1
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
2
|
Zheng T, Huo Y, Wang Y, Du W. Regulation of oxaliplatin and carboplatin on the assembly behavior and cytotoxicity of human islet amyloid polypeptide. J Inorg Biochem 2022; 237:111989. [PMID: 36108345 DOI: 10.1016/j.jinorgbio.2022.111989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 01/18/2023]
Abstract
Human islet amyloid polypeptide (hIAPP) is associated with the pathology of Type II diabetes (T2DM) due to its misfolding and amyloid deposition. The peptide is widely concerned as a potential drug target, and the prevention of hIAPP fibrillation is a rational therapeutic strategy for T2DM. Platinum complexes are promising anticancer agents with good biocompatibility, they can resist the aggregation of amyloid peptides, while the effects of oxaliplatin and carboplatin on hIAPP fibrillation are unknown. In the present work, we selected the two platinum drugs to reveal their inhibition and disaggregation against hIAPP fibrillation by various biophysical methods. The two complexes impeded hIAPP fibril formation and dispersed the aggregates into small oligomers and most monomers. They also reduced peptides oligomerization and promoted rat insulinoma β-cells viability. They bound to hIAPP mainly through metal coordination and hydrophobic interactions. Moreover, oxaliplatin showed better inhibition and regulation on peptides aggregation and cytotoxicity than carboplatin. This work is of important biomedical values for clinical platinum drugs against T2DM and other amyloidosis related diseases.
Collapse
Affiliation(s)
- Ting Zheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yan Huo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
3
|
Loreto D, Esposito A, Demitri N, Guaragna A, Merlino A. Digging into protein metalation differences triggered by fluorine containing-dirhodium tetracarboxylate analogues. Dalton Trans 2022; 51:7294-7304. [DOI: 10.1039/d2dt00873d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic and biological properties of dirhodium tetracarboxylates ([Rh2(μ-O2CR)4L2], L=axial ligand, R=CH3-, CH3CH2-, etc) largely depend on the nature of the bridging carboxylate equatorial μ-O2CR ligands, which can be easily exchanged...
Collapse
|
4
|
Annunziata A, Ferraro G, Cucciolito ME, Imbimbo P, Tuzi A, Monti DM, Merlino A, Ruffo F. Halo complexes of gold( i) containing glycoconjugate carbene ligands: synthesis, characterization, cytotoxicity and interaction with proteins and DNA model systems. Dalton Trans 2022; 51:10475-10485. [DOI: 10.1039/d2dt00423b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New neutral Au(i) glycoconjugate carbene complexes show stability in aqueous solutions and interact with both DNA and protein model systems. Cytotoxicity studies demonstrate that the activity depends on the halide ancillary ligand.
Collapse
Affiliation(s)
- Alfonso Annunziata
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Giarita Ferraro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Maria Elena Cucciolito
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Paola Imbimbo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Daria Maria Monti
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Antonello Merlino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Francesco Ruffo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
5
|
Cantarutti C, Vargas MC, Dongmo Foumthuim CJ, Dumoulin M, La Manna S, Marasco D, Santambrogio C, Grandori R, Scoles G, Soler MA, Corazza A, Fortuna S. Insights on peptide topology in the computational design of protein ligands: the example of lysozyme binding peptides. Phys Chem Chem Phys 2021; 23:23158-23172. [PMID: 34617942 DOI: 10.1039/d1cp02536h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we compared the ability of linear and cyclic peptides generated in silico to target different protein sites: internal pockets and solvent-exposed sites. We selected human lysozyme (HuL) as a model target protein combined with the computational evolution of linear and cyclic peptides. The sequence evolution of these peptides was based on the PARCE algorithm. The generated peptides were screened based on their aqueous solubility and HuL binding affinity. The latter was evaluated by means of scoring functions and atomistic molecular dynamics (MD) trajectories in water, which allowed prediction of the structural features of the protein-peptide complexes. The computational results demonstrated that cyclic peptides constitute the optimal choice for solvent exposed sites, while both linear and cyclic peptides are capable of targeting the HuL pocket effectively. The most promising binders found in silico were investigated experimentally by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS) techniques. All tested peptides displayed dissociation constants in the micromolar range, as assessed by SPR; however, both NMR and ESI-MS suggested multiple binding modes, at least for the pocket binding peptides. A detailed NMR analysis confirmed that both linear and cyclic pocket peptides correctly target the binding site they were designed for.
Collapse
Affiliation(s)
- Cristina Cantarutti
- Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 - Udine, Italy.
| | - M Cristina Vargas
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Mérida, Apartado Postal 73 "Cordemex", 97310, Mérida, Mexico
| | - Cedrix J Dongmo Foumthuim
- Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 - Udine, Italy. .,Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Campus Scientifico - Via Torino 155, 30172 Mestre, Italy
| | - Mireille Dumoulin
- Centre for Protein Engineering, InBios, Department of Life Sciences, University of Liege, Liege, Belgium
| | - Sara La Manna
- Department of Pharmacy - University of Naples "Federico II", 80134, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy - University of Naples "Federico II", 80134, Naples, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, Milan, Italy
| | - Giacinto Scoles
- Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 - Udine, Italy.
| | - Miguel A Soler
- Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 - Udine, Italy. .,Italian Institute of Technology (IIT), Via Melen - 83, B Block, 16152 - Genova, Italy
| | - Alessandra Corazza
- Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 - Udine, Italy.
| | - Sara Fortuna
- Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 - Udine, Italy. .,Italian Institute of Technology (IIT), Via Melen - 83, B Block, 16152 - Genova, Italy.,Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
6
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Unusual Structural Features in the Adduct of Dirhodium Tetraacetate with Lysozyme. Int J Mol Sci 2021; 22:ijms22031496. [PMID: 33540880 PMCID: PMC7867343 DOI: 10.3390/ijms22031496] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
The structures of the adducts formed upon reaction of the cytotoxic paddlewheel dirhodium complex [Rh2(μ-O2CCH3)4] with the model protein hen egg white lysozyme (HEWL) under different experimental conditions are reported. Results indicate that [Rh2(μ-O2CCH3)4] extensively reacts with HEWL:it in part breaks down, at variance with what happens in reactions with other proteins. A Rh center coordinates the side chains of Arg14 and His15. Dimeric Rh–Rh units with Rh–Rh distances between 2.3 and 2.5 Å are bound to the side chains of Asp18, Asp101, Asn93, and Lys96, while a dirhodium unit with a Rh–Rh distance of 3.2–3.4 Å binds the C-terminal carboxylate and the side chain of Lys13 at the interface between two symmetry-related molecules. An additional monometallic fragment binds the side chain of Lys33. These data, which are supported by replicated structural determinations, shed light on the reactivity of dirhodium tetracarboxylates with proteins, providing useful information for the design of new Rh-containing biomaterials with an array of potential applications in the field of catalysis or of medicinal chemistry and valuable insight into the mechanism of action of these potential anticancer agents.
Collapse
|
8
|
Abstract
Recent advances in structural studies unveiling the basis of the metal compounds/protein recognition process are discussed.
Collapse
Affiliation(s)
- Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant’Angelo
- Napoli
- Italy
| |
Collapse
|
9
|
Loreto D, Ferraro G, Merlino A. Protein-metallodrugs interactions: Effects on the overall protein structure and characterization of Au, Ru and Pt binding sites. Int J Biol Macromol 2020; 163:970-976. [DOI: 10.1016/j.ijbiomac.2020.07.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
|
10
|
Massai L, Zoppi C, Cirri D, Pratesi A, Messori L. Reactions of Medicinal Gold(III) Compounds With Proteins and Peptides Explored by Electrospray Ionization Mass Spectrometry and Complementary Biophysical Methods. Front Chem 2020; 8:581648. [PMID: 33195070 PMCID: PMC7609534 DOI: 10.3389/fchem.2020.581648] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Electrospray ionization mass spectrometry (ESI MS) is a powerful investigative tool to analyze the reactions of metallodrugs with proteins and peptides and characterize the resulting adducts. Here, we have applied this type of approach to four experimental anticancer gold(III) compounds for which extensive biological and mechanistic data had previously been gathered, namely, Auoxo6, Au2phen, AuL12, and Aubipyc. These gold(III) compounds were reacted with two representative proteins, i.e., human serum albumin (HSA) and human carbonic anhydrase I (hCA I), and with the C-terminal dodecapeptide of thioredoxin reductase. ESI MS analysis allowed us to elucidate the nature of the resulting metal-protein adducts from which the main features of the occurring metallodrug-protein reactions can be inferred. In selected cases, MS data were integrated and supported by independent 1HNMR and UV-Vis absorption measurements to gain an overall description of the occurring processes. From data analysis, it emerges that most of the investigated gold(III) complexes, endowed with an appreciable oxidizing character, undergo quite facile reduction to gold(I); the resulting gold(I) species tightly associate with the above proteins/peptides with a remarkable selectivity for free cysteine residues. In contrast, in the case of the less-oxidizing Aubipyc complex, the gold(III) oxidation state is conserved, and a gold(III) fragment still containing the original ligand is found to be associated with the target proteins. It is notable that the C-terminal dodecapeptide of thioredoxin reductase containing the characteristic -Gly-Cys-Sec-Gly metal-binding motif is able in all cases to trigger gold(III)-to-gold(I) reduction. Our investigation allowed us to identify in detail the nature of the gold fragments that ultimately bind the protein targets and determine the exact binding stoichiometry; some insight on the reaction kinetics was also gained. Notably, a few clear correlations could be established between the structure of the metal complexes and the nature of the resulting protein adducts. The mechanistic implications of these findings are analyzed and thoroughly discussed. Overall, the present results set the stage to better understand the real target biomolecules of these gold compounds and elucidate at the atomic level their interaction modes with proteins and peptides.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry, University of Florence, Florence, Italy
| | - Carlotta Zoppi
- Department of Chemistry, University of Florence, Florence, Italy
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Hishikawa Y, Maity B, Ito N, Abe S, Lu D, Ueno T. Design of Multinuclear Gold Binding Site at the Two-fold Symmetric Interface of the Ferritin Cage. CHEM LETT 2020. [DOI: 10.1246/cl.200217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuki Hishikawa
- Department of Chemical Engineering, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100-084, P. R. China
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Basudev Maity
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Nozomi Ito
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100-084, P. R. China
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
12
|
New cyclometalated gold (III) complex targeting thioredoxin reductase: exploring as cytotoxic agents and mechanistic insights. Biometals 2020; 33:107-122. [DOI: 10.1007/s10534-020-00235-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
|
13
|
|
14
|
Florio D, Iacobucci I, Ferraro G, Mansour AM, Morelli G, Monti M, Merlino A, Marasco D. Role of the Metal Center in the Modulation of the Aggregation Process of Amyloid Model Systems by Square Planar Complexes Bearing 2-(2'-pyridyl)benzimidazole Ligands. Pharmaceuticals (Basel) 2019; 12:ph12040154. [PMID: 31614832 PMCID: PMC6958441 DOI: 10.3390/ph12040154] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
The effect of analogue Pd(II)-, Pt(II)-, and Au(III) compounds featuring 2-(2'-pyridyl)benzimidazole on the aggregation propensity of amyloid-like peptides derived from Aβ and from the C-terminal domain of nucleophosmin 1 was investigated. Kinetic profiles of aggregation were evaluated using thioflavin binding assays, whereas the interactions of the compounds with the peptides were studied by UV-Vis absorption spectroscopy and electrospray ionization mass spectrometry. The results indicate that the compounds modulate the aggregation of the investigated peptides using different mechanisms, suggesting that the reactivity of the metal center and the physicochemical properties of the metals (rather than those of the ligands and the geometry of the metal compounds) play a crucial role in determining the anti-aggregation properties.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
- CEINGE Biotecnologie Avanzate S.c.a r.l., University of Naples Federico II, Napoli 80145, Italy.
| | - Giarita Ferraro
- Department of Chemistry Ugo Schiff, University of Florence, Sesto Fiorentino (FI) 50019, Italy.
| | - Ahmed M Mansour
- Department of Chemistry, Faculty of Science, University of Cairo, Gamma street, Giza, 12613, Egypt.
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
- CEINGE Biotecnologie Avanzate S.c.a r.l., University of Naples Federico II, Napoli 80145, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| |
Collapse
|
15
|
Pratesi A, Cirri D, Fregona D, Ferraro G, Giorgio A, Merlino A, Messori L. Structural Characterization of a Gold/Serum Albumin Complex. Inorg Chem 2019; 58:10616-10619. [DOI: 10.1021/acs.inorgchem.9b01900] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alessandro Pratesi
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry “U. Schiff”, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Damiano Cirri
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry “U. Schiff”, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Dolores Fregona
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 80126 Napoli, Italy
| | - Anna Giorgio
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 80126 Napoli, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 80126 Napoli, Italy
| | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry “U. Schiff”, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
16
|
Mansour AM, Shehab OR. Pyridylbenzimidazole-Based Gold(III) Complexes: Lysozyme Metalation, DNA Binding Studies, and Biological Activity. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ahmed M. Mansour
- Chemistry Department; Faculty of Science, Gamma Street, Giza; Cairo University; 12613 Cairo Egypt
| | - Ola R. Shehab
- Chemistry Department; Faculty of Science, Gamma Street, Giza; Cairo University; 12613 Cairo Egypt
| |
Collapse
|
17
|
Monti DM, Ferraro G, Merlino A. Ferritin-based anticancer metallodrug delivery: Crystallographic, analytical and cytotoxicity studies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:101997. [PMID: 31028889 DOI: 10.1016/j.nano.2019.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/28/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
Abstract
The encapsulation of anticancer metal-based drugs within a protein nanocage represents a valuable strategy to improve the efficacy and selectivity of these compounds towards cancer cells. The preparation, characterization of the in vitro cytotoxicity and X-ray structures of several ferritin-metallodrug nanocomposites (mainly containing platinum-, ruthenium- and gold-based anticancer agents) are here reviewed. The molecular mechanisms of action of these Ft-metallodrug adducts are discussed and future directions in the field are outlined.
Collapse
Affiliation(s)
- Dara Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
18
|
Florio D, Malfitano AM, Di Somma S, Mügge C, Weigand W, Ferraro G, Iacobucci I, Monti M, Morelli G, Merlino A, Marasco D. Platinum(II) O, S Complexes Inhibit the Aggregation of Amyloid Model Systems. Int J Mol Sci 2019; 20:ijms20040829. [PMID: 30769904 PMCID: PMC6413125 DOI: 10.3390/ijms20040829] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Platinum(II) complexes with different cinnamic acid derivatives as ligands were investigated for their ability to inhibit the aggregation process of amyloid systems derived from Aβ, Yeast Prion Protein Sup35p and the C-terminal domain of nucleophosmin 1. Thioflavin T binding assays and circular dichroism data indicate that these compounds strongly inhibit the aggregation of investigated peptides exhibiting IC50 values in the micromolar range. MS analysis confirms the formation of adducts between peptides and Pt(II) complexes that are also able to reduce amyloid cytotoxicity in human SH-SY5Y neuroblastoma cells. Overall data suggests that bidentate ligands based on β-hydroxy dithiocinnamic esters can be used to develop platinum or platinoid compounds with anti-amyloid aggregation properties.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples Federico II, Napoli 80131, Italy.
| | - Sarah Di Somma
- Department of Translational Medical Science, University of Naples Federico II, Napoli 80131, Italy.
| | - Carolin Mügge
- Institute for Inorganic and Analytical Chemistry, University of Jena, Jena 07743, Germany.
- Department of Biology, Ruhr-University Bochum, Bochum 44801, Germany.
| | - Wolfgang Weigand
- Institute for Inorganic and Analytical Chemistry, University of Jena, Jena 07743, Germany.
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
- CEINGE Biotecnologie Avanzate s.c.a r.l., University of Naples Federico II, Napoli 80145, Italy.
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
- CEINGE Biotecnologie Avanzate s.c.a r.l., University of Naples Federico II, Napoli 80145, Italy.
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| |
Collapse
|
19
|
Reaction with Proteins of a Five-Coordinate Platinum(II) Compound. Int J Mol Sci 2019; 20:ijms20030520. [PMID: 30691130 PMCID: PMC6387405 DOI: 10.3390/ijms20030520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 02/08/2023] Open
Abstract
Stable five-coordinate Pt(II) complexes have been highlighted as a promising and original platform for the development of new cytotoxic drugs. Their interaction with proteins has been scarcely studied. Here, the reactivity of the five-coordinate Pt(II) compound [Pt(I)(Me) (dmphen)(olefin)] (Me = methyl, dmphen = 2,9-dimethyl-1,10-phenanthroline, olefin = dimethylfumarate) with the model proteins hen egg white lysozyme (HEWL) and bovine pancreatic ribonuclease (RNase A) has been investigated by X-ray crystallography and electrospray ionization mass spectrometry. The X-ray structures of the adducts of RNase A and HEWL with [Pt(I)(Me)(dmphen)(olefin)] are not of very high quality, but overall data indicate that, upon reaction with RNase A, the compound coordinates the side chain of His105 upon releasing the iodide ligand, but retains the pentacoordination. On the contrary, upon reaction with HEWL, the trigonal bi-pyramidal Pt geometry is lost, the iodide and the olefin ligands are released, and the metal center coordinates the side chain of His15 probably adopting a nearly square-planar geometry. This work underlines the importance of the combined use of crystallographic and mass spectrometry techniques to characterize, in detail, the protein–metallodrug recognition process. Our findings also suggest that five-coordinate Pt(II) complexes can act either retaining their uncommon structure or functioning as prodrugs, i.e., releasing square-planar platinum complexes as bioactive species.
Collapse
|
20
|
Ferraro G, Giorgio A, Mansour AM, Merlino A. Protein-mediated disproportionation of Au(i): insights from the structures of adducts of Au(iii) compounds bearingN,N-pyridylbenzimidazole derivatives with lysozyme. Dalton Trans 2019; 48:14027-14035. [DOI: 10.1039/c9dt02729g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structural data of protein/gold adducts suggest protein-mediated reduction of Au(iii) into Au(i) and disproportionation of Au(i) into Au(iii) and Au(0).
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Anna Giorgio
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Naples
- Italy
| | | | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Naples
- Italy
| |
Collapse
|
21
|
Monti DM, Ferraro G, Petruk G, Maiore L, Pane F, Amoresano A, Cinellu MA, Merlino A. Ferritin nanocages loaded with gold ions induce oxidative stress and apoptosis in MCF-7 human breast cancer cells. Dalton Trans 2018; 46:15354-15362. [PMID: 29072740 DOI: 10.1039/c7dt02370g] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two anticancer gold(iii) compounds, Au2phen and Auoxo4, were encapsulated within a ferritin nanocage. The gold-compound loaded proteins were characterized by UV-Vis spectroscopy, inductively coupled plasma mass spectrometry and circular dichroism. X-ray crystallography shows that the compounds degrade upon encapsulation and gold(i) ions bind Ft within the cage, close to the side chains of Cys126. The gold-encapsulated nanocarriers are cytotoxic to human cancer cells. Au(i)-loaded Ft, obtained upon the encapsulation of Au2phen within the cage, induces oxidative stress activation, which finally leads to apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Russo Krauss I, Ferraro G, Pica A, Márquez JA, Helliwell JR, Merlino A. Principles and methods used to grow and optimize crystals of protein-metallodrug adducts, to determine metal binding sites and to assign metal ligands. Metallomics 2018; 9:1534-1547. [PMID: 28967006 DOI: 10.1039/c7mt00219j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The characterization of the interactions between biological macromolecules (proteins and nucleic acids) and metal-based drugs is a fundamental prerequisite for understanding their mechanisms of action. X-ray crystallography enables the structural analysis of such complexes with atomic level detail. However, this approach requires the preparation of highly diffracting single crystals, the measurement of diffraction patterns and the structural analysis and interpretation of macromolecule-metal interactions from electron density maps. In this review, we describe principles and methods used to grow and optimize crystals of protein-metallodrug adducts, to determine metal binding sites and to assign and validate metal ligands. Examples from the literature and experience in our own laboratory are provided and key challenges are described, notably crystallization and molecular model refinement against the X-ray diffraction data.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Messori L, Merlino A. Protein metalation by metal-based drugs: X-ray crystallography and mass spectrometry studies. Chem Commun (Camb) 2018; 53:11622-11633. [PMID: 29019481 DOI: 10.1039/c7cc06442j] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The combined use of X-ray crystallography and mass spectrometry represents a valuable strategy to investigate and characterize protein metalation induced by anticancer metal-based drugs. Here, we summarize a series of significant results recently obtained in our laboratories upon the examination of the structures of several adducts of proteins with representative metallodrugs (mostly containing ruthenium, gold and platinum). The general mechanisms of protein metalation that emerge from a careful comparative analysis of these structures are illustrated and their mechanistic implications are discussed. Possible directions for future work in the field are delineated.
Collapse
Affiliation(s)
- L Messori
- Department of Chemistry, University of Florence, Italy.
| | | |
Collapse
|
24
|
Ferraro G, Monti DM, Amoresano A, Pontillo N, Petruk G, Pane F, Cinellu MA, Merlino A. Gold-based drug encapsulation within a ferritin nanocage: X-ray structure and biological evaluation as a potential anticancer agent of the Auoxo3-loaded protein. Chem Commun (Camb) 2018; 52:9518-21. [PMID: 27326513 DOI: 10.1039/c6cc02516a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Auoxo3, a cytotoxic gold(iii) compound, was encapsulated within a ferritin nanocage. Inductively coupled plasma mass spectrometry, circular dichroism, UV-Vis absorption spectroscopy and X-ray crystallography confirm the potential-drug encapsulation. The structure shows that naked Au(i) ions bind to the side chains of Cys48, His49, His114, His114 and Cys126, Cys126, His132, His147. The gold-encapsulated nanocarrier has a cytotoxic effect on different aggressive human cancer cells, whereas it is significantly less cytotoxic for non-tumorigenic cells.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Nicola Pontillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Maria Agostina Cinellu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy and CIRCC, Consorzio Interuniversitario Reattività Chimica e Catalisi, Università di Bari, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy. and CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16, I-80126, Napoli, Italy
| |
Collapse
|
25
|
Hildebrandt J, Häfner N, Görls H, Kritsch D, Ferraro G, Dürst M, Runnebaum IB, Merlino A, Weigand W. Platinum(ii) O,S complexes as potential metallodrugs against Cisplatin resistance. Dalton Trans 2018; 45:18876-18891. [PMID: 27897281 DOI: 10.1039/c6dt01388k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report on platinum(ii) complexes with different cinnamic acid derivatives as ligands with cytotoxic activity against Cisplatin resistant ovarian cancer cell line subcultures of SKOV3 and A2780. A typical mechanism of action for platinum(ii) complexes as Cisplatin itself is binding to the DNA and inducing double-strand breaks. We examined the biological behavior of these potential drugs with 9-methylguanine using NMR spectroscopic methods and their DNA damage potential including γH2AX-foci analyses. X-ray diffraction methods have been used to elucidate the molecular structures of the platinum(ii) complexes. Interactions with the model protein lysozyme have been evaluated by different techniques including UV-Vis absorption spectroscopy, fluorescence and X-ray crystallography.
Collapse
Affiliation(s)
- Jana Hildebrandt
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstraße 8, 07743 Jena, Germany.
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstraße 8, 07743 Jena, Germany.
| | - Daniel Kritsch
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant' Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Ingo B Runnebaum
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant' Angelo, Via Cintia, I-80126, Napoli, Italy and CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16, I-80100, Napoli, Italy.
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstraße 8, 07743 Jena, Germany.
| |
Collapse
|
26
|
Ferraro G, Mansour AM, Merlino A. Exploring the interactions between model proteins and Pd(ii) or Pt(ii) compounds bearing charged N,N-pyridylbenzimidazole bidentate ligands by X-ray crystallography. Dalton Trans 2018; 47:10130-10138. [DOI: 10.1039/c8dt01663a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
X-ray structure of the adducts formed between lysozyme and Pd(ii) and Pt(ii) compounds bearing N,N-pyridylbenzimidazole derivatives with an alkylated sulfonate or phosphonium side chain are reported.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- 80126 Napoli
- Italy
| | - Ahmed M. Mansour
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza
- Egypt
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- 80126 Napoli
- Italy
| |
Collapse
|
27
|
Radisavljević S, Bratsos I, Scheurer A, Korzekwa J, Masnikosa R, Tot A, Gligorijević N, Radulović S, Rilak Simović A. New gold pincer-type complexes: synthesis, characterization, DNA binding studies and cytotoxicity. Dalton Trans 2018; 47:13696-13712. [DOI: 10.1039/c8dt02903b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complex [Au(H2LtBu)Cl]Cl2(1) induced perturbations of the cell cycle and led to apoptosis in human melanoma A375 cells.
Collapse
Affiliation(s)
| | - Ioannis Bratsos
- I.N.N
- Department of Physical Chemistry
- NCSR “Demokritos”
- Athens
- Greece
| | - Andreas Scheurer
- Inorganic Chemistry
- Department of Chemistry and Pharmacy
- University of Erlangen-Nürnberg
- Erlangen
- Germany
| | - Jana Korzekwa
- Inorganic Chemistry
- Department of Chemistry and Pharmacy
- University of Erlangen-Nürnberg
- Erlangen
- Germany
| | - Romana Masnikosa
- Department of Physical Chemistry
- Vinča Institute of Nuclear Sciences
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Aleksandar Tot
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | | | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia
- 11000 Belgrade
- Serbia
| | | |
Collapse
|
28
|
Picone D, Donnarumma F, Ferraro G, Gotte G, Fagagnini A, Butera G, Donadelli M, Merlino A. A comparison study on RNase A oligomerization induced by cisplatin, carboplatin and oxaliplatin. J Inorg Biochem 2017; 173:105-112. [DOI: 10.1016/j.jinorgbio.2017.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/27/2017] [Accepted: 05/07/2017] [Indexed: 01/25/2023]
|
29
|
Observation of gold sub-nanocluster nucleation within a crystalline protein cage. Nat Commun 2017; 8:14820. [PMID: 28300064 PMCID: PMC5357307 DOI: 10.1038/ncomms14820] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 02/06/2017] [Indexed: 01/18/2023] Open
Abstract
Protein scaffolds provide unique metal coordination environments that promote biomineralization processes. It is expected that protein scaffolds can be developed to prepare inorganic nanomaterials with important biomedical and material applications. Despite many promising applications, it remains challenging to elucidate the detailed mechanisms of formation of metal nanoparticles in protein environments. In the present work, we describe a crystalline protein cage constructed by crosslinking treatment of a single crystal of apo-ferritin for structural characterization of the formation of sub-nanocluster with reduction reaction. The crystal structure analysis shows the gradual movement of the Au ions towards the centre of the three-fold symmetric channels of the protein cage to form a sub-nanocluster with accompanying significant conformational changes of the amino-acid residues bound to Au ions during the process. These results contribute to our understanding of metal core formation as well as interactions of the metal core with the protein environment. Proteins can template the synthesis of inorganic nanoparticles, but the formation mechanisms remain vague. Here, the authors directly observe, through a sequence of X-ray crystal structures, the stages of gold sub-nanocluster growth within the confined environment of a ferritin cage.
Collapse
|
30
|
Merlino A, Marzo T, Messori L. Protein Metalation by Anticancer Metallodrugs: A Joint ESI MS and XRD Investigative Strategy. Chemistry 2017; 23:6942-6947. [DOI: 10.1002/chem.201605801] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Antonello Merlino
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Napoli Italy) and CNR Institute of Biostructure and Bioimages, Via Mezzocannone 16, 80100, Napoli (Italy
| | - Tiziano Marzo
- Department of Chemistry and Industrial Chemistry; University of Pisa; via Moruzzi, 13 56124 Pisa Italy
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto fiorentino (FI) Italy
| | - Luigi Messori
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto fiorentino (FI) Italy
| |
Collapse
|
31
|
Interactions between proteins and Ru compounds of medicinal interest: A structural perspective. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Marasco D, Messori L, Marzo T, Merlino A. Oxaliplatin vs. cisplatin: competition experiments on their binding to lysozyme. Dalton Trans 2016; 44:10392-8. [PMID: 25974859 DOI: 10.1039/c5dt01279a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The model protein hen egg white lysozyme was challenged with oxaliplatin and cisplatin. ESI mass spectrometry, surface plasmon resonance and thermal shift analyses demonstrate the formation of a bis-platinum adduct, though in very small amounts. Crystals of the bis-platinum adduct were obtained using two different preparations and the X-ray structures were solved at 1.85 Å and 1.95 Å resolution. Overall, the obtained data point out that, under the analyzed conditions, the two Pt drugs have similar affinities for the protein, but bind on its surface at two non-overlapping sites. In other words, these two drugs manifest a significantly different reactivity with this model protein and do not compete for the same protein binding sites.
Collapse
Affiliation(s)
- Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, via Montesano 12, 80120, Napoli, Italy
| | | | | | | |
Collapse
|
33
|
Caterino M, Petruk AA, Vergara A, Ferraro G, Marasco D, Doctorovich F, Estrin DA, Merlino A. Mapping the protein-binding sites for iridium(iii)-based CO-releasing molecules. Dalton Trans 2016; 45:12206-14. [DOI: 10.1039/c6dt01685e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mass spectrometry, Raman microspectroscopy, circular dichroism and X-ray crystallography have been used to investigate the reaction of CO-releasing molecule Cs2IrCl5CO with the model protein RNase A.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Ariel A. Petruk
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Alessandro Vergara
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Giarita Ferraro
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Daniela Marasco
- CNR Institute of Biostructures and Bioimages
- Napoli
- Italy
- Department of Pharmacy
- University of Naples Federico II
| | - Fabio Doctorovich
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Dario A. Estrin
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| |
Collapse
|
34
|
Serratrice M, Maiore L, Zucca A, Stoccoro S, Landini I, Mini E, Massai L, Ferraro G, Merlino A, Messori L, Cinellu MA. Cytotoxic properties of a new organometallic platinum(ii) complex and its gold(i) heterobimetallic derivatives. Dalton Trans 2016; 45:579-90. [DOI: 10.1039/c5dt02714d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The high antiproliferative effects of a new organoplatinum(ii) complex are further enhanced upon coordination of a gold(i) phosphane moiety.
Collapse
|
35
|
Mügge C, Marzo T, Massai L, Hildebrandt J, Ferraro G, Rivera-Fuentes P, Metzler-Nolte N, Merlino A, Messori L, Weigand W. Platinum(II) Complexes with O,S Bidentate Ligands: Biophysical Characterization, Antiproliferative Activity, and Crystallographic Evidence of Protein Binding. Inorg Chem 2015; 54:8560-70. [PMID: 26280387 DOI: 10.1021/acs.inorgchem.5b01238] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We recently characterized a series of novel platinum(II) compounds bearing a conserved O,S binding moiety as a bifunctional ligand and evaluated their solution behavior and antiproliferative properties in vitro against a representative cancer cell line. On the whole, those platinum compounds showed an appreciable stability in mixed dimethyl sulfoxide-aqueous buffers and promising in vitro cytotoxic effects; yet they manifested a rather limited solubility in aqueous media making them poorly suitable for further pharmaceutical development. To overcome this drawback, four new derivatives of this series were prepared and characterized based on a careful choice of substituents on the O,S bidentate ligand. The solubility and stability profile of these novel compounds in a reference buffer was determined, as well as the ligands' log P(o/w) value (P(o/w) = n-octanol-water partition coefficient) as an indirect measure for the complexes' lipophilicity. The antiproliferative properties were comparatively evaluated in a panel of three cancer cell lines. The protein binding properties of the four platinum compounds were assessed using the model protein hen egg white lysozyme (HEWL), and the molecular structures of two relevant HEWL-metallodrug adducts were solved. Overall, it is shown that a proper choice of the substituents leads to a higher solubility and enables a selective fine-tuning of the antiproliferative properties. The implications of these results are thoroughly discussed.
Collapse
Affiliation(s)
- Carolin Mügge
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena , Humboldtstraße 8, 07743 Jena, Germany.,Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum , Universitaetsstrasse 150, 44801 Bochum, Germany
| | - Tiziano Marzo
- Laboratory of Metals in Medicine, Department of Chemistry, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Lara Massai
- Laboratory of Metals in Medicine, Department of Chemistry, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Jana Hildebrandt
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena , Humboldtstraße 8, 07743 Jena, Germany
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II , via Cintia, Napoli I-80126, Italy
| | - Pablo Rivera-Fuentes
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum , Universitaetsstrasse 150, 44801 Bochum, Germany
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II , via Cintia, Napoli I-80126, Italy.,CNR Institute of Biostructures and Bioimages , via Mezzocannone 16, Napoli I-80100, Italy
| | - Luigi Messori
- Laboratory of Metals in Medicine, Department of Chemistry, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena , Humboldtstraße 8, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM) , Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
36
|
Interactions of carboplatin and oxaliplatin with proteins: Insights from X-ray structures and mass spectrometry studies of their ribonuclease A adducts. J Inorg Biochem 2015; 153:136-142. [PMID: 26239545 DOI: 10.1016/j.jinorgbio.2015.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/01/2015] [Accepted: 07/15/2015] [Indexed: 12/17/2022]
Abstract
Oxaliplatin and carboplatin are two platinum(II) drugs in widespread clinical use for the treatment of various types of cancers; yet, structural information on their interactions with proteins is scarce. Here, the X-ray structures of the adducts formed upon reaction of carboplatin and oxaliplatin with bovine pancreatic ribonuclease (RNase A) are reported and compared with results obtained for the structure of the RNase A-cisplatin adduct derived from isomorphous crystals, under the same experimental conditions. Additional details on the binding mode of these metallodrugs toward RNase A are provided by electrospray ionization mass spectrometry (ESI MS) measurements, thus offering insight on the occurring metal-protein interactions. Notably, while carboplatin and cisplatin mainly bind the side chain of Met29, oxaliplatin also binds the side chains of Asp14, of catalytically important His119 and, to a lesser extent, of His105. On the basis of the available data, a likely mechanism for oxaliplatin hydrolysis and binding to the protein is proposed. These results are potentially useful for a better understanding of the biological chemistry, toxicity and side effects of this important class of antitumor agents.
Collapse
|
37
|
Ferraro G, Massai L, Messori L, Cinellu MA, Merlino A. Structural evidences for a secondary gold binding site in the hydrophobic box of lysozyme. Biometals 2015; 28:745-54. [DOI: 10.1007/s10534-015-9863-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022]
|