P, Woike T. Photocrystallography and IR spectroscopy of light-induced linkage NO isomers in [RuBr(NO)2(PCyp3)2]BF4. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2015; 71:788-97. [DOI: 10.1107/s2052520615018132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/28/2015] [Indexed: 11/10/2022]
Abstract
One single photo-induced linkage NO isomer (PLI) is detected and characterized in the dinitrosyl pentacoordinated compound [RuBr(NO)2(PCyp3)2]BF4 by a combination of photocrystallographic and IR analysis. In the ground state, the molecule adopts a trigonal–bipyramidal structure with the two NO ligands almost linear with angles Ru—N1—O1 = 168.92 (16), Ru—N2—O2 = 166.64 (16)°, and exactly equal distances of Ru—N = 1.7838 (17) and O—N = 1.158 (2) Å. After light irradiation of 405 nm at T = 10 K, the angle of Ru—N2—O2 changes to 114.2 (6)° by rotation of the O atom towards the Br ligand with increased distances of Ru—N2 = 1.992 (6) and N2—O2 = 1.184 (8) Å, forming a bent κN bonded configuration. Using IR spectroscopy, the optimal wavelength and maximum population of 39 (1)% of the PLI is determined. In the ground state (GS), the two symmetric νs(NO) and asymmetric νas(NO) vibrations are measured at 1820 and 1778 cm−1, respectively. Upon photo-irradiation, the detection of only one new vibrational ν(NO) stretching band at 1655 cm−1, assigned to the antisymmetric coupled vibration mode and shifted to lower wavenumbers by −123 cm−1, supports the photocrystallographic result. These experimental results are supported by additional DFT calculations, which reproduce the structural parameters and vibrational properties of both the ground state and the photo-induced linkage isomer well. Especially the experimentally characterized molecular structure of the PLI state corresponds to an energy minimum in the calculations; the stabilization of the bent κN bonded configuration of the PLI state originates from specific intramolecular orbital overlap.
Collapse
|
14
|
Attia AA, Dereven’kov IA, Silaghi-Dumitrescu R. Ruthenium dinitrosyl complexes – computational characterization of structure and reactivity. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1041936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Amr A.A. Attia
- Department of Chemistry, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Ilia A. Dereven’kov
- Department of Food Chemistry and Biotechnology, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| | | |
Collapse
|