1
|
van Essen PJ, Nie Z, de Keijzer B, Kraus PM. Toward Complete All-Optical Intensity Modulation of High-Harmonic Generation from Solids. ACS PHOTONICS 2024; 11:1832-1843. [PMID: 38766500 PMCID: PMC11100285 DOI: 10.1021/acsphotonics.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Optical modulation of high-harmonics generation in solids enables the detection of material properties, such as the band structure, and promising new applications, such as super-resolution imaging in semiconductors. Various recent studies have shown optical modulation of high-harmonics generation in solids, in particular, suppression of high-harmonics generation has been observed by synchronized or delayed multipulse sequences. Here we provide an overview of the underlying mechanisms attributed to this suppression and provide a perspective on the challenges and opportunities regarding these mechanisms. All-optical control of high-harmonic generation allows for femtosecond, and in the future possibly subfemtosecond, switching, which has numerous possible applications: These range from super-resolution microscopy to nanoscale controlled chemistry and highly tunable nonlinear light sources.
Collapse
Affiliation(s)
- Pieter J. van Essen
- Advanced
Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Zhonghui Nie
- Advanced
Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Brian de Keijzer
- Advanced
Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Peter M. Kraus
- Advanced
Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
- Department
of Physics and Astronomy, and LaserLaB, Vrije Universiteit, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
van der Geest MLS, de Boer JJ, Murzyn K, Jürgens P, Ehrler B, Kraus PM. Transient High-Harmonic Spectroscopy in an Inorganic-Organic Lead Halide Perovskite. J Phys Chem Lett 2023; 14:10810-10818. [PMID: 38015825 DOI: 10.1021/acs.jpclett.3c02588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
High-harmonic generation is the frequency upconversion of an intense femtosecond infrared laser in a material. In condensed-phase high-harmonic generation, laser-driven currents of coherently excited charge carriers map the electronic structure onto the emitted light. This promises a thus far scarcely explored potential of condensed-phase time-resolved high-harmonic spectroscopy for probing carrier dynamics. Here, we realize this potential and use time-resolved solid-state high-harmonic spectroscopy from a laser-excited methylammonium lead bromide (MAPbBr3) thin film, a key material in perovskite solar cells, for measuring carrier cooling and relaxation on femto- and picosecond time scales. Through comparison with transient absorption, we show the links between carrier dynamics and experimental observables of generated harmonics. By highlighting and understanding the interplay of these dynamics, we demonstrate transient optical control over the emission of solid-state high-harmonic generation in MAPbBr3.
Collapse
Affiliation(s)
- Maarten L S van der Geest
- Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Jeroen J de Boer
- Center for Nanophotonics, AMOLF, Science Park 102, 1098 XG Amsterdam, The Netherlands
| | - Kevin Murzyn
- Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Peter Jürgens
- Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, D-12 489 Berlin, Germany
| | - Bruno Ehrler
- Center for Nanophotonics, AMOLF, Science Park 102, 1098 XG Amsterdam, The Netherlands
| | - Peter M Kraus
- Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands
- Department of Physics and Astronomy, and LaserLaB, Vrije Universiteit, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Fukahori S, Iwasaki A, Yamanouchi K, Hasegawa H. Single and sequential double ionization of NO radical in intense laser fields. J Chem Phys 2022; 156:094307. [DOI: 10.1063/5.0077239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We examine the dependences of the single and double ionization probabilities of NO radical on the angle between the NO axis and the laser polarization direction in an intense laser field (790 nm, 100 fs, 1–10 × 1014 W/cm2) and show that the double ionization is enhanced when the NO axis is parallel to the laser polarization direction. We reveal that the angular dependence of the sequential double ionization probability is determined by the shape of the 5σ orbital of NO+ from which the second photoelectron is emitted in the ionization from NO+ to NO2+. We also reveal that the fast oscillation in the probability of the tunnel ionization of NO originating from a coherent superposition of the two spin–orbit components in the electronic ground X2Π state is described well based on the molecular Ammosov-Delone-Krainov (MO-ADK) theory in which the time evolution of the electron density distribution of the 2π orbital is taken into account.
Collapse
Affiliation(s)
- Shinichi Fukahori
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Atsushi Iwasaki
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaoru Yamanouchi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hirokazu Hasegawa
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Jiang S, Kowalewski M, Dorfman KE. Multi-wave mixing in the high harmonic regime: monitoring electronic dynamics. OPTICS EXPRESS 2021; 29:4746-4754. [PMID: 33726024 DOI: 10.1364/oe.414619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
It has been demonstrated that electronic coherences across many eV can be detected in pump-probe experiments involving high harmonic sources. An additional degree of control over the phase matching can be employed by investigating a more general class of multi-wave mixing. Non-collinear multi-wave mixing of high harmonics with energy (q1ω1 + q2ω2) can be selectively detected along the direction of (q1k1 + q2k2). Simulations based on a recently developed semi-perturbative approach show that only the specific harmonic signals with q1ω1 close to the energy difference between ground state and excited states are observable when the two input pulses are well separated in time. The coherent dynamics between different states can be selectively tracked by detecting the time-delay dependent signals with different q1k1, which can overcome the potential spectral congestion in real experiments. Additionally, such non-collinear geometry can be used to separate the dephasing induced decay and collision induced recovery behaviors of pump-probe high harmonic signal typically observed in the time-resolved high harmonic pump-probe signals.
Collapse
|
5
|
Kraus PM, Wörner HJ. Perspektiven für das Verständnis fundamentaler Elektronenkorrelationen durch Attosekundenspektroskopie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201702759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter M. Kraus
- Department of Chemistry; University of California; Berkeley California 94720 USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| |
Collapse
|
6
|
Kraus PM, Wörner HJ. Perspectives of Attosecond Spectroscopy for the Understanding of Fundamental Electron Correlations. Angew Chem Int Ed Engl 2018; 57:5228-5247. [DOI: 10.1002/anie.201702759] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/29/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Peter M. Kraus
- Department of Chemistry; University of California; Berkeley California 94720 USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
7
|
Baykusheva D, Brennecke S, Lein M, Wörner HJ. Signatures of Electronic Structure in Bicircular High-Harmonic Spectroscopy. PHYSICAL REVIEW LETTERS 2017; 119:203201. [PMID: 29219334 DOI: 10.1103/physrevlett.119.203201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 06/07/2023]
Abstract
High-harmonic spectroscopy driven by circularly polarized laser pulses and their counterrotating second harmonic is a new branch of attosecond science which currently lacks quantitative interpretations. We extend this technique to the midinfrared regime and record detailed high-harmonic spectra of several rare-gas atoms. These results are compared with the solution of the Schrödinger equation in three dimensions and calculations based on the strong-field approximation that incorporate accurate scattering-wave recombination matrix elements. A quantum-orbit analysis of these results provides a transparent interpretation of the measured intensity ratios of symmetry-allowed neighboring harmonics in terms of (i) a set of propensity rules related to the angular momentum of the atomic orbitals, (ii) atom-specific matrix elements related to their electronic structure, and (iii) the interference of the emissions associated with electrons in orbitals corotating or counterrotating with the laser fields. These results provide the foundation for a quantitative understanding of bicircular high-harmonic spectroscopy.
Collapse
Affiliation(s)
- Denitsa Baykusheva
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Simon Brennecke
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
- Institut für Theoretische Physik, Universität Hannover, 30167 Hannover, Germany
| | - Manfred Lein
- Institut für Theoretische Physik, Universität Hannover, 30167 Hannover, Germany
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Wörner HJ, Arrell CA, Banerji N, Cannizzo A, Chergui M, Das AK, Hamm P, Keller U, Kraus PM, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser JE, Rothlisberger U, Smolentsev G, Teuscher J, van Bokhoven JA, Wenger O. Charge migration and charge transfer in molecular systems. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061508. [PMID: 29333473 PMCID: PMC5745195 DOI: 10.1063/1.4996505] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/25/2017] [Indexed: 05/12/2023]
Abstract
The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.
Collapse
Affiliation(s)
| | - Christopher A Arrell
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Natalie Banerji
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Majed Chergui
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Ursula Keller
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | | | - Elisa Liberatore
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pablo Lopez-Tarifa
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Chris Milne
- SwissFEL, Paul-Scherrer Institute, Villigen, Switzerland
| | - Jacques-E Moser
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ursula Rothlisberger
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Joël Teuscher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Oliver Wenger
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Walt SG, Bhargava Ram N, Atala M, Shvetsov-Shilovski NI, von Conta A, Baykusheva D, Lein M, Wörner HJ. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering. Nat Commun 2017. [PMID: 28643771 PMCID: PMC5481729 DOI: 10.1038/ncomms15651] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales. Capturing ultrafast molecular dynamics is difficult as the process involves coupled and very fast motions of electrons and nuclei. Here the authors study non-adiabatic dynamics in the NO molecule using strong-field photoelectron holography to shed light on the valence-shell electron dynamics.
Collapse
Affiliation(s)
- Samuel G Walt
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, HCI E 237, 8093 Zürich, Switzerland
| | - Niraghatam Bhargava Ram
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, HCI E 237, 8093 Zürich, Switzerland
| | - Marcos Atala
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, HCI E 237, 8093 Zürich, Switzerland
| | | | - Aaron von Conta
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, HCI E 237, 8093 Zürich, Switzerland
| | - Denitsa Baykusheva
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, HCI E 237, 8093 Zürich, Switzerland
| | - Manfred Lein
- Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, HCI E 237, 8093 Zürich, Switzerland
| |
Collapse
|
10
|
Rudenko A, Makhija V, Vajdi A, Ergler T, Schürholz M, Kushawaha RK, Ullrich J, Moshammer R, Kumarappan V. Strong-field-induced wave packet dynamics in carbon dioxide molecule. Faraday Discuss 2016; 194:463-478. [PMID: 27711853 DOI: 10.1039/c6fd00152a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Temporal evolution of electronic and nuclear wave packets created in strong-field excitation of the carbon dioxide molecule is studied employing momentum-resolved ion spectroscopy and channel-selective Fourier analysis. Combining the data obtained with two different pump-probe set-ups, we observed signatures of vibrational dynamics in both, ionic and neutral states of the molecule. We consider far-off-resonance two-photon Raman scattering to be the most likely mechanism of vibrational excitation in the electronic ground state of the neutral CO2. Using the measured phase relation between the time-dependent yields of different fragmentation channels, which is consistent with the proposed mechanism, we suggest an intuitive picture of the underlying vibrational dynamics. For ionic states, we found signatures of both, electronic and vibrational excitations, which involve the ground and the first excited electronic states, depending on the particular final state of the fragmentation. While our results for ionic states are consistent with the recent observations by Erattupuzha et al. [J. Chem. Phys.144, 024306 (2016)], the neutral state contribution was not observed there, which we attribute to a larger bandwidth of the 8 fs pulses we used for this experiment. In a complementary measurement employing longer, 35 fs pulses in a 30 ps delay range, we study the influence of rotational excitation on our observables, and demonstrate how the coherent electronic wave packet created in the ground electronic state of the ion completely decays within 10 ps due to the coupling to rotational motion.
Collapse
Affiliation(s)
- Artem Rudenko
- J.R Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA. and Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - Varun Makhija
- J.R Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA. and Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Aram Vajdi
- J.R Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA. and Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - Thorsten Ergler
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | | | - Rajesh K Kushawaha
- J.R Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA.
| | - Joachim Ullrich
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany and Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | | | - Vinod Kumarappan
- J.R Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
11
|
Xia Y, Jaron-Becker A. Mollow sidebands in high order harmonic spectra of molecules. OPTICS EXPRESS 2016; 24:4689-4697. [PMID: 29092298 DOI: 10.1364/oe.24.004689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel feature of high order harmonic generation process for molecules is presented for several molecules at their equilibrium geometries. The high order harmonic spectra reveal additional sidebands for each odd harmonic, which are a consequence of the resonant coupling of two valence orbitals, a mechanism analogous to Mollow triplets known from quantum optics. Strong modification of the high order harmonic generation process is illustrated with time frequency analysis in which there appear additional minima dependent on the Rabi frequency for the corresponding transition. The orbital coupling further leads to the modification of the electron dynamics which is presented using total electron density difference maps.
Collapse
|
12
|
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|