1
|
Omweri JM, Saini S, Houson HA, Tekin V, Pyles JM, Parker CC, Lapi SE. Development of 52Mn Labeled Trastuzumab for Extended Time Point PET Imaging of HER2. Mol Imaging Biol 2024; 26:858-868. [PMID: 39192059 PMCID: PMC11436409 DOI: 10.1007/s11307-024-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE Due to their long circulation time in the blood, monoclonal antibodies (mAbs) such as trastuzumab, are usually radiolabeled with long-lived positron emitters for the development of agents for Positron Emission Tomography (PET) imaging. Manganese-52 (52Mn, t1/2 = 5.6 d, β+ = 29.6%, E(βave) = 242 keV) is suitable for imaging at longer time points providing a complementary technique to Zirconium-89 (89Zr, t1/2 = 3.3 d, β+ = 22.7%, E(βave) = 396 keV)) because of its long half-life and low positron energy. To exploit these properties, we aimed to investigate suitable bifunctional chelators that could be readily conjugated to antibodies and labeled with 52Mn under mild conditions using trastuzumab as a proof-of-concept. PROCEDURES Trastuzumab was incubated with S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), 1-Oxa-4,7,10-tetraazacyclododecane-5-S-(4-isothiocyantobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A), and 3,6,9,15-tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA) at a tenfold molar excess. The immunoconjugates were purified, combined with [52Mn]MnCl2 at different ratios, and the labeling efficiency was assessed by iTLC. The immunoreactive fraction of the radiocomplex was determined through a Lindmo assay. Cell studies were conducted in HER2 + (BT474) and HER2- (MDA-MB-468) cell lines followed by in vivo studies. RESULTS Trastuzumab-Oxo-DO3A was labeled within 30 min at 37 °C with a radiochemical yield (RCY) of 90 ± 1.5% and with the highest specific activity of the chelators investigated of 16.64 MBq/nmol. The labeled compound was purified with a resulting radiochemical purity of > 98% and retained a 67 ± 1.2% immunoreactivity. DOTA and PCTA immunoconjugates resulted in < 50 ± 2.5% (RCY) with similar specific activity. Mouse serum stability studies of [52Mn]Mn-Oxo-DO3A-trastuzumab showed 95% intact complex for over 5 days. Cell uptake studies showed higher uptake in HER2 + (12.51 ± 0.83% /mg) cells compared to HER2- (0.85 ± 0.10%/mg) cells. PET images of mice bearing BT474 tumors showed high tumor uptake that was consistent with the biodistribution (42.02 ± 2.16%ID/g, 14 d) compared to MDA-MB-468 tumors (2.20 ± 0.80%ID/g, 14 d). Additionally, both models exhibited low bone uptake of < 1% ID/g. CONCLUSION The bifunctional chelator p-SCN-Bn-Oxo-DO3A is promising for the development of 52Mn radiopharmaceuticals as it was easily conjugated, radiolabeled at mild conditions, and illustrated stability for a prolonged duration both in vitro and in vivo. High-quality PET/CT images of [52Mn]Mn-Oxo-DO3A-trastuzumab were obtained 14 d post-injection. This study illustrates the potential of [52Mn]Mn-Oxo-DO3A for the evaluation of antibodies using PET imaging.
Collapse
Affiliation(s)
- James M Omweri
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Shefali Saini
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Volkan Tekin
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Jennifer M Pyles
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Candace C Parker
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Suzanne E Lapi
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA.
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA.
| |
Collapse
|
2
|
Omweri JM, Tekin V, Saini S, Houson HA, Jayawardana SB, Decato DA, Wijeratne GB, Lapi SE. Chelation chemistry of manganese-52 for PET imaging applications. Nucl Med Biol 2024; 128-129:108874. [PMID: 38154167 DOI: 10.1016/j.nucmedbio.2023.108874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Due to its decay and chemical properties, interest in manganese-52 has increased for development of long-lived PET radiopharmaceuticals. Its long half-life of 5.6 days, low average positron energy (242 keV), and sufficient positron decay branching ratio make it suitable for radiolabeling macromolecules for investigating slow biological processes. This work aims to establish suitable chelators for manganese-52 that can be radiolabeled at mild conditions through the evaluation of commercially available chelators. METHODS Manganese-52 was produced through the nuclear reaction NatCr(p,n)52Mn by irradiation of natural chromium targets on a TR24 cyclotron followed by purification through ion exchange chromatography. The radiolabeling efficiencies of chelators: DOTA, DiAmsar, TETA, DO3A, NOTA, 4'-Formylbenzo-15-crown-5, Oxo-DO3A, and DFO, were assessed by investigating the impact of pH, buffer type, and temperature. In vitro stability of [52Mn]Mn(DO3A)-, [52Mn]Mn(Oxo-DO3A)-, and [52Mn]Mn(DOTA)2- were evaluated in mouse serum. The radiocomplexes were also evaluated in vivo in mice. Crystals of [Mn(Oxo-DO3A)]- were synthesized by reacting Oxo-DO3A with MnCl2 and characterized by single crystal X-ray diffraction. RESULTS Yields of 185 ± 19 MBq (5.0 ± 0.5 mCi) (n = 4) of manganese-52 were produced at the end of a 4 h, 15 μA, bombardment with 12.5 MeV protons. NOTA, DO3A, DOTA, and Oxo-DO3A chelators were readily radiolabeled with >96 % radiochemical purity at all conditions. Manganese radiocomplexes of Oxo-DO3A, DOTA, and DO3A remained stable in vitro up to 5 days and exhibited different biodistribution profiles compared to [52Mn]MnCl2. The solid-state structure of Mn-Oxo-DO3A complex was determined by single-crystal X-ray diffraction. CONCLUSIONS DO3A and Oxo-DO3A are suitable chelators for manganese-52 which are readily radiolabeled at mild conditions with high molar activity, and demonstrate both in vitro and in vivo stability.
Collapse
Affiliation(s)
- James M Omweri
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35205, USA; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Volkan Tekin
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shefali Saini
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35205, USA; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samith B Jayawardana
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Daniel A Decato
- Department of Chemistry and Biochemistry, University of Montana, MT 59812, USA
| | - Gayan B Wijeratne
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Suzanne E Lapi
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35205, USA; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Ndiaye D, Sy M, Thor W, Charbonnière LJ, Nonat AM, Tóth É. Structural Variations in Carboxylated Bispidine Ligands: Influence of Positional Isomerism and Rigidity on the Conformation, Stability, Inertness and Relaxivity of their Mn 2+ Complexes. Chemistry 2023; 29:e202301880. [PMID: 37470713 DOI: 10.1002/chem.202301880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Mn2+ complexes of 2,4-pyridyl-disubstituted bispidine ligands have emerged as more biocompatible alternatives to Gd3+ -based MRI probes. They display relaxivities comparable to that of commercial contrast agents and high kinetic inertness, unprecedented for Mn2+ complexes. The chemical structure, in particular the substituents on the two macrocyclic nitrogens N3 and N7, are decisive for the conformation of the Mn2+ complexes, and this will in turn determine their thermodynamic, kinetic and relaxation properties. We describe the synthesis of four ligands with acetate substituents in positions N3, N7 or both. We evidence that the bispidine conformation is dependent on N3 substitution, with direct impact on the thermodynamic stability, kinetic inertness, hydration state and relaxivity of the Mn2+ complexes. These results unambiguously show that (i) solely a chair-chair conformation allows for favorable inertness and relaxivity, and (ii) in this family such chair-chair conformation is accessible only for ligands without N3-appended carboxylates.
Collapse
Affiliation(s)
- Daouda Ndiaye
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans, France
| | - Maryame Sy
- Equipe de Synthèse pour l'Analyse Département des Sciences Analytiques, Université de Strasbourg, CNRS, IPHC UMR 7178, 27, Rue Becquerel, 67A037, Strasbourg, France
| | - Waygen Thor
- Equipe de Synthèse pour l'Analyse Département des Sciences Analytiques, Université de Strasbourg, CNRS, IPHC UMR 7178, 27, Rue Becquerel, 67A037, Strasbourg, France
| | - Loïc J Charbonnière
- Equipe de Synthèse pour l'Analyse Département des Sciences Analytiques, Université de Strasbourg, CNRS, IPHC UMR 7178, 27, Rue Becquerel, 67A037, Strasbourg, France
| | - Aline M Nonat
- Equipe de Synthèse pour l'Analyse Département des Sciences Analytiques, Université de Strasbourg, CNRS, IPHC UMR 7178, 27, Rue Becquerel, 67A037, Strasbourg, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans, France
| |
Collapse
|
4
|
Blade G, Wessel AJ, Terpstra K, Mirica LM. Pentadentate and Hexadentate Pyridinophane Ligands Support Reversible Cu(II)/Cu(I) Redox Couples. INORGANICS 2023; 11:446. [PMID: 39301085 PMCID: PMC11412068 DOI: 10.3390/inorganics11110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Two new ligands were synthesized with the goal of copper stabilization, N,N'-(2-methylpyridine)-2,11-diaza[3,3](2,6)pyridinophane (PicN4) and N-(methyl),N'-(2-methylpyridine)-2,11-diaza[3,3](2,6)pyridinophane (PicMeN4), by selective functionalization of HN4 and TsHN4. These two ligands, when reacted with various copper salts, generated both Cu(II) and Cu(I) complexes. These ligands and Cu complexes were characterized by various methods, such as NMR, UV-Vis, MS, and EA. Each compound was also examined electrochemically, and each revealed reversible Cu(II)/Cu(I) redox couples. Additionally, stability constants were determined via spectrophotometric titrations, and radiolabeling and cytotoxicity experiments were performed to assess the chelators relevance to their potential use in vivo as 64Cu PET imaging agents.
Collapse
Affiliation(s)
- Glenn Blade
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Matthews Ave, Urbana, IL 61801, USA
| | - Andrew J Wessel
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | - Karna Terpstra
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Matthews Ave, Urbana, IL 61801, USA
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Matthews Ave, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Melendez-Alafort L, Ferro-Flores G, De Nardo L, Ocampo-García B, Bolzati C. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Mukhatov A, Le T, Pham TT, Do TD. A comprehensive review on magnetic imaging techniques for biomedical applications. NANO SELECT 2023. [DOI: 10.1002/nano.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Azamat Mukhatov
- Department of Robotics School of Engineering and Digital Sciences Nazarbayev University Astana Kazakhstan
| | - Tuan‐Anh Le
- Department of Physiology and Biomedical Engineering Mayo Clinic Scottsdale Arizona USA
| | - Tri T. Pham
- Department of Biology School of Sciences and Humanities Nazarbayev University Astana Kazakhstan
| | - Ton Duc Do
- Department of Robotics School of Engineering and Digital Sciences Nazarbayev University Astana Kazakhstan
| |
Collapse
|
7
|
Latgé A, Boisson F, Ouadi A, Averous G, Thomas L, Imperiale A, Brasse D. 64CuCl 2 PET Imaging of 4T1-Related Allograft of Triple-Negative Breast Cancer in Mice. Molecules 2022; 27:4869. [PMID: 35956819 PMCID: PMC9369569 DOI: 10.3390/molecules27154869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
64CuCl2 is an economic radiotracer for oncologic PET investigations. In the present study, we characterized the uptake of 64CuCl2 in vivo by µPET/CT in an allograft 4T1-related mouse model (BALB/c) of advanced breast cancer. 18F-FDG was used as a comparator. Twenty-two animals were imaged 7-9 days following 4T1-cell implantation inside mammary glands. Dynamic 64CuCl2 µPET/CT acquisition or iterative static images up to 8 h p.i. were performed. Animal biodistribution and tumor uptake were first evaluated in vivo by µPET analysis and then assessed on tissue specimens. Concerning 18F-FDG µPET, a static acquisition was performed at 15 min and 60 min p.i. Tumor 64CuCl2 accumulation increased from 5 min to 4 h p.i., reaching a maximum value of 5.0 ± 0.20 %ID/g. Liver, brain, and muscle 64CuCl2 accumulation was stable over time. The tumor-to-muscle ratio remained stable from 1 to 8 h p.i., ranging from 3.0 to 3.7. Ex vivo data were consistent with in vivo estimations. The 18F-FDG tumor accumulation was 8.82 ± 1.03 %ID/g, and the tumor-to-muscle ratio was 4.54 ± 1.11. 64CuCl2 PET/CT provides good characterization of the 4T1-related breast cancer model and allows for exploration of non-glycolytic cellular pathways potentially of interest for theragnostic strategies.
Collapse
Affiliation(s)
- Adrien Latgé
- Nuclear Medicine and Molecular Imaging Department, Institut de Cancérologie de Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France;
| | - Frédéric Boisson
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| | - Ali Ouadi
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| | - Gerlinde Averous
- Department of Pathology, Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67200 Strasbourg, France;
| | - Lionel Thomas
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| | - Alessio Imperiale
- Nuclear Medicine and Molecular Imaging Department, Institut de Cancérologie de Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France;
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| | - David Brasse
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| |
Collapse
|
8
|
Experimental Nuclear Medicine Meets Tumor Biology. Pharmaceuticals (Basel) 2022; 15:ph15020227. [PMID: 35215337 PMCID: PMC8878163 DOI: 10.3390/ph15020227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Personalized treatment of cancer patients demands specific and validated biomarkers for tumor diagnosis and therapy. The development and validation of such require translational preclinical models that recapitulate human diseases as accurately as possible. Moreover, there is a need for convergence of different (pre)clinical disciplines that openly share their knowledge and methodologies. This review sheds light on the differential perception of biomarkers and gives an overview of currently used models in tracer development and approaches for biomarker discovery.
Collapse
|
9
|
Choudhary N, Scheiber H, Zhang J, Patrick BO, de Guadalupe Jaraquemada-Peláez M, Orvig C. H 4HBEDpa: Octadentate Chelate after A. E. Martell. Inorg Chem 2021; 60:12855-12869. [PMID: 34424678 DOI: 10.1021/acs.inorgchem.1c01175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
H4HBEDpa, a new octadentate chelator inspired by the 1960s ligand HBED of Arthur E. Martell, has been investigated for a selection of trivalent metal ions useful in diagnostic and therapeutic applications (Sc3+, Fe3+, Ga3+, In3+, and Lu3+). Complex formation equilibria were thoroughly investigated using combined potentiometric and UV-vis spectrophotometric titrations which revealed effective chelation and high metal-sequestering capacity, in particular for Fe3+, log KFeL = 36.62, [Fe(HBEDpa)]-. X-ray diffraction study of single crystals revealed that the ligand is preorganized and forms hexa-coordinated complexes with Fe3+ and Ga3+ at acidic pH. Density functional theory (DFT) calculations were applied to probe the geometries and energies of all the possible conformers of [M(HBEDpa)]- (M = Sc3+, Fe3+, Ga3+, In3+, and Lu3+). DFT calculations confirmed the experimental findings, indicating that [Fe(HBEDpa)]- is bound tightly in an asymmetric pattern as compared to the symmetrically bound and more open [Ga(HBEDpa)]-, prone to hydrolysis at higher pH. DFT calculations also showed that a large metal ion such as Lu3+ fully coordinates with HBEDpa4-, forming a binary octadentate complex in its lowest-energy form. Smaller metal ions form six or seven coordinate complexes with HBEDpa4-.
Collapse
Affiliation(s)
- Neha Choudhary
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Hayden Scheiber
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jiale Zhang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - María de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
10
|
Southcott L, Wang X, Wharton L, Yang H, Radchenko V, Kubeil M, Stephan H, de Guadalupe Jaraquemada-Peláez M, Orvig C. High denticity oxinate-linear-backbone chelating ligand for diagnostic radiometal ions [111In]In3+ and [89Zr]Zr4+. Dalton Trans 2021; 50:3874-3886. [DOI: 10.1039/d0dt04230g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A potentially decadentate oxinate-containing ligand was synthesized and assessed through solution thermodynamics studies, concentration dependent radiolabeling and serum stability assays with [nat/111In]In3+ and [nat/89Zr]Zr4+.
Collapse
Affiliation(s)
- Lily Southcott
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Xiaozhu Wang
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Luke Wharton
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Hua Yang
- Life Sciences Division
- TRIUMF
- Vancouver
- Canada
| | - Valery Radchenko
- Life Sciences Division
- TRIUMF
- Vancouver
- Canada
- Department of Chemistry
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden Rossendorf
- 01328 Dresden
- Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden Rossendorf
- 01328 Dresden
- Germany
| | | | - Chris Orvig
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
11
|
Choudhary N, Guadalupe Jaraquemada-Peláez MD, Zarschler K, Wang X, Radchenko V, Kubeil M, Stephan H, Orvig C. Chelation in One Fell Swoop: Optimizing Ligands for Smaller Radiometal Ions. Inorg Chem 2020; 59:5728-5741. [DOI: 10.1021/acs.inorgchem.0c00509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Neha Choudhary
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Marı́a de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kristof Zarschler
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Xiaozhu Wang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
12
|
Mizuno Y, Uehara T, Jen CW, Akizawa H, Arano Y. The synthesis of a 99mTc-labeled tetravalent targeting probe upon isonitrile coordination to 99mTc I for enhanced target uptake in saturable systems. RSC Adv 2019; 9:26126-26135. [PMID: 35531015 PMCID: PMC9070385 DOI: 10.1039/c9ra04311j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/11/2019] [Indexed: 11/21/2022] Open
Abstract
The presence of excess unlabeled ligands in the injectate hinders the target uptake of 99mTc-labeled targeting vectors. To address the issue, we previously developed a chemical design which provides a 99mTc-labeled trivalent RGD probe upon CN-βAla-Gly-Gly-c(RGDfK) (Lβ) coordination to [99mTc][Tc(CO)3]+ core at pH 6.0. In this study, we extended our coordination mediated synthesis of the trivalent RGD probe to that of a tetravalent one. Our initial attempts reacting Lβ with [99mTc][Tc(CO)3]+ core at pH 8.0 failed to provide [99mTc][Tc(CO)2(Lβ)4]+ due to the formation of multiple side products. A γ-aminobutylic acid (GABA) based isonitrile ligand CN-GABA-Gly-Gly-c(RGDfK) (LG), on the other hand, avoided the side reaction and selectively provided [99mTc][Tc(CO)2(LG)4]+ (99mTc-[LG]4) at pH 8.0. 99mTc-[LG]4 exhibited higher binding affinity to integrin αvβ3 than its unlabeled ligand, and visualized U87MG tumor without tedious post-labeling purification. These results indicate that the metal coordination-mediated syntheses of 99mTc-labeled multivalent probes have been successfully applied to a tetravalent one, which would allow a wider range of choices for designing novel 99mTc-labeled multivalent probes of high in vivo target uptake.
Collapse
Affiliation(s)
- Yuki Mizuno
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
- Laboratory of Physical Chemistry, Showa Pharmaceutical University 3-3165 Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| | - Tomoya Uehara
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Chun-Wei Jen
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Hiromichi Akizawa
- Laboratory of Physical Chemistry, Showa Pharmaceutical University 3-3165 Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| | - Yasushi Arano
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| |
Collapse
|
13
|
Preparation of Zirconium-89 Solutions for Radiopharmaceutical Purposes: Interrelation Between Formulation, Radiochemical Purity, Stability and Biodistribution. Molecules 2019; 24:molecules24081534. [PMID: 31003494 PMCID: PMC6514948 DOI: 10.3390/molecules24081534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
Zirconium-89 is a promising radionuclide for nuclear medicine. The aim of the present work was to find a suitable method for obtaining zirconium-89 solutions for radiopharmaceutical purposes. For this purpose, the ion exchange behavior of zirconium-89 solutions was studied. Radio-TLC (thin layer chromatography) and biodistribution studies were carried out to understand speciation of zirconium-89 complexes and their role in the development of new radiopharmaceuticals. Three methods of zirconium-89 isolation were studied using ZR (hydroxamate) and Chelex-100 resins. It was found that ZR-resin alone is not enough to obtain stable zirconium-89 formulations. An easy and effective method of reconstitution of [89Zr]Zr-oxalate to [89Zr]Zr-citrate using Chelex-100 resin was developed. Developed procedures allow obtaining [89Zr]Zr-oxalate (in 0.1 M sodium oxalate solution) and [89Zr]Zr-citrate (in 0.1–1.0 M sodium citrate solution). These solutions are perfectly suitable and convenient for radiopharmaceutical purposes. Our results prove [89Zr]Zr-citrate to be advantageous over [89Zr]Zr-oxalate. During evaluation of speciation of zirconium-89 complexes, a new TLC method was developed, since it was proved that there is no comprehensive method for analysis or zirconium-89 preparations. The new method provides valuable insights about the content of “active” ionic form of zirconium-89. The interrelation of the chromatographic behavior of zirconium-89 preparations and their biodistribution was studied.
Collapse
|
14
|
Gholipour N, Akhlaghi M, Mokhtari Kheirabadi A, Fasihi Ramandi M, Farashahi A, Beiki D, Jalilian AR. Development of a novel 68Ga-dextran carboxylate derivative for blood pool imaging. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-2959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To develop a possible PET blood pool imaging agent, a series 68Ga-dextran carboxylate derivatives were prepared. Dextran carboxylates with different degree of oxidations (DO) were prepared through stepwise dextran oxidation using NaIO4 and CH3COOOH. The products were characterized by FT-IR and GPC, followed by solubility and toxicity tests on Hella cells (viability=98.6, 97.4 and 95.6% for 3 dextran carboxylates with DOs: 8.3, 24.6 and 39.8%, respectively. The products were labeled with 68Ga (radiochemical purity>98%; ITLC) followed by stability tests in final solution as well as in presence of cycteine and human serum. Two stable tracers (DOs; 24.6 and 39.8%) were adminstered intravenously into wild type rat tail vein separately demonstrating suitable retention in circulation as expected from blood pool imaging agents. Liver and spleen also contained activities. The major excretion was through urinary pathway esp. for derivative with DO. 39.8%. Unlike 68Ga-dextran, lungs showed lower uptake. The dextran carboxylate with the highest 39.8% showed the best characteristics for a blood pool agent, though more studies including PET imaging in larger mammals are required.
Collapse
Affiliation(s)
- Nazila Gholipour
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , Tehran , Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | | | - Mahdi Fasihi Ramandi
- Molecular Biology Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ali Farashahi
- Tehran Heart Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Amir R. Jalilian
- Tehran University of Medical Sciences, Research Center for Nuclear Medicine, Shariati Hospital , North Kargar Ave., P.O. Box: 1414713135 , Tehran , Iran , Tel.: 0098 21 88633333, Fax: 0098 21 88026905
| |
Collapse
|
15
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
16
|
Wallin M, Turner P, Katsifis A, Yang M, Chan HK. Crystal structure of aqua-(2-{[2-({2-[bis-(carboxyl-ato-κ O-meth-yl)amino-κ N]eth-yl}(carboxyl-ato-κ O-meth-yl)amino-κ N)eth-yl](carb-oxy-meth-yl)aza-niumyl}acetato)-gallium(III) trihydrate. Acta Crystallogr E Crystallogr Commun 2018; 74:1054-1057. [PMID: 30116560 PMCID: PMC6073008 DOI: 10.1107/s2056989018009428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/30/2018] [Indexed: 11/30/2022]
Abstract
In the title GaIII complex compound with pentetic acid, [Ga(C14H20N3O10)(H2O)]·3H2O, the GaIII centre is bound in a slightly distorted octa-hedral coordination sphere by two amine N atoms, three carboxyl-ate O atoms and one water O atom. The complex mol-ecule exists as a zwitterion. In the crystal, the complexes are linked to each other via O-H⋯O and C-H⋯O hydrogen bonds, forming layers parallel to (001). Three uncoordinating water mol-ecules link the complex layers via O-H⋯O, N-H⋯O and C-H⋯O hydrogen bonds, forming a three-dimensional network.
Collapse
Affiliation(s)
- Martin Wallin
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, NSW, 2006, Australia
| | - Peter Turner
- School of Chemistry, University of Sydney, NSW 2006, Australia
| | - Andrew Katsifis
- Department of PET & Nuclear Medicine, Royal Prince Alfred Hospital, NSW 2050, Australia
| | - Mingshi Yang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
17
|
Smirnova ES, Acuña‐Parés F, Escudero‐Adán EC, Jelsch C, Lloret‐Fillol J. Synthesis and Reactivity of Copper(I) Complexes Based on
C
3
‐Symmetric Tripodal HTIM(PR
2
)
3
Ligands. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ekaterina S. Smirnova
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Ferran Acuña‐Parés
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Eduardo C. Escudero‐Adán
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Christian Jelsch
- CRM2 UMR CNRS 7036 Université de Lorraine Vandoeuvre les Nancy CEDEX France
| | - Julio Lloret‐Fillol
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluïs Companys, 23 08010 Barcelona Spain
| |
Collapse
|
18
|
Sivapackiam J, Laforest R, Sharma V. 68 Ga[Ga]-Galmydar: Biodistribution and radiation dosimetry studies in rodents. Nucl Med Biol 2018; 59:29-35. [DOI: 10.1016/j.nucmedbio.2017.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 11/27/2022]
|
19
|
Pedersen KS, Imbrogno J, Fonslet J, Lusardi M, Jensen KF, Zhuravlev F. Liquid–liquid extraction in flow of the radioisotope titanium-45 for positron emission tomography applications. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00175h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continuous liquid–liquid extraction of the PET radioisotope 45Ti using a membrane-based separator allows for efficient 45Ti recovery and radiolabeling.
Collapse
Affiliation(s)
- Kristina Søborg Pedersen
- Technical University of Denmark
- Center for Nuclear Technologies
- 4000 Roskilde
- Denmark
- Department of Chemical Engineering
| | - Joseph Imbrogno
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Jesper Fonslet
- Technical University of Denmark
- Center for Nuclear Technologies
- 4000 Roskilde
- Denmark
| | - Marcella Lusardi
- Department of Materials Science and Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Klavs F. Jensen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Materials Science and Engineering
| | - Fedor Zhuravlev
- Technical University of Denmark
- Center for Nuclear Technologies
- 4000 Roskilde
- Denmark
| |
Collapse
|
20
|
Abstract
Radiometal based radiopharmaceuticals for imaging and therapy require selective ligands (bifunctional chelators, BFCs) that form metal complexes, which are inert against trans-chelation under physiological conditions, linked to a biological vector, directing them to the targeted tissue. Bispidine ligands with a very rigid backbone and widely variable donor sets are reviewed as an ideal class of BFCs, and recent applications are discussed.
Collapse
Affiliation(s)
- Peter Comba
- Ruprecht-Karls Universität Heidelberg
- Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR)
- 69120 Heidelberg
- Germany
| | - Marion Kerscher
- Ruprecht-Karls Universität Heidelberg
- Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR)
- 69120 Heidelberg
- Germany
| | - Katharina Rück
- Ruprecht-Karls Universität Heidelberg
- Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR)
- 69120 Heidelberg
- Germany
| | - Miriam Starke
- Ruprecht-Karls Universität Heidelberg
- Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR)
- 69120 Heidelberg
- Germany
| |
Collapse
|
21
|
Comba P, Jermilova U, Orvig C, Patrick BO, Ramogida CF, Rück K, Schneider C, Starke M. Octadentate Picolinic Acid-Based Bispidine Ligand for Radiometal Ions. Chemistry 2017; 23:15945-15956. [DOI: 10.1002/chem.201702284] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Peter Comba
- Universität Heidelberg; Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing, INF 270, D-; 69120 Heidelberg Germany
| | - Una Jermilova
- Life Sciences Division; TRIUMF; 4004 Wesbrook Mall Vancouver V6T 2A3 British Columbia Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group; University of British Columbia; Department of Chemistry; 2036 Main Mall Vancouver V6T 1Z1 British Columbia Canada
| | - Brian O. Patrick
- Medicinal Inorganic Chemistry Group; University of British Columbia; Department of Chemistry; 2036 Main Mall Vancouver V6T 1Z1 British Columbia Canada
| | - Caterina F. Ramogida
- Life Sciences Division; TRIUMF; 4004 Wesbrook Mall Vancouver V6T 2A3 British Columbia Canada
| | - Katharina Rück
- Universität Heidelberg; Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing, INF 270, D-; 69120 Heidelberg Germany
| | - Christina Schneider
- Universität Heidelberg; Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing, INF 270, D-; 69120 Heidelberg Germany
| | - Miriam Starke
- Universität Heidelberg; Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing, INF 270, D-; 69120 Heidelberg Germany
| |
Collapse
|
22
|
Gillet R, Roux A, Brandel J, Huclier-Markai S, Camerel F, Jeannin O, Nonat AM, Charbonnière LJ. A Bispidol Chelator with a Phosphonate Pendant Arm: Synthesis, Cu(II) Complexation, and 64Cu Labeling. Inorg Chem 2017; 56:11738-11752. [DOI: 10.1021/acs.inorgchem.7b01731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raphaël Gillet
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Amandine Roux
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Jérémy Brandel
- Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sandrine Huclier-Markai
- GIP Arronax, 1 rue Aronnax, CS 10112, F-44817 Saint-Herblain, France
- Subatech Laboratory, UMR 6457, Ecole des Mines de Nantes, IN2P3/CNRS, Université de Nantes, 4 rue Alfred Kastler, F-44307 Nantes, France
| | - Franck Camerel
- Laboratoire Matière Condensée et Systèmes
Électroactifs, Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, 263 Avenue du Général Leclerc, CS
74205, F-35042 Rennes Cedex, France
| | - Olivier Jeannin
- Laboratoire Matière Condensée et Systèmes
Électroactifs, Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, 263 Avenue du Général Leclerc, CS
74205, F-35042 Rennes Cedex, France
| | - Aline M. Nonat
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Loïc J. Charbonnière
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
23
|
Heskamp S, Raavé R, Boerman O, Rijpkema M, Goncalves V, Denat F. 89Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry. Bioconjug Chem 2017; 28:2211-2223. [PMID: 28767228 PMCID: PMC5609224 DOI: 10.1021/acs.bioconjchem.7b00325] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Immuno-positron
emission tomography (immunoPET) with 89Zr-labeled antibodies
has shown great potential in cancer imaging.
It can provide important information about the pharmacokinetics and
tumor-targeting properties of monoclonal antibodies and may help in
anticipating on toxicity. Furthermore, it allows accurate dose planning
for individualized radioimmunotherapy and may aid in patient selection
and early-response monitoring for targeted therapies. The most commonly
used chelator for 89Zr is desferrioxamine (DFO). Preclinical
studies have shown that DFO is not an ideal chelator because the 89Zr–DFO complex is partly unstable in vivo, which results
in the release of 89Zr from the chelator and the subsequent
accumulation of 89Zr in bone. This bone accumulation interferes
with accurate interpretation and quantification of bone uptake on
PET images. Therefore, there is a need for novel chelators that allow
more stable complexation of 89Zr. In this Review, we will
describe the most recent developments in 89Zr radiochemistry,
including novel chelators and site-specific conjugation methods.
Collapse
Affiliation(s)
- Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Geert Grooteplein-Zuid 10, 6525 HP Nijmegen, The Netherlands
| | - René Raavé
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Geert Grooteplein-Zuid 10, 6525 HP Nijmegen, The Netherlands
| | - Otto Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Geert Grooteplein-Zuid 10, 6525 HP Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Geert Grooteplein-Zuid 10, 6525 HP Nijmegen, The Netherlands
| | - Victor Goncalves
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR6302, CNRS, Université Bourgogne Franche-Comté , F-21000 Dijon, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR6302, CNRS, Université Bourgogne Franche-Comté , F-21000 Dijon, France
| |
Collapse
|
24
|
Queern SL, Aweda TA, Massicano AVF, Clanton NA, El Sayed R, Sader JA, Zyuzin A, Lapi SE. Production of Zr-89 using sputtered yttrium coin targets. Nucl Med Biol 2017; 50:11-16. [DOI: 10.1016/j.nucmedbio.2017.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/03/2017] [Accepted: 03/21/2017] [Indexed: 01/12/2023]
|
25
|
Zhao W, Lee HG, Buchwald SL, Hooker JM. Direct 11CN-Labeling of Unprotected Peptides via Palladium-Mediated Sequential Cross-Coupling Reactions. J Am Chem Soc 2017; 139:7152-7155. [PMID: 28502164 DOI: 10.1021/jacs.7b02761] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A practical procedure for 11CN-labeling of unprotected peptides has been developed. The method was shown to be highly chemoselective for cysteine over other potentially nucleophilic residues, and the radiolabeled products were synthesized and purified in less than 15 min. Appropriate for biomedical applications, the method could be used on an extremely small scale (20 nmol) with a high radiochemical yield. The success of the protocol stems from the use of a Pd-reagent based on a dihaloarene, which enables direct "nucleophile-nucleophile" coupling of the peptide and [11C]cyanide by temporal separation of nucleophile addition.
Collapse
Affiliation(s)
- Wenjun Zhao
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital , Boston, Massachusetts 02114, United States.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts 02129, United States
| | - Hong Geun Lee
- Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jacob M Hooker
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital , Boston, Massachusetts 02114, United States.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts 02129, United States
| |
Collapse
|
26
|
Guillou A, Lima LMP, Roger M, Esteban‐Gómez D, Delgado R, Platas‐Iglesias C, Patinec V, Tripier R. 1,4,7‐Triazacyclononane‐Based Bifunctional Picolinate Ligands for Efficient Copper Complexation. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amaury Guillou
- UMR‐CNRS 6521 Université de Bretagne Occidentale 6 avenue Victor le Gorgeu, C.S. 93837 29238 Brest Cedex 3 France
| | - Luís M. P. Lima
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780‐157 Oeiras Portugal
| | - Mélissa Roger
- UMR‐CNRS 6521 Université de Bretagne Occidentale 6 avenue Victor le Gorgeu, C.S. 93837 29238 Brest Cedex 3 France
| | - David Esteban‐Gómez
- Universidade da Coruña Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Fundamental Facultade de Ciencias 15071 A Coruña Galicia Spain
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780‐157 Oeiras Portugal
| | - Carlos Platas‐Iglesias
- Universidade da Coruña Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Fundamental Facultade de Ciencias 15071 A Coruña Galicia Spain
| | - Véronique Patinec
- UMR‐CNRS 6521 Université de Bretagne Occidentale 6 avenue Victor le Gorgeu, C.S. 93837 29238 Brest Cedex 3 France
| | - Raphaël Tripier
- UMR‐CNRS 6521 Université de Bretagne Occidentale 6 avenue Victor le Gorgeu, C.S. 93837 29238 Brest Cedex 3 France
| |
Collapse
|
27
|
Trencsényi G, Dénes N, Nagy G, Kis A, Vida A, Farkas F, Szabó JP, Kovács T, Berényi E, Garai I, Bai P, Hunyadi J, Kertész I. Comparative preclinical evaluation of 68Ga-NODAGA and 68Ga-HBED-CC conjugated procainamide in melanoma imaging. J Pharm Biomed Anal 2017; 139:54-64. [PMID: 28273651 DOI: 10.1016/j.jpba.2017.02.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
Malignant melanoma is the most aggressive form of skin cancer. The early detection of primary melanoma tumors and metastases using non-invasive PET imaging determines the outcome of this disease. Previous studies have shown that benzamide derivatives (e.g. procainamide) conjugated with PET radionuclides specifically bind to melanin pigment of melanoma tumors. 68Ga chelating agents can have high influence on physiological properties of 68Ga labeled bioactive molecules, as was experienced during the application of HBED-CC on PSMA ligand. The aim of this study was to assess this concept in the case of the melanin specific procaindamide (PCA) and to compare the melanin specificity of 68Ga-labeled PCA using HBED-CC and NODAGA chelators under in vitro and in vivo conditions. Procainamide (PCA) was conjugated with HBED-CC and NODAGA chelators and was labeled with Ga-68. The melanin specificity of 68Ga-HBED-CC-PCA and 68Ga-NODAGA-PCA was investigated in vitro and in vivo using amelanotic (MELUR and A375) and melanin containing (B16-F10) melanoma cell lines. Tumor-bearing mice were prepared by subcutaneous injection of B16-F10, MELUR and A375 melanoma cells into C57BL/6 and SCID mice. 21±2days after tumor cell inoculation and 90min after intravenous injection of the 68Ga-labelledlabeled radiopharmacons whole body PET/MRI scans were performed. 68Ga-NODAGA-PCA and 68Ga-HBED-CC-PCA were produced with excellent radiochemical purity (98%). In vitro experiments demonstrated that after 30 and 90min incubation time 68Ga-NODAGA-PCA uptake of B16-F10 cells was significantly (p≤0.01) higher than the 68Ga-HBED-CC-conjugated PCA accumulation in the same cell line. Furthermore, significant difference (p≤0.01 and 0.05) was found between the uptake of melanin negative and positive cell lines using 68Ga-NODAGA-PCA and 68Ga-HBED-CC-PCA. In vivo PET/MRI studies using tumor models revealed significantly (p≤0.01) higher 68Ga-NODAGA-PCA uptake (SUVmean: 0.46±0.05, SUVmax: 1.96±0.25,T/M ratio: 40.7±4.23) in B16-F10 tumors in contrast to 68Ga-HBED-CC-PCA where the SUVmean, SUVmax and T/M ratio were 0.13±0.01, 0.56±0.11 and 11.43±1.24, respectively. Melanin specific PCA conjugated with NODAGA chelator showed higher specific binding properties than conjugated with HBED-CC. The chemical properties of the bifunctional chelators used for 68Ga-labeling of PCA determine the biological behaviour of the probes. Due to the high specificity and sensitivity 68Ga-labeled PCA molecules are promising radiotracers in melanoma imaging.
Collapse
Affiliation(s)
- György Trencsényi
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary; Scanomed LTD, Debrecen, Hungary.
| | - Noémi Dénes
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Adrienn Kis
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - András Vida
- Department of Medical Chemisty, University of Debrecen, Debrecen, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Flóra Farkas
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit P Szabó
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemisty, University of Debrecen, Debrecen, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Ervin Berényi
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Péter Bai
- Department of Medical Chemisty, University of Debrecen, Debrecen, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Hungary
| | - János Hunyadi
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - István Kertész
- Department of Medical Imaging, Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
28
|
Tieu W, Lifa T, Katsifis A, Codd R. Octadentate Zirconium(IV)-Loaded Macrocycles with Varied Stoichiometry Assembled From Hydroxamic Acid Monomers using Metal-Templated Synthesis. Inorg Chem 2017; 56:3719-3728. [DOI: 10.1021/acs.inorgchem.7b00362] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- William Tieu
- School of Medical
Sciences (Pharmacology) and Bosch Institute, The University of Sydney, New
South Wales 2006, Australia
| | - Tulip Lifa
- School of Medical
Sciences (Pharmacology) and Bosch Institute, The University of Sydney, New
South Wales 2006, Australia
| | - Andrew Katsifis
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - Rachel Codd
- School of Medical
Sciences (Pharmacology) and Bosch Institute, The University of Sydney, New
South Wales 2006, Australia
| |
Collapse
|
29
|
Roux A, Gillet R, Huclier-Markai S, Ehret-Sabatier L, Charbonnière LJ, Nonat AM. Bifunctional bispidine derivatives for copper-64 labelling and positron emission tomography. Org Biomol Chem 2017; 15:1475-1483. [DOI: 10.1039/c6ob02712a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A bispidine cage coordinates 64Cu2+ rapidly and quantitatively at room temperature, and biotin and maleimide functions allow for targeted PET imaging.
Collapse
Affiliation(s)
- Amandine Roux
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- Université de Strasbourg
- CNRS
- F-67000 Strasbourg
- France
| | - Raphaël Gillet
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- Université de Strasbourg
- CNRS
- F-67000 Strasbourg
- France
| | | | - Laurence Ehret-Sabatier
- Laboratoire de Spectrométrie de Masse BioOrganique
- Université de Strasbourg
- CNRS
- IPHC UMR 7178
- F-67000 Strasbourg
| | - Loïc J. Charbonnière
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- Université de Strasbourg
- CNRS
- F-67000 Strasbourg
- France
| | - Aline M. Nonat
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- Université de Strasbourg
- CNRS
- F-67000 Strasbourg
- France
| |
Collapse
|
30
|
Richardson-Sanchez T, Tieu W, Gotsbacher MP, Telfer TJ, Codd R. Exploiting the biosynthetic machinery of Streptomyces pilosus to engineer a water-soluble zirconium(iv) chelator. Org Biomol Chem 2017. [DOI: 10.1039/c7ob01079f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined microbiology-chemistry approach has been used to generate a water-soluble chain-extended octadentate hydroxamic acid designed as a high affinity and selective Zr(iv) ligand.
Collapse
Affiliation(s)
| | - William Tieu
- School of Medical Sciences (Pharmacology) and Bosch Institute
- The University of Sydney
- Australia
| | - Michael P. Gotsbacher
- School of Medical Sciences (Pharmacology) and Bosch Institute
- The University of Sydney
- Australia
| | - Thomas J. Telfer
- School of Medical Sciences (Pharmacology) and Bosch Institute
- The University of Sydney
- Australia
| | - Rachel Codd
- School of Medical Sciences (Pharmacology) and Bosch Institute
- The University of Sydney
- Australia
| |
Collapse
|
31
|
Price TW, Gallo J, Kubíček V, Böhmová Z, Prior TJ, Greenman J, Hermann P, Stasiuk GJ. Amino acid based gallium-68 chelators capable of radiolabeling at neutral pH. Dalton Trans 2017; 46:16973-16982. [DOI: 10.1039/c7dt03398b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we show a flexible synthesis for bifunctional chelators based on amino acids that rapidly complex 68Ga under physiological conditions.
Collapse
Affiliation(s)
- Thomas W. Price
- School of Life Sciences
- Department of Biomedical Sciences
- University of Hull
- Hull
- UK
| | - Juan Gallo
- Advanced (magnetic) Theranostic Nanostructures Lab
- International Iberian Nanotechnology Laboratory
- 4715-330 Braga
- Portugal
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Zuzana Böhmová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Timothy J. Prior
- Chemistry
- School of Mathematical and Physical Sciences
- University of Hull
- Hull
- UK
| | - John Greenman
- School of Life Sciences
- Department of Biomedical Sciences
- University of Hull
- Hull
- UK
| | - Petr Hermann
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Graeme J. Stasiuk
- School of Life Sciences
- Department of Biomedical Sciences
- University of Hull
- Hull
- UK
| |
Collapse
|
32
|
Moreau M, Poty S, Vrigneaud JM, Walker P, Guillemin M, Raguin O, Oudot A, Bernhard C, Goze C, Boschetti F, Collin B, Brunotte F, Denat F. MANOTA: a promising bifunctional chelating agent for copper-64 immunoPET. Dalton Trans 2017; 46:14659-14668. [DOI: 10.1039/c7dt01772c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comparison of four bifunctional chelating agents showed superior behaviour of a new NOTA derivative for 64Cu labelling of antibody fragments.
Collapse
|
33
|
Nock BA, Kaloudi A, Nagel J, Sinnes JP, Roesch F, Maina T. Novel bifunctional DATA chelator for quick access to site-directed PET 68Ga-radiotracers: preclinical proof-of-principle with [Tyr3]octreotide. Dalton Trans 2017; 46:14584-14590. [DOI: 10.1039/c7dt01684k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Comparison of 68Ga-DATA-TOC vs. 68Ga-DOTA-TOC in sst2-positive cells and tumor-bearing mice revealed the suitability of DATA for easy access to 68Ga-labeled vectors.
Collapse
Affiliation(s)
- Berthold A. Nock
- Molecular Radiopharmacy
- INRASTES
- NCSR “Demokritos”
- GR-15310 Athens
- Greece
| | | | - Johannes Nagel
- Institute of Nuclear Chemistry
- Johannes Gutenberg-University of Mainz
- D-55126 Mainz
- Germany
| | - Jean-Philippe Sinnes
- Institute of Nuclear Chemistry
- Johannes Gutenberg-University of Mainz
- D-55126 Mainz
- Germany
| | - Frank Roesch
- Institute of Nuclear Chemistry
- Johannes Gutenberg-University of Mainz
- D-55126 Mainz
- Germany
| | - Theodosia Maina
- Molecular Radiopharmacy
- INRASTES
- NCSR “Demokritos”
- GR-15310 Athens
- Greece
| |
Collapse
|
34
|
Sivapackiam J, Harpstrite SE, Rath NP, Sharma V. 67Ga-metalloprobes: monitoring the impact of geometrical isomers on accumulation profiles in rat cardiomyoblasts and human breast carcinoma cells. MEDCHEMCOMM 2016; 8:158-161. [PMID: 30108701 DOI: 10.1039/c6md00474a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/10/2016] [Indexed: 11/21/2022]
Abstract
Geometrically similar monocationic gallium(iii) complexes and their radiolabeled SPECT counterparts were obtained from Schiff base precursor ligands using ligand exchange reactions to evaluate the impact of cis and trans-isomers on their cellular accumulation profiles in rat cardiomyoblasts (H9c2(2-1)) and human breast carcinoma (MCF-7neo) cells. 67Ga-metalloprobes comprising trans-phenolates showing an overall octahedral geometry and exhibiting uniform spatial distribution of positive charges on their molecular surface show steady-state accumulation in H9c2(2-1) and MCF-7neo cells, and localize in the mitochondria of the cells. Importantly, the surrogate geometrically similar and monocationic metalloprobe counterparts possessing the cis arrangement of phenolates do not show cellular uptake in H9c2(2-1) and MCF-7neo cells. Exploiting their modest fluorescent traits, live cell imaging indicates that trans-isomers of metalloprobes localize within the mitochondria of cells following their penetration, thereby indicating the excellent correlation of radiotracer data and live-cell microscopy results. Overall, these results indicate that the cell uptake profiles of metalloprobes within this class are mediated by the spatial distribution of charges over their molecular surface and hydrophobicity.
Collapse
Affiliation(s)
- Jothilingam Sivapackiam
- ICCE Institute , Molecular Imaging Center , Mallinckrodt Institute of Radiology , Washington University School of Medicine , St. Louis , MO 63110 , USA .
| | - Scott E Harpstrite
- ICCE Institute , Molecular Imaging Center , Mallinckrodt Institute of Radiology , Washington University School of Medicine , St. Louis , MO 63110 , USA .
| | - Nigam P Rath
- Department of Chemistry & Biochemistry , University of Missouri , St. Louis , MO 63121 , USA
| | - Vijay Sharma
- ICCE Institute , Molecular Imaging Center , Mallinckrodt Institute of Radiology , Washington University School of Medicine , St. Louis , MO 63110 , USA . .,Department of Neurology , Washington University School of Medicine , St. Louis , MO 63110 , USA.,Department of Biomedical Engineering , School of Engineering & Applied Science , Washington University , St. Louis 63105 , USA
| |
Collapse
|
35
|
Mastren T, Marquez BV, Sultan DE, Bollinger E, Eisenbeis P, Voller T, Lapi SE. Cyclotron Production of High-Specific Activity 55Co and In Vivo Evaluation of the Stability of 55Co Metal-Chelate-Peptide Complexes. Mol Imaging 2016; 14:526-33. [PMID: 26505224 DOI: 10.2310/7290.2015.00025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work describes the production of high-specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide complexes in vivo. 55Co was produced via the 58Ni(p,α)55Co reaction and purified using anion exchange chromatography with an average recovery of 92% and an average specific activity of 1.96 GBq/μmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabeled at 3.7 MBq/μg and injected into HCT-116 tumor xenografted mice. Positron emission tomography (PET) and biodistribution studies were performed at 24 and 48 hours postinjection and compared to those of 55CoCl2. Both 55Co-metal-chelate complexes demonstrated good in vivo stability by reducing the radiotracers' uptake in the liver by sixfold at 24 hours with ~ 1% ID/g and at 48 hours with ~ 0.5% ID/g and reducing uptake in the heart by fourfold at 24 hours with ~ 0.7% ID/g and sevenfold at 48 hours with ~ 0.35% ID/g. These results support the use of 55Co as a promising new radiotracer for PET imaging of cancer and other diseases.
Collapse
|
36
|
Kandanapitiye MS, Gott MD, Sharits A, Jurisson SS, Woodward PM, Huang SD. Incorporation of gallium-68 into the crystal structure of Prussian blue to form K(68)GaxFe1-x[Fe(CN)6] nanoparticles: toward a novel bimodal PET/MRI imaging agent. Dalton Trans 2016; 45:9174-81. [PMID: 27169624 PMCID: PMC4922916 DOI: 10.1039/c6dt00962j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Similarity between the Ga(+) ion and the Fe(3+) ion allows for partial replacement of Fe(3+) ions with Ga(3+) ions in the Fe(iii) crystallographic positions in Prussian blue (PB) to form various solid solutions KGaxFe1-x[Fe(CN)6] (0 < x < 1). Such solid solutions possess very high thermodynamic stability as expected from the parent PB structure. Consequently, a simple one-step (68)Ga-labeling method was developed for preparing a single-phase nanoparticulate bimodal PET/MRI imaging agent based on the PB structural platform. Unlike the typical (68)Ga-labelling reaction based on metal complexation, this novel chelator-free (68)Ga-labeling reaction was shown to be kinetically fast under the acidic conditions. The Ga(3+) ion does not hydrolyze, and affords the (68)Ga-labelled PB nanoparticles, which are easy to purify and have extremely high stability against radionuclidic leaching in aqueous solution.
Collapse
Affiliation(s)
| | - Matthew D Gott
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Andrew Sharits
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Silvia S Jurisson
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Patrick M Woodward
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Songping D Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA.
| |
Collapse
|
37
|
Le Fur M, Beyler M, Le Poul N, Lima LMP, Le Mest Y, Delgado R, Platas-Iglesias C, Patinec V, Tripier R. Improving the stability and inertness of Cu(ii) and Cu(i) complexes with methylthiazolyl ligands by tuning the macrocyclic structure. Dalton Trans 2016; 45:7406-20. [PMID: 27041505 DOI: 10.1039/c6dt00385k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A tacn based ligand bearing two methylthiazolyl arms (no2th) was synthesized with the aim to find ligands forming very stable and inert complexes with Cu(ii) and Cu(i) in aqueous medium for radiopharmaceutical applications. The no2th ligand was efficiently prepared following the orthoamide intermediate synthesis. The complexes with Cu(2+) and Zn(2+) were obtained and analyzed by X-ray diffraction. The [Cu(no2th)](2+) complex presents a pentacoordinated distorted square pyramidal coordination geometry, while the metal ion in [Zn(no2th)](2+) adopts a hexacoordinated distorted trigonal prismatic geometry involving the coordination of a perchlorate counter ion. The acid-base properties of no2th have been studied using potentiometric titrations, and the stability constants of Cu(2+) and Zn(2+) complexes were determined by potentiometric and UV-vis titrations using H4edta as a competitor ligand. The stability constant determined for the Cu(2+) complex is rather high (log KCuL = 20.77 and pCu = 17.15), and moreover no2th exhibits a high selectivity for copper(ii) in relation to zinc(ii). The kinetics of the copper(ii) complexation process is very fast even in acidic medium. In addition, the [Cu(no2th)](2+) complex was found to be inert under rather harsh conditions (up to 2 M HCl and 60 °C), displaying a very high half-life time of about 15 days in 2 M HCl at 90 °C. The electrochemical reduction of the copper(ii) complex in water leads to the reversible formation of a stable copper(i) species. Spectroscopic studies performed by NMR, UV-vis and EPR, assisted by theoretical calculations, show that the [Cu(no2th)](2+) complex presents a structure in solution similar to that observed in the solid state. When compared to its cyclam di-N-methylthiazolyl counterpart, the results reported in this paper unambiguously show that replacing the cyclam unit by a tacn moiety improves the stability and inertness of its Cu(ii) and Cu(i) complexes.
Collapse
Affiliation(s)
- Mariane Le Fur
- Université de Bretagne Occidentale, UMR-CNRS 6521, SFR ScInBioS, Faculté des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Felten AS, Petry N, Henry B, Pellegrini-Moïse N, Selmeczi K. C-Functionalized chiral dioxocyclam and cyclam derivatives with 1,2,3-triazole units: synthesis, complexation properties and crystal structures of copper(ii) complexes. NEW J CHEM 2016. [DOI: 10.1039/c5nj01927c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NewC-functionalized dioxocyclam and cyclam derivatives with 1,2,3-triazoles attached to carbon atoms within the skeleton were designed as valuable bifunctional chelators for molecular imaging.
Collapse
Affiliation(s)
- A.-S. Felten
- Université de Lorraine
- UMR 7565 SRSMC
- 54506 Vandœuvre-lès-Nancy
- France
- CNRS
| | - N. Petry
- Université de Lorraine
- UMR 7565 SRSMC
- 54506 Vandœuvre-lès-Nancy
- France
- CNRS
| | - B. Henry
- Université de Lorraine
- UMR 7565 SRSMC
- 54506 Vandœuvre-lès-Nancy
- France
- CNRS
| | | | - K. Selmeczi
- Université de Lorraine
- UMR 7565 SRSMC
- 54506 Vandœuvre-lès-Nancy
- France
- CNRS
| |
Collapse
|
39
|
Sahiralamkhan M, Chakravarty R, Chakraborty S, Kamaleshwaran KK, Shinto A, Dash A. Irradiation parameters play a crucial role in the (n, γ) production of 170Tm suitable for clinical use in bone pain palliation. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4323-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Roux A, Nonat AM, Brandel J, Hubscher-Bruder V, Charbonnière LJ. Kinetically Inert Bispidol-Based Cu(II) Chelate for Potential Application to 64/67Cu Nuclear Medicine and Diagnosis. Inorg Chem 2015; 54:4431-44. [DOI: 10.1021/acs.inorgchem.5b00207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Amandine Roux
- Laboratoire d’Ingénierie Moléculaire Appliquée
à l’Analyse and ‡Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, IPHC, UMR 7178 CNRS/UdS, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Aline M. Nonat
- Laboratoire d’Ingénierie Moléculaire Appliquée
à l’Analyse and ‡Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, IPHC, UMR 7178 CNRS/UdS, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Jérémy Brandel
- Laboratoire d’Ingénierie Moléculaire Appliquée
à l’Analyse and ‡Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, IPHC, UMR 7178 CNRS/UdS, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Véronique Hubscher-Bruder
- Laboratoire d’Ingénierie Moléculaire Appliquée
à l’Analyse and ‡Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, IPHC, UMR 7178 CNRS/UdS, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Loïc J. Charbonnière
- Laboratoire d’Ingénierie Moléculaire Appliquée
à l’Analyse and ‡Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, IPHC, UMR 7178 CNRS/UdS, IPHC, UMR 7178 CNRS/UdS, ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
41
|
Camus N, Halime Z, le Bris N, Bernard H, Beyler M, Platas-Iglesias C, Tripier R. A [two-step/one week] synthesis of C-functionalized homocyclens and cyclams. Application to the preparation of conjugable BCAs without chelating properties alteration. RSC Adv 2015. [DOI: 10.1039/c5ra17133d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient synthesis ofC-functionalized azamacrocycles is presented together with a coordination study showing the week influence of the added appended group.
Collapse
Affiliation(s)
- Nathalie Camus
- Université de Brest
- UMR-CNRS 6521/SFR148 ScInBioS UFR Sciences et Techniques
- 29238 Brest
- France
| | - Zakaria Halime
- Université de Brest
- UMR-CNRS 6521/SFR148 ScInBioS UFR Sciences et Techniques
- 29238 Brest
- France
| | - Nathalie le Bris
- Université de Brest
- UMR-CNRS 6521/SFR148 ScInBioS UFR Sciences et Techniques
- 29238 Brest
- France
| | - Hélène Bernard
- Université de Brest
- UMR-CNRS 6521/SFR148 ScInBioS UFR Sciences et Techniques
- 29238 Brest
- France
| | - Maryline Beyler
- Université de Brest
- UMR-CNRS 6521/SFR148 ScInBioS UFR Sciences et Techniques
- 29238 Brest
- France
| | - Carlos Platas-Iglesias
- Grupo QUICOOR
- Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental
- Universidade da Coruña
- Campus da Zapateira
- 15008 A Coruña
| | - Raphaël Tripier
- Université de Brest
- UMR-CNRS 6521/SFR148 ScInBioS UFR Sciences et Techniques
- 29238 Brest
- France
| |
Collapse
|