1
|
Pilichos E, Font-Bardia M, Aullón G, Mayans J, Escuer A. Family of Quasi-Isotropic Mn II and Mn 2II Complexes Exhibiting Slow Relaxation of the Magnetization. Inorg Chem 2024; 63:20415-20426. [PMID: 39411954 PMCID: PMC11523239 DOI: 10.1021/acs.inorgchem.4c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Slow relaxation of magnetization has been studied for a family of mononuclear MnII complexes and one ferromagnetic dinuclear system, all of them presenting very weak anisotropy. Complexes with formula [{NiL1Mn(H2O)2(MeOH)}{NiL1}2](ClO4)2 (1), [Mn{NiL1}2](ClO4)2 (2), [Mn{NiL2}2](ClO4)2 (RR-L22-, 3RR, SS-L22-, 3SS), [Mn{NiL3}2](ClO4)2 (RR-L32-, 4RR, SS-L32-, 4SS) and (μ1,1-N3)2[Ni2Mn2(L1)2(N3)2] (5) are derived from compartmental Schiff bases, in which the NiII environment is square planar and thus diamagnetic. All of the systems have been structurally and magnetically characterized. Zero field splitting (D) values for the MnII cations have been obtained from EPR spectroscopy and NEVPT2 calculations. The slow relaxation of the magnetization for 1-5 has been studied by means of ac magnetometry and rationalized on the basis of their low, but not zero, anisotropy, providing the first example of a polynuclear MnII complex, with S = 5 ground state, exhibiting slow relaxation.
Collapse
Affiliation(s)
- Evangelos Pilichos
- Departament
de Química Inorgànica i Orgànica, Secció
Inorgànica and Institute of Nanoscience and Nanotecnology, Universitat de Barcelona, Marti i Franques 1-11, Barcelona 08028, Spain
| | - Mercè Font-Bardia
- Departament
de Mineralogia, Cristal·lografia i Dipòsits Minerals, Universitat de Barcelona, Martí Franqués s/n, 08028 Barcelona, Spain
- Unitat
de Difracció de R-X. Centre Científic
i Tecnològic de la Universitat de Barcelona, Solé i Sabarís 1-3., 08028 Barcelona, Spain
| | - Gabriel Aullón
- Departament
de Química Inorgànica i Orgànica, Secció
Inorgànica and Institut de Química Teòrica i
Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Júlia Mayans
- Departament
de Química Inorgànica i Orgànica, Secció
Inorgànica and Institute of Nanoscience and Nanotecnology, Universitat de Barcelona, Marti i Franques 1-11, Barcelona 08028, Spain
| | - Albert Escuer
- Departament
de Química Inorgànica i Orgànica, Secció
Inorgànica and Institute of Nanoscience and Nanotecnology, Universitat de Barcelona, Marti i Franques 1-11, Barcelona 08028, Spain
| |
Collapse
|
2
|
da Silveira COC, Oliveira WXC, da Silva Júnior EN, Alvarenga ME, Martins FT, Gatto CC, Pinheiro CB, Pedroso EF, Silva JPO, Marques LF, Santos MV, Torres FR, Euclides R, Freire RO, Nunes WC, de Almeida AA, Knobel M, Pereira CLM. Photoluminescence and magnetic properties of isostructural europium(III), gadolinium(III) and terbium(III) oxamate-based coordination polymers. Dalton Trans 2024; 53:14995-15009. [PMID: 39076042 DOI: 10.1039/d4dt01290a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Developing and investigating advanced multifunctional materials with magnetic properties as candidates for assembling spin qubits for quantum computing is imperative. A new polytopic ligand based on oxamate and aniline was used to promote the synthesis of three neutral homometallic lanthanide-coordinated polymers. New complexes with the formula {Ln(phox)3(DMSO)2(H2O)}n, where Ln = Eu3+ (1), Gd3+ (2), and Tb3+ (3) [phox = N-(phenyl)oxamate and DMSO = dimethylsulfoxide], were synthesized and well characterized by spectroscopic methods as well as X-ray crystallographic analysis. All crystalline structures comprise neutral zigzag chains. The lanthanide ions are linked by three phox ligands, in which two oxygen atoms from two different ligands are responsible for connecting the trivalent lanthanide ions, and one phox ligand completes the coordination sphere in a bis-bidentate mode, together with two DMSO molecules and one water coordination molecule. The coordination sphere of lanthanide ions consisted of spherical capped square antiprism (CSAPR-9) symmetry. The magnetic properties of 1-3 were investigated in the 2-300 K temperature range. The dynamic (ac) magnetic properties of 2 reveal a frequency dependence involving the phonon bottleneck mechanism below 33 K under nonzero applied dc magnetic fields, resulting in an example of a field-induced single-molecule magnet. Solid-state photophysical measurements for Eu3+ (1) and Tb3+ (3) complexes indicate that the N-(phenyl)oxamate ligands are very efficient in sensitizing the lanthanide(III) ions in the visible region of the electromagnetic spectrum. Compounds 1 and 3 exhibited an emission in the red and green regions, respectively. Experimental results and theoretical calculations using the Sparkle/RM1 method support a quantum efficiency of ∼72% for 1, suggesting its potential as a candidate for light conversion molecular devices (LCMDs).
Collapse
Affiliation(s)
- Cleverton O C da Silveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Willian X C Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Eufrânio N da Silva Júnior
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Meiry E Alvarenga
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Setor Itatiaia, Caixa Postal 131, Goiânia, Goiás, 74001970, Brazil
| | - Felipe T Martins
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Setor Itatiaia, Caixa Postal 131, Goiânia, Goiás, 74001970, Brazil
| | - Claudia C Gatto
- Instituto de Química, Universidade de Brasília, Asa Norte, Brasília, Distrito Federal, 70904970, Brazil
| | - Carlos B Pinheiro
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Emerson F Pedroso
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas, 5253, Belo Horizonte, MG, 30421-169, Brazil
| | - Júlia P O Silva
- Grupo de Química de Coordenação e Espectroscopia de Lantanídeos (GQCEL), Universidade do Estado do Rio de Janeiro, Centro de Tecnologia de Ciências, Instituto de Química, Maracanã, Rio de Janeiro, 20550-900, Brazil
| | - Lippy F Marques
- Grupo de Química de Coordenação e Espectroscopia de Lantanídeos (GQCEL), Universidade do Estado do Rio de Janeiro, Centro de Tecnologia de Ciências, Instituto de Química, Maracanã, Rio de Janeiro, 20550-900, Brazil
| | - Moliria V Santos
- Biosmart Nanotechnology Ltda, Avenida Jorge Fernandes de São Mattos, 311, Box 4, Araraquara, 14808-162, SP, Brazil
| | - Francisco R Torres
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040901 - Ribeirão Preto, SP, Brazil
| | - Rividy Euclides
- Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão-SE, 49100-000, Brazil
| | - Ricardo O Freire
- Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão-SE, 49100-000, Brazil
| | - Wallace C Nunes
- Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n°, Niterói 24210-346, RJ, Brazil
| | - Adriele A de Almeida
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda, 777, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, SP, 13083-859, Brazil
| | - Marcelo Knobel
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda, 777, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, SP, 13083-859, Brazil
| | - Cynthia L M Pereira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
3
|
Jabeur W, Korb M, Hamdi M, Holub M, Princík D, Zeleňák V, Sanchez-Coronilla A, Shalash M, Čižmár E, Naïli H. Structural, optical and magnetic properties of a new metal-organic Co II-based complex. RSC Adv 2024; 14:25048-25061. [PMID: 39135970 PMCID: PMC11317920 DOI: 10.1039/d4ra02149e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
A mononuclear cobalt(ii) complex [C5H8N3]2[CoCl4(C5H7N3)2] (I) was synthesized and structurally characterized. Single crystal X-ray diffraction analysis indicates that monometallic Co(ii) ions acted as coordination nodes in a distorted octahedral geometry, giving rise to a supramolecular architecture. The latter is made up of a ½ unit form composed of an anionic element [Co0.5Cl2(C5H7N3)]- and one 2-amino-4-methylpyrimidinium cation [C5H8N3]+. The crystalline arrangement of this compound adopts the sandwich form where inorganic parts are sandwiched between the organic sheets following the [100] direction. More information regarding the structure hierarchy has been supplied based on Hirshfeld surface analysis; the X⋯H (X = N, Cl) interactions play a crucial role in stabilizing the self-assembly process of I, complemented by the intervention of π⋯π electrostatic interaction created between organic entities. Thermal analyses were carried out to study the thermal behavior process. Static magnetic measurements and ab initio calculations of compound I revealed the easy-axis anisotropy character of the central Co(ii) ion. Two-channel field-induced slow-magnetic relaxation was observed; the high-frequency channel is characterized by underbarrier relaxation with U eff = 16.5 cm-1, and the low-frequency channel involves a direct relaxation process affected by the phonon-bottleneck effect.
Collapse
Affiliation(s)
- Wiem Jabeur
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University POBOX 1171 3000 Sfax Tunisia
| | - Marcus Korb
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth Western Australia 6009 Australia
| | - Mohamed Hamdi
- Department of Chemistry, College of Sciences and Arts Turaif, Northern Border University Arar Saudi Arabia
| | - Mariia Holub
- Institute of Physics, Faculty of Science, P. J. Šafárik University in Košice SK-041 54 Košice Slovakia
| | - Dávid Princík
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Košice SK-041 54 Slovakia
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Košice SK-041 54 Slovakia
| | | | - Marwan Shalash
- Department of Chemistry, College of Sciences and Arts Turaif, Northern Border University Arar Saudi Arabia
| | - Erik Čižmár
- Institute of Physics, Faculty of Science, P. J. Šafárik University in Košice SK-041 54 Košice Slovakia
| | - Houcine Naïli
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University POBOX 1171 3000 Sfax Tunisia
| |
Collapse
|
4
|
Wu DQ, Kumari K, Wan Y, Gao X, Guo M, Liu G, Shao D, Zhai B, Singh SK. Binuclear cobalt(II) and two-dimensional manganese(II) coordination compounds self-assembled by mixed bipyridine-tetracarboxylic ligands with single-ion magnet properties. Dalton Trans 2023; 52:16197-16205. [PMID: 37873572 DOI: 10.1039/d3dt03016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A cobalt(II) complex and manganese(II) coordination polymer, formulated as [Co2(H2btca)(mbpy)4][H2btca]·4H2O (1) and {Mn2(btca)(mbpy)2(H2O)2}n (2) (H4btca = 1,2,4,5-benzenetetracarboxylic acid; mbpy = 4,4'-dimethyl-2,2'-bipyridyl), constructed by mixed bipyridine-tetracarboxylic ligands were synthesized and characterized. Single-crystal structural analyses reveal that compound 1 is a discrete neutral binuclear molecule, while compound 2 is a two-dimensional (2D) coordination polymer. The metal ions in these compounds are well isolated, with an intramolecular Co2+⋯Co2+ distance of 9.170 Å for 1 and Mn2+⋯Mn2+ separation of 10.984 and 11.164 Å for 2 due to the bulk tetracarboxylic linker. This isolation gives rise to a single-ion magnetism origin of the compounds. Magnetic studies reveal a large zero-field splitting parameter D of 82.6 cm-1 for 1, while a very small D of 0.42 cm-1 was observed for 2. Interestingly, dynamic ac magnetic measurements exhibited slow magnetic relaxation under the external dc field of the two compounds, revealing the field-supported single-ion magnet (SIM) of 1 and 2. The detailed theoretical calculations were further applied to understand the electronic structures, magnetic anisotropy, and relaxation dynamics in 1 and 2. Combined with our recently reported compound (Eur. J. Inorg. Chem., 2022, e202200354), the foregoing results provide not only a rare binuclear cobalt(II) SIM and the first 2D manganese(II) SIM coordination polymer but also a bipyridine-tetracarboxylic ligand approach toward novel SIMs.
Collapse
Affiliation(s)
- Dong-Qing Wu
- Engineering Research Center of Photoelectric Functional Material, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.
| | - Kusum Kumari
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Yi Wan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Xueling Gao
- Engineering Research Center of Photoelectric Functional Material, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.
| | - Mengxi Guo
- Engineering Research Center of Photoelectric Functional Material, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Bin Zhai
- Engineering Research Center of Photoelectric Functional Material, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| |
Collapse
|
5
|
Wang LX, Wu XF, Jin XX, Li JY, Wang BW, Liu JY, Xiang J, Gao S. Slow magnetic relaxation in 8-coordinate Mn(II) compounds. Dalton Trans 2023; 52:14797-14806. [PMID: 37812439 DOI: 10.1039/d3dt02307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The design and synthesis of high-spin Mn(II)-based single-molecule magnets (SMMs) have not been well developed to a great extent, as compared with a large number of SMMs based on the other first row transition metal complexes. In light of our success in designing Fe(II), Co(II) and Fe(III)-based SMMs with a high coordination number of 8, it is of great interest to design Mn(II) analogues with such a strategy. In this contribution, four Mn(II) compounds, [MnII(Ln)2](ClO4)2 (1-4) were obtained from reactions of neutral tetradentate ligands, L1-L4, with hydrated MnII(ClO4)2 (L1 = 2,9-bis(carbomethoxy)-1,10-phenanthroline, L2 = 2,9-bis(carbomethoxy)-2,2'-dipyridine, L3 = N2,N9-dibutyl-1,10-phenanthroline-2,9-dicarboxamide, L4 = 6,6'-bis(2-(tert-butyl)-2H-tetrazol-5-yl)-2,2'-bipyridine). Their crystal structures have been determined by X-ray crystallography and it clearly shows that the Mn(II) centers in these compounds have an oversaturated coordination number of 8. Their magnetic properties have been investigated in detail; to our surprise, all of these Mn(II) compounds show interesting slow magnetic relaxation behaviors under an applied direct current field, although they have very small negative D values.
Collapse
Affiliation(s)
- Li-Xin Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Xiao-Fan Wu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Xin-Xin Jin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Jia-Yi Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Ji-Yan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Jing Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Song Gao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
- School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Xia CC, Zhang XY, Zhang CC, Li G, Wei HY, Wang XY. Syntheses and magnetic properties of a bis-bidentate nitronyl nitroxide radical based on triazolopyrimidine and its metal complexes. Dalton Trans 2023. [PMID: 37326416 DOI: 10.1039/d3dt01277h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel bis-bidentate nitronyl nitroxide radical based on triazolopyrimidine, NIT-2-TrzPm (NIT-2-TrzPm = (2-(2'-triazolopyrimidine)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy-3-oxide)) and six new transition metal complexes of this ligand, namely [M(hfac)2(NIT-2-TrzPm)]·CH2Cl2 (M = Mn (1Mn) and Co (2Co)), [M(hfac)2]2(NIT-2-TrzPm) (M = Mn (3Mn) and Co (4Co)), [Mn(NIT-2-TrzPm)2(MeOH)2](ClO4)2·MeOH (5Mn), and [Co(NIT-2-TrzPm)2(MeOH)2]2(ClO4)4·4MeOH (6Co) were prepared and characterized structurally and magnetically. These complexes can be selectively synthesized by controlling the reaction ratio of M(hfac)2·2H2O to the radical ligand (for 1Mn to 4Co) or using metal perchlorates as the starting materials (for 5Mn and 6Co). Single crystal X-ray crystallographic analyses confirmed that 1Mn and 2Co are isostructural 3d-2p MII-radical complexes, in which the NIT-2-TrzPm radical acts as a terminal bidentate ligand chelating to one 3d ion, while 3Mn and 4Co are isostructural 3d-2p-3d MII-radical-MII complexes with the NIT-2-TrzPm radical acting as a bridging ligand between two 3d ions. For complexes 5Mn and 6Co, two NIT-2-TrzPm ligands from the equatorial positions coordinate with the metal center to form the 2p-3d-2p structures with the axial positions occupied by two methanol molecules. Magnetic analysis on the MnII complexes revealed the existence of a strong antiferromagnetic interaction between the MnII and the NIT radical spin, while weak ferromagnetic coupling for Mn⋯Mn and Rad⋯Rad in the Mn-NIT-Mn and Rad-Mn-Rad spins was confirmed. Interestingly, although the NIT-bridged complexes 3Mn and 4Co possess significantly different magnetic anisotropy, field-induced slow magnetic relaxation can be observed in both complexes, which was assigned to the phonon bottleneck effect for 3Mn and field-induced SMM behavior for 4Co. To the best of our knowledge, 3Mn is the first example of the NIT-bridged binuclear MnII complex undergoing slow magnetic relaxation.
Collapse
Affiliation(s)
- Cheng-Cai Xia
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xin-Yu Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Cheng-Cheng Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Gang Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hai-Yan Wei
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Bazhina ES, Shmelev MA, Babeshkin KA, Efimov NN, Kiskin MA, Eremenko IL. Two families of Ln(III)-V(IV) compounds (Ln(III) = Eu, Tb, Dy, Ho) of different structural types mediated by Rb+ and Cs+ cations: Slow magnetic relaxation of Eu(III)- and Ho(III)-containing members. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Mičová R, Rajnák C, Titiš J, Samoľová E, Zalibera M, Bieńko A, Boča R. Slow magnetic relaxation in two mononuclear Mn(II) complexes not governed by the over-barrier Orbach process. Chem Commun (Camb) 2023; 59:2612-2615. [PMID: 36757181 DOI: 10.1039/d2cc06510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two hexacoordinate Mn(II) complexes containing a chelating residue of hexafluoroacetylacetone and (Cl-substituted) 4-benzylpyridine show DC magnetic functions typical for S = 5/2 spin systems: g ∼ 2, D - small. The AC susceptibility confirms a field supported slow magnetic relaxation in which the over-barrier Orbach relaxation process does not play a role. Both systems possess two or three slow relaxation channels.
Collapse
Affiliation(s)
- Romana Mičová
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Erika Samoľová
- X-Ray Crystallography Facility, UC San Diego, 5128 Urey Hall MC 0358, 9500 Gilman Drive, La Jolla CA, USA.,Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Michal Zalibera
- Department of Physical Chemistry, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Alina Bieńko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| |
Collapse
|
9
|
Nakajima H, Uchida K, Yoshida T, Horii Y, Sato T, Luming Z, Yamashita S, Nakazawa Y, Agulto VC, Nakajima M, Breedlove BK, Yamashita M, Iguchi H, Takaishi S. Porous Mn 2+ Magnet with a Pt-Cl Framework: Correlation between Water Vapor Adsorption/Desorption and Slow Magnetic Relaxation. Chemphyschem 2023; 24:e202200618. [PMID: 36287210 DOI: 10.1002/cphc.202200618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Indexed: 11/08/2022]
Abstract
We report the water adsorption/desorption behavior and dynamic magnetic properties of the Pt-Cl chain complex [{[Pt(en)2 ][PtCl2 (en)2 ]}3 ][{(MnCl5 )Cl3 }2 ] ⋅ 12H2 O (1). Upon heating 1 in a vacuum, we obtained the dehydrated form [{[Pt(en)2 ][PtCl2 (en)2 ]}3 ][{(MnCl5 )Cl3 }2 ] (1DH). The framework structures of 1 and 1DH are identical, and both complexes underwent slow magnetic relaxation. However, the magnetic relaxation times for 1DH were shorter than those for 1, meaning that the dynamic magnetic properties were controlled upon water vapor adsorption/desorption. From detailed analyses of the dynamic magnetic behavior, a phonon-bottleneck effect contributes to the magnetic relaxation processes. We discuss the mechanism for the changes in the magnetic relaxation processes upon dehydration in terms of the heat capacity and thermal conductivity.
Collapse
Affiliation(s)
- Hirotaka Nakajima
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, 980-8578, Japan
| | - Kaiji Uchida
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, 980-8578, Japan
| | - Takefumi Yoshida
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, 980-8578, Japan
| | - Yoji Horii
- Department of Chemistry, Nara Women's University, Kitauoyanishimachi, Nara, 630-8503, Japan
| | - Tetsu Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, 980-8578, Japan
| | - Zhang Luming
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Satoshi Yamashita
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuhiro Nakazawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Verdad C Agulto
- Institute of Laser Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Makoto Nakajima
- Institute of Laser Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, 980-8578, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, 980-8578, Japan.,School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hiroaki Iguchi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, 980-8578, Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
10
|
Kumar Sahu P, Kharel R, Shome S, Goswami S, Konar S. Understanding the unceasing evolution of Co(II) based single-ion magnets. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
A mono-nuclear Cu(II) complex of an unsymmetrical Schiff base ligand and its use to synthesise trinucler CuII2MnII complexes showing anion dependent SMM behaviour. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Wen GH, Zou Q, Xu K, Huang XD, Bao SS, Chen XT, Ouyang Z, Wang Z, Zheng LM. Layered Uranyl Phosphonates Encapsulating Co(II)/Mn(II)/Zn(II) Ions: Exfoliation into Nanosheets and Its Impact on Magnetic and Luminescent Properties. Chemistry 2022; 28:e202200721. [PMID: 35570193 DOI: 10.1002/chem.202200721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 01/17/2023]
Abstract
Layered heterometallic 5f-3d uranyl phosphonates can exhibit unique luminescent and/or magnetic properties, but the fabrication and properties of their 2D counterparts have not been investigated. Herein we report three heterobimetallic uranyl phosphonates, namely, [(UO2 )3 M(2-pmbH)4 (H2 O)4 ] ⋅ 2H2 O [MU, M=Co(II), CoU; Mn(II), MnU; Zn(II), ZnU; 2-pmbH3 =2-(phosphonomethyl)benzoic acid]. They are isostructural and display two-dimensional layered structures where the M(II) centers are encapsulated inside the windows generated by the diamagnetic uranyl phosphonate layer. Each M(II) has an octahedral geometry filled with four water molecules in the equatorial positions and two phosphonate oxygen atoms in the axial positions. The uranium atoms adopt UO7 pentagonal bipyramidal and UO6 square bipyramidal geometries. The lattice and coordination water molecules can be released by thermal treatment and reabsorbed in a reversible manner, accompanied with changes of magnetic dynamics. Interestingly, the bulk samples of MU can be exfoliated in acetone via freezing and thawing processes forming nanosheets with single-layer or two-layer thickness (MU-ns). Magnetic studies revealed that the CoU and MnU systems exhibited field-induced slow magnetization relaxation at low temperature. Compared with crystalline CoU, the magnetic relaxation of the CoU-ns aggregates is significantly accelerated. Moreover, photoluminescence measured at 77 K showed slight red-shift of the five characteristic uranyl emission bands for ZnU-ns in comparison with those of the crystalline ZnU. This work gives the first examples of 2D materials based on 5f-3d heterometallic uranyl phosphonates and illustrates the impact of dimension reduction on their magnetic/optical properties.
Collapse
Affiliation(s)
- Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Qian Zou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
13
|
Lv W, Cui HH, Chen L, Zhang YQ, Chen XT, Wang Z, Ouyang ZW, Xue ZL. Magnetic anisotropy of two tetrahedral Co(II)-halide complexes with triphenylphosphine ligands. Dalton Trans 2022; 51:7530-7538. [PMID: 35506535 DOI: 10.1039/d2dt00121g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, the choice of ligand and geometric control of mononuclear complexes, which can affect the relaxation pathways and blocking temperature, have received wide attention in the field of single-ion magnets (SIMs). To find out the influence of the coordination environment on SIMs, two four-coordinate mononuclear Co(II) complexes [NEt4][Co(PPh3)X3] (X = Cl-, 1; Br-, 2) have been synthesized and studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR) spectroscopy and theoretical calculations. Both complexes are in a cubic space group Pa3̄ (No. 205), containing a slightly distorted tetrahedral moiety with crystallographically imposed C3v symmetry through the [Co(PPh3)X3]- anion. The direct-current (dc) magnetic data and HF-EPR spectroscopy indicated the anisotropic S = 3/2 spin ground states of the Co(II) ions with the easy-plane anisotropy for 1 and 2. Ab initio calculations were performed to confirm the positive magnetic anisotropies of 1 and 2. Frequency- and temperature-dependent alternating-current (ac) magnetic susceptibility measurements revealed slow magnetic relaxation for 1 and 2 at an applied dc field. Finally, the magnetic properties of 1 and 2 were compared to those of other Co(II) complexes with a [CoAB3] moiety.
Collapse
Affiliation(s)
- Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hui-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Ling Xue
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
14
|
Rok M, Zarychta B, Janicki R, Witwicki M, Bieńko A, Bator G. Dielectric-Optical Switches: Photoluminescent, EPR, and Magnetic Studies on Organic-Inorganic Hybrid (azetidinium) 2MnBr 4. Inorg Chem 2022; 61:5626-5636. [PMID: 35343686 PMCID: PMC9006216 DOI: 10.1021/acs.inorgchem.2c00363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new organic-inorganic hybrid, AZEMnBr, has been synthesized and characterized. The thermal differential scanning calorimetry, differential thermal analysis, and thermogravimetric analyses indicate one structural phase transition (PT) at 346 and 349 K, on cooling and heating, respectively. AZEMnBr crystallizes at 365 K in the orthorhombic, Pnma, structure, which transforms to monoclinic P21/n at 200 K. Due to the X-ray diffraction studies, the anionic MnBr42- moiety is discrete. The azetidinium cations show dynamical disorder in the high-temperature phase. In the proposed structural PT, the mechanism is classified as an order-disorder type. The structural changes affect the dielectric response. In this paper, the multiple switches between low- and high- dielectric states are presented. In addition, it was also observed that the crystal possesses a mutation of fluorescent properties between phase ON and OFF in the PT's point vicinity. We also demonstrate that EPR spectroscopy effectively detects PTs in structurally diverse Mn(II) complexes. AZEMnBr compounds show DC magnetic data consistent with the S = 5/2 spin system with small zero-field splitting, which was confirmed by EPR measurements and slow magnetic relaxation under the moderate DC magnetic field typical for a single-ion magnet behavior. Given the above, this organic-inorganic hybrid can be considered a rare example of multifunctional materials that exhibit dielectric, optical, and magnetic activity.
Collapse
Affiliation(s)
- Magdalena Rok
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | | | - Rafał Janicki
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Maciej Witwicki
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Grażyna Bator
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| |
Collapse
|
15
|
Pilichos E, Bhunia P, Font-Bardia M, Ghosh A, Mayans J, Escuer A. Quasi-isotropic SMMs: slow relaxation of the magnetization in polynuclear Cu II/Mn II complexes. Dalton Trans 2022; 51:1779-1783. [PMID: 35076050 DOI: 10.1039/d1dt04074j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three field induced SMMs built from quasi-isotropic cations like CuII and MnII have been characterized, showing that relatively large clusters with quasi-negligible D and different ground spin states, S = 3/2, 2 or 4, can also exhibit field-induced slow relaxation of magnetization.
Collapse
Affiliation(s)
- Evangelos Pilichos
- Departament de Química Inorgànica i Orgànica, Secció Inorgànica and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, Barcelona-08028, Spain.
| | - Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, Kolkata 700009, India
| | - Mercè Font-Bardia
- Departament de Mineralogia, Cristal lografia i Dipòsits Minerals, Universitat de Barcelona, Martí Franqués s/n, 08028 Barcelona (Spain) and Unitat de Difracció de R-X. Centre Científic i Tecnològic de la Universitat de Barcelona (CCiTUB), Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, Kolkata 700009, India.,Rani Rashmoni Green University, Hooghly 712410, West Bengal, India
| | - Júlia Mayans
- Departament de Química Inorgànica i Orgànica, Secció Inorgànica and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, Barcelona-08028, Spain.
| | - Albert Escuer
- Departament de Química Inorgànica i Orgànica, Secció Inorgànica and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, Barcelona-08028, Spain.
| |
Collapse
|
16
|
Indris S, Bredow T, Schwarz B, Eichhöfer A. Paramagnetic 7Li NMR Shifts and Magnetic Properties of Divalent Transition Metal Silylamide Ate Complexes [LiM{N(SiMe 3) 2} 3] (M 2+ = Mn, Fe, Co). Inorg Chem 2021; 61:554-567. [PMID: 34931842 DOI: 10.1021/acs.inorgchem.1c03237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
7Li NMR shifts and magnetic properties have been determined for three so-called ate complexes [LiM{N(SiMe3)2}3] (M2+ = Mn, Fe, Co; e.g., named lithium-tris(bis(trimethylsilylamide))-manganate(II) in accordance with a formally negative charge assigned to the complex fragment [M{N(SiMe3)2}3]-, which comprises the transition metal). They are formed by addition reactions of LiN(SiMe3)2 and [M{N(SiMe3)2}2] and stabilized by Lewis base/Lewis acid interactions. The results are compared to those of the related "ion-separated" complexes [Li(15-crown-5)][M{N(SiMe3)2}3]. The ate complexes with the lithium atoms connected to the 3d metal atoms manganese, iron, or cobalt via μ2 nitrogen bridges reveal strong 7Li NMR paramagnetic shifts of about -75, 125, and 171 ppm, respectively, whereas the shifts for the lithium ions coordinated by the 15-crown-5 ether are close to zero. The observed trends of the 7Li NMR shifts are confirmed by density-functional theory calculations. The magnetic dc and ac properties display distinct differences for the six compounds under investigation. Both manganese compounds, [LiMn{N(SiMe3)2}3] and [Li(15-crown-5)][Mn{N(SiMe3)2}3], display almost pure and ideal spin-only paramagnetic behavior of a 3d5 high-spin complex. In this respect slightly unexpected, both complexes show slow relaxation behavior at low temperatures under applied dc fields, which is especially pronounced for the ate complex [LiMn{N(SiMe3)2}3]. Dc magnetic properties of the iron complexes reveal moderate g-factor anisotropies with small values of the axial magnetic anisotropy parameter D and a larger E (transversal anisotropy). Both complexes display at low temperatures and, under external dc fields of up to 5000 Oe, only weak ac signals with no maxima in the frequency range from 1 to 1500 s-1. In contrast, the two cobalt complexes display strong g-factor anisotropies with large values of D and E. In addition, in both cases, the ac measurements at low temperatures and applied dc fields reveal two, in terms of their frequency range, well separated relaxation processes with maxima lying for the most part outside of the measurement range between 1 and 1500 s-1.
Collapse
Affiliation(s)
- Sylvio Indris
- Institute for Applied Materials - Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thomas Bredow
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Björn Schwarz
- Institute for Applied Materials - Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andreas Eichhöfer
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
17
|
Legendre CM, Lüert D, Herbst-Irmer R, Stalke D. Benchmarking magnetic and spectroscopic properties on highly stable 3d metal complexes with tuneable bis(benzoxazol-2-yl)methanide ligands. Dalton Trans 2021; 50:16810-16818. [PMID: 34766963 DOI: 10.1039/d1dt03230e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two series a and b of 3d metal based complexes 1-4 [MII{(4-R-NCOC6H4)2CH}2], (with M = Mn (1), Fe (2), Co (3), Ni (4) and R = H (a) or Me (b)) were synthesised and structurally characterized. The complexes were found to crystallize differently depending on the dication ionic radius and the ligand substitution. All complexes showed remarkable X-ray diffraction resolution that will allow further advanced diffraction experiments. Subsequently, their spectroscopic and magnetic properties were analysed. Complexes 3a and 3b notably show slow magnetic relaxation of their magnetization and represent simple model systems relaxing through a phonon-bottleneck process (3a) or as a field-induced single-molecule magnet (3b, Ueff = 45.0 cm-1). Remarkably, the magnetic anisotropy in the manganese complex 1b results in induced slow magnetic relaxation. The influence of the dual 4-methylation of the ligands was investigated and found to generate important variations in the physical features of the corresponding complexes. Accessible via one-pot synthesis, these are highly robust against oxidation and moisture. Through smart ligand engineering, they represent stable and tuneable compounds for benchmarking purposes through standard and less-standard characterization methods.
Collapse
Affiliation(s)
- Christina M Legendre
- Institute for Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Daniel Lüert
- Institute for Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Regine Herbst-Irmer
- Institute for Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Dietmar Stalke
- Institute for Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| |
Collapse
|
18
|
Gouré E, Gerey B, Astudillo CN, Pécaut J, Sirach S, Molton F, Fortage J, Collomb MN. Self-Assembled Heterometallic Complexes by Incorporation of Calcium or Strontium Ion into a Manganese(II) 12-Metallacrown-3 Framework Supported by a Tripodal Ligand with Pyridine-Carboxylate Motifs: Stability in Their Manganese(III) Oxidized Form. Inorg Chem 2021; 60:7922-7936. [PMID: 34014651 DOI: 10.1021/acs.inorgchem.1c00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the isolation of a new family of μ-carboxylato-bridged metallocrown (MC) compounds by self-assembly of the recently isolated hexadentate tris(2-pyridylmethyl)amine ligand tpada2- incorporating two carboxylate units with metal cations. Twelve-membered MCs of manganese of the type 12-MC-3, namely, [{MnII(tpada)}3(M)(H2O)n]2+ (Mn3M) (M = Mn2+ (n = 0), Ca2+ (n = 1), or Sr2+ (n = 2)), were structurally characterized. The metallamacrocycles connectivity consisting in three -[Mn-O-C-O]- repeating units is provided by one carboxylate unit of the three tpada2- ligands, while the second carboxylate coordinated a fourth cation in the central cavity of the MC, Mn2+ or an alkaline earth metal, Ca2+ or Sr2+. Mn3Ca and {Mn3Sr}2 join the small family of heterometallic manganese-calcium complexes and even rarer manganese-strontium complexes as models of the OEC of photosystem II (PSII). A 8-MC-4 of strontium of the molecular wheel type with four -[Sr-O]- repeating unit was also isolated by self-assembly of the tpada2- ligand with Sr2+. This complex, namely, [Sr(tpada)(OH2)]4 (Sr4), does not incorporate any cation in the central cavity but instead four water molecules coordinated to each Sr2+. Electrochemical investigations coupled to UV-visible absorption and EPR spectroscopies as well as electrospray mass spectrometry reveal the stability of the 12-MC-3 tetranuclear structures in solution, both in the initial oxidation state, MnII3M, as well as in the three-electrons oxidized state, MnIII3M. Indeed, the cyclic voltammogram of all these complexes exhibits three-successive reversible oxidation waves between +0.5 and +0.9 V corresponding to the successive one-electron oxidation of the Mn(II) ion into Mn(III) of the three {Mn(tpada)} units constituting the ring, which are fully maintained after bulk electrolysis.
Collapse
Affiliation(s)
- Eric Gouré
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Bertrand Gerey
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Selim Sirach
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | | | | |
Collapse
|
19
|
Kliuikov A, Bukrynov O, Čižmár E, Váhovská L, Vitushkina S, Samoľová E, Potočňák I. Syntheses, structures and magnetic properties of two isostructural dicyanamide-bridged 2D polymers. NEW J CHEM 2021. [DOI: 10.1039/d1nj00726b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexes [Co(biq)(μ1,5-dca)2]n (1) and [Ni(biq)(μ1,5-dca)2]n (2) (biq is 2,2′-biquinoline, dca is dicyanamide anion, N(CN)2−) have been characterized by crystal structure analysis, and spectral and magnetic measurements.
Collapse
Affiliation(s)
- Andrii Kliuikov
- P. J. Šafárik University in Košice
- Faculty of Science
- Institute of Physics
- SK-041 54 Košice
- Slovakia
| | - Oleksandr Bukrynov
- V.N. Karazin Kharkiv National University
- Faculty of Chemistry
- Department of Applied Chemistry
- UA-61022 Kharkiv
- Ukraine
| | - Erik Čižmár
- P. J. Šafárik University in Košice
- Faculty of Science
- Institute of Physics
- SK-041 54 Košice
- Slovakia
| | - Lucia Váhovská
- University of Veterinary Medicine and Pharmacy in Košice
- Department of Chemistry
- Biochemistry and Biophysics
- SK-041 84 Košice
- Slovakia
| | - Svitlana Vitushkina
- V.N. Karazin Kharkiv National University
- Faculty of Chemistry
- Department of Applied Chemistry
- UA-61022 Kharkiv
- Ukraine
| | - Erika Samoľová
- Institute of Physics of the Czech Academy of Sciences
- 182 21 Prague 8
- Czech Republic
| | - Ivan Potočňák
- P. J. Šafárik University in Košice
- Faculty of Science
- Institute of Chemistry
- Department of Inorganic Chemistry
- SK-041 54 Košice
| |
Collapse
|
20
|
da Cunha TT, Barbosa VMM, Oliveira WXC, Pedroso EF, García DMA, Nunes WC, Pereira CLM. Field-Induced Slow Magnetic Relaxation of a Six-Coordinate Mononuclear Manganese(II) and Cobalt(II) Oxamate Complexes. Inorg Chem 2020; 59:12983-12987. [DOI: 10.1021/acs.inorgchem.0c01628] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tamyris T. da Cunha
- Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais, Campus Avançado Itabirito, R. José Benedito, 139 Santa Efigênia, Itabirito, Minas Gerais 35450-000, Brazil
- Departamento de Quı́mica, ICEx, Universidade Federal de Minas Gerais. Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Vitor M. M. Barbosa
- Departamento de Quı́mica, ICEx, Universidade Federal de Minas Gerais. Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Willian X. C. Oliveira
- Departamento de Quı́mica, ICEx, Universidade Federal de Minas Gerais. Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Emerson F. Pedroso
- Centro Federal de Educação Tecnológica de Minas Gerais, Avenida Amazonas 5523, Belo Horizonte, Minas Gerais 30421-169, Brazil
| | - Diana M. A. García
- Instituto de Fı́sica, Universidade Federal Fluminense, Avenida Gal. Milton Tavares de Souza, s/n Campus da Praia Vermelha, Niterói, Rio de Janeiro 24210-346, Brazil
| | - Wallace C. Nunes
- Instituto de Fı́sica, Universidade Federal Fluminense, Avenida Gal. Milton Tavares de Souza, s/n Campus da Praia Vermelha, Niterói, Rio de Janeiro 24210-346, Brazil
| | - Cynthia L. M. Pereira
- Departamento de Quı́mica, ICEx, Universidade Federal de Minas Gerais. Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901 Brazil
| |
Collapse
|
21
|
Su J, Yin L, Ouyang Z, Wang Z, Zheng W. 1,2-Diaza-4-phospholide complexes of chromium(ii): dipotassium organochromates behaving as single-molecule magnets. Dalton Trans 2020; 49:6945-6949. [PMID: 32348385 DOI: 10.1039/d0dt00878h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 1,2-diaza-4-phospholide (dp-) dipotassium ate complexes of chromium(ii) {[(η1-N-3,5-tBu2dp)4Cr][(η5-(N,N,C,C,P))2-K(η1-O-THF)2]2} (5) and {[(η1-N-3,5-Ph2dp)4Cr][(η5-(N,N,C,C,P))2-K(η1-O-THF)2]2}∞ (6) were synthesized and characterized by X-ray single crystal structure analysis. Complex 5 with a near-square planar geometry at the chromium(ii) ion was unambiguously characterized by the high field electron paramagnetic resonance (HF-EPR) technique and magnetic measurements, revealing that it is a field-induced single-molecule magnet (SMM).
Collapse
Affiliation(s)
- Jing Su
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Shanxi Normal University, Gongyuan Street 1, Linfen, Shanxi Province 041004, China.
| | | | | | | | | |
Collapse
|
22
|
Yi G, Cui H, Zhang C, Zhao W, Chen L, Zhang YQ, Chen XT, Song Y, Yuan A. A capped trigonal prismatic cobalt(ii) complex as a structural archetype for single-ion magnets. Dalton Trans 2020; 49:2063-2067. [DOI: 10.1039/c9dt04881b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mononuclear, seven-coordinate complex [CoII(BPA-TPA)](BF4)2 (BPA-TPA = pentapyidyldiamine) display field-induce slow magnetic relaxation, thereby presenting the first report of SIMs based on 3d metal ions with a capped trigonal prismatic geometry.
Collapse
Affiliation(s)
- Gangji Yi
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Huihui Cui
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Chunyang Zhang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Wen Zhao
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| |
Collapse
|
23
|
Yi G, Zhang C, Zhao W, Cui H, Chen L, Wang Z, Chen XT, Yuan A, Liu YZ, Ouyang ZW. Structure, magnetic anisotropy and relaxation behavior of seven-coordinate Co(ii) single-ion magnets perturbed by counter-anions. Dalton Trans 2020; 49:7620-7627. [DOI: 10.1039/d0dt01232g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of mononuclear seven-coordinate complexes with the same coordination unit [Co(BPA-TPA)]2+ (BPA-TPA = pentapyidyldiamine) display the different slow magnetic relaxation processes perturbed by the variation of the counter anions.
Collapse
Affiliation(s)
- Gangji Yi
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Chunyang Zhang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Wen Zhao
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Huihui Cui
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center& School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Yuan-Zhong Liu
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
- Jinan Guoke Medical Technology Development Co
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center& School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| |
Collapse
|
24
|
Cui H, Lv W, Tong W, Chen X, Xue Z. Slow Magnetic Relaxation in a Mononuclear Five‐Coordinate Cu(II) Complex. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hui‐Hui Cui
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Wei Tong
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions High Magnetic Field Laboratory of the Chinese Academy of Science Hefei 230031 Anhui China
| | - Xue‐Tai Chen
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Zi‐Ling Xue
- Department of Chemistry University of Tennessee 37996 Knoxville Tennessee USA
| |
Collapse
|
25
|
Rajnák C, Titiš J, Moncol J, Mičová R, Boča R. Field-Induced Slow Magnetic Relaxation in a Mononuclear Manganese(II) Complex. Inorg Chem 2019; 58:991-994. [DOI: 10.1021/acs.inorgchem.8b02675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
| | - J. Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
| | - J. Moncol
- Institute of Inorganic Chemistry, FCHPT, Slovak University of Technology, 81237 Bratislava, Slovakia
| | - R. Mičová
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
| | - R. Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
| |
Collapse
|
26
|
Ferentinos E, Xu M, Grigoropoulos A, Bratsos I, Raptopoulou CP, Psycharis V, Jiang SD, Kyritsis P. Field-induced slow relaxation of magnetization in the S = 3/2 octahedral complexes trans-[Co{(OPPh 2)(EPPh 2)N} 2(dmf) 2], E = S, Se: effects of Co–Se vs. Co–S coordination. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00135b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetometry studies on octahedral trans-[Co{(OPPh2)(EPPh2)N}2(dmf)2], E = S, Se, complexes.
Collapse
Affiliation(s)
- Eleftherios Ferentinos
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- GR-15771 Athens
- Greece
| | - Meixing Xu
- College of Chemistry and Molecular Engineering
- Beijing National Laboratory for Molecular Sciences
- Beijing Key Laboratory of Magnetoelectric Materials and Devices
- Peking University
- Beijing 100871
| | - Alexios Grigoropoulos
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- GR-15771 Athens
- Greece
| | - Ioannis Bratsos
- NCSR “Demokritos”
- Institute of Nanoscience and Nanotechnology
- Athens
- Greece
| | | | - Vassilis Psycharis
- NCSR “Demokritos”
- Institute of Nanoscience and Nanotechnology
- Athens
- Greece
| | - Shang-Da Jiang
- College of Chemistry and Molecular Engineering
- Beijing National Laboratory for Molecular Sciences
- Beijing Key Laboratory of Magnetoelectric Materials and Devices
- Peking University
- Beijing 100871
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- GR-15771 Athens
- Greece
| |
Collapse
|
27
|
Uchida K, Cosquer G, Sugisaki K, Matsuoka H, Sato K, Breedlove BK, Yamashita M. Isostructural M(ii) complexes (M = Mn, Fe, Co) with field-induced slow magnetic relaxation for Mn and Co complexes. Dalton Trans 2019; 48:12023-12030. [PMID: 31298228 DOI: 10.1039/c8dt02150c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We herein report the synthetic, structural, theoretical, and magnetic studies on three isostructural complexes, [M(L)2(CH3OH)2] (M = Mn (Mn), Fe (Fe), and Co (Co); HL = 2,6-bis(pyrazole-1-yl)pyridine-4-carboxylic acid). From single crystal X-ray crystallography, it is found that the complexes crystallized in the same space group (C2/c) and had seven-coordinate pentagonal bipyramidal structures. From direct current (dc) and alternating current (ac) magnetic susceptibility measurements, Mn and Co were found to undergo field-induced slow magnetic relaxation with two relaxation pathways. To elucidate the origin of the slow magnetic relaxation phenomena of Mn, electron paramagnetic resonance (EPR) measurements and theoretical calculations were performed. The EPR measurements were performed on polycrystalline powder samples, and the following parameters were obtained by simulating the EPR data: giso = 2.00 and small zero field splitting parameter D = -0.13 cm-1. To the best of our knowledge, this is the first example of a seven-coordinate mononuclear Mn(ii) complex undergoing slow magnetic relaxation.
Collapse
Affiliation(s)
- Kaiji Uchida
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen L, Song J, Zhao W, Yi G, Zhou Z, Yuan A, Song Y, Wang Z, Ouyang ZW. A mononuclear five-coordinate Co(ii) single molecule magnet with a spin crossover between the S = 1/2 and 3/2 states. Dalton Trans 2018; 47:16596-16602. [PMID: 30417917 DOI: 10.1039/c8dt03783c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although a great number of single-ion magnets (SIMs) and spin-crossover (SCO) compounds have been discovered, multifunctional materials with the combination of SCO and SIM properties are extremely scarce. Here magnetic studies have been carried out for a mononuclear, five-coordinate cobalt(ii) complex [Co(3,4-lut)4Br]Br (1) with square pyramidal geometry. Direct-current magnetic measurement confirms the spin transition between the S = 1/2 and 3/2 states in the range of 150-290 K with a small hysteresis loop. Frequency- and temperature-dependent alternating-current magnetic susceptibility reveals slow magnetization relaxation under an applied dc field of 3000 Oe. The work here presents the first instance of the five-coordinate mononuclear cobalt(ii)-based SIM exhibiting the thermally induced complete SCO.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Alaimo AA, Koumousi ES, Cunha-Silva L, McCormick LJ, Teat SJ, Psycharis V, Raptopoulou CP, Mukherjee S, Li C, Gupta SD, Escuer A, Christou G, Stamatatos TC. Structural Diversities in Heterometallic Mn–Ca Cluster Chemistry from the Use of Salicylhydroxamic Acid: {MnIII4Ca2}, {MnII/III6Ca2}, {MnIII/IV8Ca}, and {MnIII8Ca2} Complexes with Relevance to Both High- and Low-Valent States of the Oxygen-Evolving Complex. Inorg Chem 2017; 56:10760-10774. [DOI: 10.1021/acs.inorgchem.7b01740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alysha A. Alaimo
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, L2S 3A1 St. Catharines, Ontario, Canada
| | | | - Luís Cunha-Silva
- REQUIMTE-LAQV & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Laura J. McCormick
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Simon J. Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Agia Paraskevi, Attikis, Greece
| | - Catherine P. Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Agia Paraskevi, Attikis, Greece
| | - Shreya Mukherjee
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Chaoran Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Sayak Das Gupta
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Albert Escuer
- Departament
de Quimica Inorganica and Institut de Nanociencia i Nanotecnologia
(IN2UB), Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - George Christou
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Theocharis C. Stamatatos
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, L2S 3A1 St. Catharines, Ontario, Canada
| |
Collapse
|
30
|
Buvaylo EA, Kokozay VN, Vassilyeva OY, Skelton BW, Ozarowski A, Titiš J, Vranovičová B, Boča R. Field-Assisted Slow Magnetic Relaxation in a Six-Coordinate Co(II)-Co(III) Complex with Large Negative Anisotropy. Inorg Chem 2017; 56:6999-7009. [PMID: 28556666 DOI: 10.1021/acs.inorgchem.7b00605] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of Co(CH3COO)2·4H2O with the Schiff base ligand LH4 derived from o-vanillin and tris(hydroxymethyl)aminomethane produces the dinuclear mixed-valence complex [CoIICoIII(LH2)2(CH3COO)(H2O)](H2O)3 (1), which has been investigated using IR spectroscopy, X-ray crystallography, temperature-dependent magnetic susceptibility, magnetization, HFEPR spectroscopy, and ac susceptibility measurements at various frequencies, temperatures, and external magnetic fields. The structure of 1 consists of neutral molecules in which two cobalt ions with distorted octahedral geometries, CoIIO6 and CoIIIN2O4, are bridged by two deprotonated -CH2O- groups of the two LH22- ligands. 1 completes a series with Cl, Br, NO3, and NCS anions published before by different authors. Low-temperature HFEPR measurements reveal that the ground electronic state of the Co(II) center in 1 is a highly anisotropic Kramers doublet; the effective g values of 7.18, 2.97, and 1.96 are frequency-independent over the frequency ranges 200-630, 200-406, and 200-300 GHz for the highest, intermediate, and lowest geff values, respectively. The two lower values were not seen at higher frequencies because the magnetic field was not high enough. Temperature-dependent magnetic susceptibility and field-dependent magnetization data confirm high magnetic anisotropy of the easy axis type. Complex 1 behaves as a single-ion magnet under a small applied external field and demonstrates two relaxation modes that strongly depend on the applied static dc field. The observation of multiple relaxation pathways clearly distinguishes 1 from the Cl and Br analogues.
Collapse
Affiliation(s)
- Elena A Buvaylo
- Department of Chemistry, Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska str., Kyiv 01601, Ukraine
| | - Vladimir N Kokozay
- Department of Chemistry, Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska str., Kyiv 01601, Ukraine
| | - Olga Yu Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska str., Kyiv 01601, Ukraine
| | - Brian W Skelton
- School of Molecular Sciences, M310, University of Western Australia , Perth, WA 6009, Australia
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University , 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius , 917 01 Trnava, Slovakia
| | - Beáta Vranovičová
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius , 917 01 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius , 917 01 Trnava, Slovakia
| |
Collapse
|
31
|
Koepf M, Bergkamp JJ, Teillout AL, Llansola-Portoles MJ, Kodis G, Moore AL, Gust D, Moore TA. Design of porphyrin-based ligands for the assembly of [d-block metal : calcium] bimetallic centers. Dalton Trans 2017; 46:4199-4208. [DOI: 10.1039/c6dt04647a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A secondary binding-site for alkaline-earth cations is introduced on a porphyrin platform to obtain competent bitopicN,O-ligands.
Collapse
Affiliation(s)
- Matthieu Koepf
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| | | | | | | | - Gerdenis Kodis
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| | - Ana L. Moore
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| | - Devens Gust
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| | - Thomas A. Moore
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| |
Collapse
|
32
|
Melnic S, Shova S, Benniston AC, Waddell PG. Evolution of manganese–calcium cluster structures based on nitrogen and oxygen donor ligands. CrystEngComm 2017. [DOI: 10.1039/c7ce00931c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Arauzo A, Bartolomé E, Benniston AC, Melnic S, Shova S, Luzón J, Alonso PJ, Barra AL, Bartolomé J. Slow magnetic relaxation in a dimeric Mn2Ca2 complex enabled by the large Mn(iii) rhombicity. Dalton Trans 2017; 46:720-732. [DOI: 10.1039/c6dt02509a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A large single-ion transverse anisotropy at Mn(iii) sites induces slow magnetic relaxation at zero magnetic field of the ferromagnetic Mn dimers in a singular Mn2Ca2 complex.
Collapse
Affiliation(s)
- Ana Arauzo
- Servicio de Medidas Físicas
- Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Elena Bartolomé
- Escola Universitària Salesiana de Sarrià (EUSS)
- 08017 Barcelona
- Spain
| | - Andrew C. Benniston
- Molecular Photonics Laboratory
- School of Chemistry
- Newcastle University
- Newcastle-upon-Tyne
- UK
| | - Silvia Melnic
- Institute of Chemistry
- Academy of Sciences of Moldova
- Chisinau
- Moldova
| | - Sergiu Shova
- Institute of Macromolecular Chemistry “Petru Poni” Iasi
- 700487 Iasi
- Romania
| | - Javier Luzón
- Centro Universitario de la Defensa
- Academia General Militar
- Zaragoza
- Spain
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada
| | - Pablo J. Alonso
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Anne-Laure Barra
- Laboratoire National des Champs Magnétiques Intenses
- CNRS and Université Grenoble Alpes
- 38042 Grenoble Cedex 9
- France
| | - Juan Bartolomé
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| |
Collapse
|
34
|
Gerey B, Gouré E, Fortage J, Pécaut J, Collomb MN. Manganese-calcium/strontium heterometallic compounds and their relevance for the oxygen-evolving center of photosystem II. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Gerey B, Gennari M, Gouré E, Pécaut J, Blackman A, Pantazis DA, Neese F, Molton F, Fortage J, Duboc C, Collomb MN. Calcium and heterometallic manganese–calcium complexes supported by tripodal pyridine-carboxylate ligands: structural, EPR and theoretical investigations. Dalton Trans 2015; 44:12757-70. [DOI: 10.1039/c5dt01776a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rare examples of heteronuclear μ-carboxylato bridged Mn–Ca complexes are reported.
Collapse
Affiliation(s)
- Bertrand Gerey
- Univ. Grenoble Alpes
- F-38000 Grenoble
- France
- CNRS
- F-38000 Grenoble
| | | | - Eric Gouré
- Univ. Grenoble Alpes
- F-38000 Grenoble
- France
- CNRS
- F-38000 Grenoble
| | | | - Allan Blackman
- School of Applied Sciences
- Auckland University of Technology
- Auckland 1142
- New Zealand
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Chemische Energie Konversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Frank Neese
- Max-Planck-Institut für Chemische Energie Konversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Florian Molton
- Univ. Grenoble Alpes
- F-38000 Grenoble
- France
- CNRS
- F-38000 Grenoble
| | - Jérôme Fortage
- Univ. Grenoble Alpes
- F-38000 Grenoble
- France
- CNRS
- F-38000 Grenoble
| | - Carole Duboc
- Univ. Grenoble Alpes
- F-38000 Grenoble
- France
- CNRS
- F-38000 Grenoble
| | | |
Collapse
|