1
|
Sinelshchikova AA, Lapkina LA, Larchenko VE, Dorovatovskii PV, Tsivadze AY, Gorbunova YG. Unexpected Supramolecular-Induced Redox Switching in Sandwich Gd Bisphthalocyaninate. Inorg Chem 2024; 63:8163-8170. [PMID: 38662752 DOI: 10.1021/acs.inorgchem.4c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The redox state of the phthalocyanine in sandwich lanthanide complexes is crucial for their applications. In this work, we demonstrate that the cation-induced supramolecular assembly of crown-substituted phthalocyanine lanthanide complexes Ln[(15C5)4Pc]2 can be used to control the redox state of the ligand simultaneously with the coordination sphere of the central metal. We achieve unprecedented redox switching of phthalocyanine ligands in a double-decker Gd(III) complex, resulting from the intramolecular inclusion of potassium cations between the decks with simultaneous twisting of the ligands (the skew angle between them decreases from 44.61 to 0.21°). Such a structural change leads to an increase in the deck-to-deck distance and drastically facilitates ligand reduction. This process was shown to be anion-dependent: only potassium salts of weak acids (KOPiv and KOAc) induce intramolecular inclusion of cations with redox switching in contrast to salts of strong acids (KBr, KOPic, KSCN, and KPF6), where such a redox process does not occur. This breakthrough opens new avenues for controlling the electrochromic properties, of phthalocyanines, along with other properties, such as electrical conductivity, optics, etc.
Collapse
Affiliation(s)
- Anna A Sinelshchikova
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Building 4, Moscow 119071, Russia
| | - Lyudmila A Lapkina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leniskii pr. 31, Moscow 119991, Russia
| | - Vladimir E Larchenko
- JSC Fine Chemicals R&D Center, Krasnobogatyrskaya 42, Building 1, Moscow 107258, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Kurchatov Square 1, Moscow 123182, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Building 4, Moscow 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leniskii pr. 31, Moscow 119991, Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Building 4, Moscow 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leniskii pr. 31, Moscow 119991, Russia
| |
Collapse
|
2
|
Kolarova M, Mulaku A, Miletin M, Novakova V, Zimcik P. Magnesium Phthalocyanines and Tetrapyrazinoporphyrazines: The Influence of a Solvent and a Delivery System on a Dissociation of Central Metal in Acidic Media. Pharmaceuticals (Basel) 2022; 15:ph15040409. [PMID: 35455406 PMCID: PMC9027660 DOI: 10.3390/ph15040409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Magnesium complexes of phthalocyanines (Pcs) and their aza-analogues have a great potential in medical applications or fluorescence detection. They are known to demetallate to metal-free ligands in acidic environments, however, detailed investigation of this process and its possible prevention is lacking. In this work, a conversion of lipophilic and water-soluble magnesium complexes of Pcs and tetrapyrazinoporphyrazines (TPyzPzs) to metal-free ligands was studied in relation to the acidity of the environment (organic solvent, water) including the investigation of the role of delivery systems (microemulsion or liposomes) in improvement in their acido-stability. The mechanism of the demetallation in organic solvents was based on an acidoprotolytic mechanism with the protonation of the azomethine nitrogen as the first step and a subsequent conversion to non-protonated metal-free ligands. In water, the mechanism seemed to be solvoprotolytic without any protonated intermediate. The water-soluble magnesium complexes were stable in a buffer with a physiological pH 7.4 while a time-dependent demetallation was observed in acidic pH. The demetallation was immediate at pH < 2 while the full conversion to metal-free ligand was done within 10 min and 45 min for TPyzPzs at pH 3 and pH 4, respectively. Incorporation of lipophilic magnesium complexes into microemulsion or liposomes substantially decreased the rate of the demetallation with the latter delivery system being much more efficient in the protection from the acidic environment. A comparison of two different macrocyclic cores revealed significantly higher kinetic inertness of magnesium TPyzPz complexes than their Pc analogues.
Collapse
|
3
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Martynov AG, Polovkova MA, Berezhnoy GS, Sinelshchikova AA, Dolgushin FM, Birin KP, Kirakosyan GA, Gorbunova YG, Tsivadze AY. Cation-Induced Dimerization of Heteroleptic Crown-Substituted Trisphthalocyaninates as Revealed by X-ray Diffraction and NMR Spectroscopy. Inorg Chem 2020; 59:9424-9433. [DOI: 10.1021/acs.inorgchem.0c01346] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander G. Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow 119071, Russia
| | - Marina A. Polovkova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow 119071, Russia
| | - Georgy S. Berezhnoy
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russia
| | - Anna A. Sinelshchikova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow 119071, Russia
| | - Fedor M. Dolgushin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Vavilova str. 28, Moscow 119991, Russia
| | - Kirill P. Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow 119071, Russia
| | - Gayane A. Kirakosyan
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russia
| | - Aslan Yu. Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russia
| |
Collapse
|
5
|
Systematically Exploring Molecular Aggregation and Its Impact on Surface Tension and Viscosity in High Concentration Solutions. Molecules 2020; 25:molecules25071588. [PMID: 32235624 PMCID: PMC7180489 DOI: 10.3390/molecules25071588] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
The aggregation structure of dye molecules has a great influence on the properties of dye solutions, especially in high concentration. Here, the dye molecular aggregation structures were investigated systemically in aqueous solutions with high concentration using three reactive dyes (O-13, R-24:1 and R-218). O-13 showed stronger aggregation than R-24:1 and R-218. This is because of the small non-conjugate side chain and its β-linked position on the naphthalene of O-13. Compared with R-218, R-24:1 showed relatively weaker aggregation due to the good solution of R-24:1. The change of different aggregate distributions in the solutions were also investigated by splitting the absorption curves. Moreover, it is found that the surface tension of solutions can be modified by the combined effect of both aggregation and the position of the hydrophilic group, which, however, also have an effect on viscosity. This exploration will provide guidance for the study of high concentration solutions.
Collapse
|
6
|
Cailler LP, Martynov AG, Gorbunova YG, Tsivadze AY, Sorokin AB. Carbene insertion to N–H bonds of 2-aminothiazole and 2-amino-1,3,4-thiadiazole derivatives catalyzed by iron phthalocyanine. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Iron(III) phthalocyaninate decorated with crown ether substituents, [(15C5)4PcFe]Cl, efficiently catalyzed the insertion of carbene derived from ethyl diazoacetate to six amines functionalized with thiazole, thiazoline and thiadiazole heterocycles. The reactions were carried out under practical conditions using EDA:amine stoechiometric ratio with 0.05 mol% catalyst loading. Turnover numbers up to 3360 have been achieved. The aminoacid derivatives bearing heterocyclic moieties were obtained under catalytic conditions for the first time with 36–69% yields in the case of single N–H insertion products and up to 77% in the case of double N–H insertion products.
Collapse
Affiliation(s)
- Lucie P. Cailler
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS, Université Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Alexander G. Martynov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Bldg. 4, 119071, Moscow, Russia
| | - Yulia G. Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Bldg. 4, 119071, Moscow, Russia
| | - Aslan Yu. Tsivadze
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Bldg. 4, 119071, Moscow, Russia
| | - Alexander B. Sorokin
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS, Université Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| |
Collapse
|
7
|
Martynov AG, Safonova EA, Tsivadze AY, Gorbunova YG. Functional molecular switches involving tetrapyrrolic macrocycles. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Martynov AG, Mack J, May AK, Nyokong T, Gorbunova YG, Tsivadze AY. Methodological Survey of Simplified TD-DFT Methods for Fast and Accurate Interpretation of UV-Vis-NIR Spectra of Phthalocyanines. ACS OMEGA 2019; 4:7265-7284. [PMID: 31459828 PMCID: PMC6648833 DOI: 10.1021/acsomega.8b03500] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/11/2019] [Indexed: 05/14/2023]
Abstract
A methodological survey of density functional theory (DFT) methods for the prediction of UV-visible (vis)-near-infrared (NIR) spectra of phthalocyanines is reported. Four methods, namely, full time-dependent (TD)-DFT and its Tamm-Dancoff approximation (TDA), together with their simplified modifications (sTD-DFT and sTDA, respectively), were tested by using the examples of unsubstituted and alkoxy-substituted metal-free ligands and zinc complexes. The theoretical results were compared with experimental data derived from UV-visible absorption and magnetic circular dichroism spectroscopy. Seven popular exchange-correlation functionals (BP86, B3LYP, TPSSh, M06, CAM-B3LYP, LC-BLYP, and ωB97X) were tested within these four approaches starting at a relatively modest level using 6-31G(d) basis sets and gas-phase BP86/def2-SVP optimized geometries. A gradual augmentation of the computational levels was used to identify the influence of starting geometry, solvation effects, and basis sets on the results of TD-DFT and sTD-DFT calculations. It was found that although these factors do influence the predicted energies of the vertical excitations, they do not affect the trends predicted in the spectral properties across series of structurally related substituted free bases and metallophthalocyanines. The best accuracy for the gas-phase vertical excitations was observed in the lower-energy Q-band region for calculations that made use of range-separated hybrids for both full and simplified TD-DFT approaches. The CAM-B3LYP functional provided particularly accurate results in the context of the sTD-DFT approach. The description of the higher-energy B-band region is considerably less accurate, and this demonstrates the need for further advances in the accuracy of theoretical calculations. Together with a general increase in accuracy, the application of simplified TD-DFT methods affords a 2-3 orders of magnitude speedup of the calculations in comparison to the full TD-DFT approach. It is anticipated that this approach will be widely used on desktop computers during the interpretation of UV-vis-NIR spectra of phthalocyanines and related macrocycles in the years ahead.
Collapse
Affiliation(s)
- Alexander G. Martynov
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Building 4, 119071 Moscow, Russia
- E-mail: (A.G.M.)
| | - John Mack
- Institute
for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
- E-mail: (J.M.)
| | - Aviwe K. May
- Institute
for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute
for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Yulia G. Gorbunova
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Building 4, 119071 Moscow, Russia
- N.S.
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr., 31, 119991 Moscow, Russia
| | - Aslan Yu Tsivadze
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Building 4, 119071 Moscow, Russia
- N.S.
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr., 31, 119991 Moscow, Russia
| |
Collapse
|
9
|
Safonova EA, Polovkova MA, Martynov AG, Gorbunova YG, Tsivadze AY. Crown-substituted naphthalocyanines: synthesis and supramolecular control over aggregation and photophysical properties. Dalton Trans 2018; 47:15226-15231. [PMID: 30321250 DOI: 10.1039/c8dt03661f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetra-15-crown-5-naphthalocyanines as first representatives of crown-substituted π-extended phthalocyanines were synthesized and characterized. The possibility to control their aggregation and photophysical properties by reversible formation of supramolecular assemblies in the presence of KOAc was demonstrated.
Collapse
Affiliation(s)
- Evgeniya A Safonova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg 4, Moscow, 119071, Russia
| | | | | | | | | |
Collapse
|
10
|
Movchan TG, Averin AA, Baulin DV, Plotnikova EV, Baulin VE, Tsivadze AY. Solubilization of Magnesium Octa[(4′-Benzo-15-Crown-5)Oxy]Phthalocyaninate in Aqueous Micellar Solutions of Hexadecyltriphenylphosphonium Bromide. COLLOID JOURNAL 2018. [DOI: 10.1134/s1061933x18050095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Horii Y, Kishiue S, Damjanović M, Katoh K, Breedlove BK, Enders M, Yamashita M. Supramolecular Approach for Enhancing Single-Molecule Magnet Properties of Terbium(III)-Phthalocyaninato Double-Decker Complexes with Crown Moieties. Chemistry 2018; 24:4320-4327. [PMID: 29265595 DOI: 10.1002/chem.201705378] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 11/10/2022]
Abstract
A TbIII -phthalocyaninato double-decker ([1]0 ) single-molecule magnet (SMM) having four 15-crown-5 moieties in one of the ligands was synthesized, and its dimerization and magnetic properties were studied in an attempt to utilize the supramolecular aggregation for enhancing the SMM properties. Aggregation of [1]0 to form [12 K4 ]4+ in the presence of K+ ions was studied by using UV/Vis-NIR absorption and NMR spectroscopies. For the magnetic measurements, [1]0 and [12 K4 ]4+ were dispersed in poly(methyl methacrylate) (PMMA). UV/Vis-NIR absorption measurements on the PMMA dispersed samples were used to track the formation of [12 K4 ]4+ . Direct current (DC) magnetic susceptibility measurements revealed that there were ferromagnetic Tb-Tb interactions in [12 K4 ]4+ , whereas there was no indication of ferromagnetic interactions in [1]0 . Upon the formation of [12 K4 ]4+ from [1]0 and K+ ions, the temperature at which the magnetic hysteresis occurred increased from 7 to 15 K. In addition, the area of magnetic hysteresis became larger for [12 K4 ]4+ , meaning that SMM properties of [12 K4 ]4+ are superior to those of [1]0 . Alternating current (AC) magnetic measurements were used to confirm this observation. Magnetic relaxation times at 2 K increased 1000-fold upon dimerization of [1]0 to [12 K4 ]4+ , demonstrating the effectiveness of using K+ ions to induce dimer formation for the improvement of the SMM properties.
Collapse
Affiliation(s)
- Yoji Horii
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Shuhei Kishiue
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Marko Damjanović
- Physikalisches Institut and Institute of Nanotechnology, Karlsruhe Institute of Technology, Wolfgang-Gaede-Strasse 1, Karlsruhe, 76131, Germany.,Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Markus Enders
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan.,WPI Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.,School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
12
|
Nuriev VN, Fedorov OV, Moiseeva AA, Freidzon AY, Kurchavov NA, Vedernikov AI, Medved’ko AV, Pod’yacheva ES, Vatsadze SZ, Gromov SP. Synthesis, structure, spectral properties, and electrochemistry of bis(crown ether) containing 1,3-distyrylbenzenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017110203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Vedernikov AI, Nuriev VN, Fedorov OV, Moiseeva AA, Kurchavov NA, Kuz’mina LG, Freidzon AY, Pod’yacheva ES, Medved’ko AV, Vatsadze SZ, Gromov SP. Synthesis, structure and complexation of biscrown-containing 1,4-distyrylbenzenes. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1637-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Safonova EA, Martynov AG, Nefedov SE, Kirakosyan GA, Gorbunova YG, Tsivadze AY. A Molecular Chameleon: Reversible pH- and Cation-Induced Control of the Optical Properties of Phthalocyanine-Based Complexes in the Visible and Near-Infrared Spectral Ranges. Inorg Chem 2016; 55:2450-9. [PMID: 26910047 DOI: 10.1021/acs.inorgchem.5b02831] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of novel nonperipherally substituted tetra-15-crown-5-dibutoxyoxanthrenocyanines (H2, Mg, Zn), acting as chameleons with the unique properties of switchable absorption and emission in the near-infrared (NIR) spectral range have been synthesized and characterized by X-ray diffraction. The attachment of 15-crown-5-α-dibutoxyoxanthreno moieties to phthalocyanine is responsible for the high solubility of the resulting molecules and the red shift of the Q band to the NIR region and offers a unique possibility for postsynthetic modification of the optical properties of the molecules. Both aggregation of phthalocyanine and its participation in an acid-base equilibrium strongly alter their optical properties. For example, the absorption of complexes can be reversibly tuned from 686 up to 1028 nm because of the cation-induced formation of supramolecular dimers or subsequent protonation of meso-N atoms orf macrocycle, in contrast to peripherally substituted tetra-15-crown-5-phthalocyanines without oxanthrene moieties. The reversibility of these processes can be controlled by the addition of [2.2.2]cryptand or amines. All investigated compounds exhibit fluorescence with moderate quantum yield, which can also be switched between the ON and OFF states by the action of similar agents.
Collapse
Affiliation(s)
- Evgeniya A Safonova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Alexander G Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Sergey E Nefedov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskii pr. 31, Moscow 119991, Russia
| | - Gayane A Kirakosyan
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , Leninskii pr. 31, bldg. 4, Moscow 119071, Russia.,Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskii pr. 31, Moscow 119991, Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , Leninskii pr. 31, bldg. 4, Moscow 119071, Russia.,Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskii pr. 31, Moscow 119991, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , Leninskii pr. 31, bldg. 4, Moscow 119071, Russia.,Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskii pr. 31, Moscow 119991, Russia
| |
Collapse
|
15
|
Mack J, Mkhize S, Safonova EA, Martynov AG, Gorbunova YG, Tsivadze AY, Nyokong T. MCD spectroscopy and TD-DFT calculations of magnesium tetra-(15-crown-5-oxanthreno)-phthalocyanine. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An analysis of the MCD spectroscopy and TD-DFT calculations of magnesium tetra-(15-crown-5-oxanthreno)-phthalocyanine is reported. This study provides a reassessment of an earlier study on the nature of the bands in UV-visible absorption spectra of magnesium and zinc tetra-(15-crown-5-oxanthreno)-phthalocyanine that was based on an analysis of TD-DFT calculations for a series of model complexes with the B3LYP functional. A detailed analysis of MCD spectral data and TD-DFT calculations with the CAM-B3LYP functional for the complete Mg(II) complex provides an additional insight into the optical properties and electronic structures of tetra-(15-crown-5-oxanthreno)-phthalocyanines. Thus, the bands in the Q-band region are reassigned as being due exclusively to the Q transition of Gouterman’s 4-orbital model, since intense pseudo-[Formula: see text] terms are observed in the MCD spectrum in a spectral region that had previously been assigned as charge transfer bands.
Collapse
Affiliation(s)
- John Mack
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Scebi Mkhize
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Evgeniya A. Safonova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Bldg. 4, Moscow 119071, Russia
| | - Alexander G. Martynov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Bldg. 4, Moscow 119071, Russia
| | - Yulia G. Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Bldg. 4, Moscow 119071, Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, Moscow 119991, Russia
| | - Aslan Yu. Tsivadze
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Bldg. 4, Moscow 119071, Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, Moscow 119991, Russia
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|