1
|
Pal D, Raj K, Nandi SS, Sinha S, Mishra A, Mondal A, Lagoa R, Burcher JT, Bishayee A. Potential of Synthetic and Natural Compounds as Novel Histone Deacetylase Inhibitors for the Treatment of Hematological Malignancies. Cancers (Basel) 2023; 15:2808. [PMID: 37345145 PMCID: PMC10216849 DOI: 10.3390/cancers15102808] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are enzymes that remove or add acetyl groups to lysine residues of histones, respectively. Histone deacetylation causes DNA to more snugly encircle histones and decreases gene expression, whereas acetylation has the opposite effect. Through these small alterations in chemical structure, HATs and HDACs regulate DNA expression. Recent research indicates histone deacetylase inhibitors (HDACis) may be used to treat malignancies, including leukemia, B-cell lymphoma, virus-associated tumors, and multiple myeloma. These data suggest that HDACis may boost the production of immune-related molecules, resulting in the growth of CD8-positive T-cells and the recognition of nonreactive tumor cells by the immune system, thereby diminishing tumor immunity. The argument for employing epigenetic drugs in the treatment of acute myeloid leukemia (AML) patients is supported by evidence that both epigenetic changes and mutations in the epigenetic machinery contribute to AML etiology. Although hypomethylating drugs have been licensed for use in AML, additional epigenetic inhibitors, such as HDACis, are now being tested in humans. Preclinical studies evaluating the efficacy of HDACis against AML have shown the ability of specific agents, such as anobinostat, vorinostat, and tricostatin A, to induce growth arrest, apoptosis, autophagy and cell death. However, these inhibitors do not seem to be successful as monotherapies, but instead achieve results when used in conjunction with other medications. In this article, we discuss the mounting evidence that HDACis promote extensive histone acetylation, as well as substantial increases in reactive oxygen species and DNA damage in hematological malignant cells. We also evaluate the potential of various natural product-based HDACis as therapeutic agents to combat hematological malignancies.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495 009, India
| | - Khushboo Raj
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495 009, India
| | - Shyam Sundar Nandi
- Department of Biotechnology, Indian Council for Medical Research-National Institute of Virology, Mumbai 400 012, India
| | - Surajit Sinha
- Department of Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Ricardo Lagoa
- Associate Laboratory in Chemical Engineering, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
2
|
Nowakowski P, Markiewicz-Żukowska R, Bielecka J, Mielcarek K, Grabia M, Socha K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother 2021; 143:112106. [PMID: 34482165 DOI: 10.1016/j.biopha.2021.112106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mushrooms provide a reliable source of bioactive compounds and have numerous nutritional values, which is one of the reasons why they are widely used for culinary purposes. They may also be a remedy for several medical conditions, including cancer diseases. Given the constantly increasing number of cancer incidents, the great anticancer potential of mushrooms has unsurprisingly become an object of interest to researchers. Therefore, this review aimed to collect and summarize all the available scientific data on the anti-cancer activity of mushroom extracts. Our research showed that mushroom extracts from 92 species, prepared using 12 different solvents, could reduce the viability of 38 various cancers. Additionally, we evaluated different experimental models: in vitro (cell model), in vivo (mice and rat model, case studies and randomized controlled trials), and in silico. Breast cancer proved to be sensitive to the highest number of mushroom extracts. The curative mechanisms of the studied mushrooms consisted in: inhibition of cancer cell proliferation, unregulated proportion of cells in cell cycle phases, induction of autophagy and phagocytosis, improved response of the immune system, and induction of apoptotic death of cells via upregulation of pro-apoptotic factors and downregulation of anti-apoptotic genes. The processes mainly involved the expression of caspases -3, -8, -9, AKT, p27, p53, BAX, and BCL2. The quoted results could lead to the classification of mushrooms as nutraceuticals used to prevent a variety of disorders or to support treatment of cancer diseases.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland.
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Joanna Bielecka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Konrad Mielcarek
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Monika Grabia
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
3
|
Zingue S, Rutz J, Maxeiner S, Ndinteh DT, Chun FKH, Jüngel E, Njamen D, Blaheta R. In vitro pro-apoptotic and anti-migratory effects of Treculia africana Decne. (Moraceae) and Entandrophragma angolense Welw (Meliaceae) extracts on prostate cancer cells. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Ding R, Ning X, Ye M, Yin Y. Antrodia camphorata extract (ACE)-induced apoptosis is associated with BMP4 expression and p53-dependent ROS generation in human colon cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113570. [PMID: 33181285 DOI: 10.1016/j.jep.2020.113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antrodia camphorata (AC) is a rare functional fungus in Taiwan and is known as traditional Chinese medicine. It has been reported to inhibit proliferation and promote apoptosis in human cancer cells. AIM OF THE STUDY To investigate the potential mechanism of apoptosis induced in colon cancer cells by Antrodia camphorata extract (ACE). MATERIALS AND METHODS The MTT assay and crystal violet staining were used to determine relative cell viability in vitro at 24 and 48 h. The effects of ACE on apoptosis were determined by Hoechst 33342 staining and flow cytometric analysis following Annexin V-FITC/PI staining. The gene expression profile of HCT116 cells was assessed by the RNA sequencing system. In combination with RNA-seq data and qRT-PCR, Western blot analysis was used to evaluate expression of proteins. The intracellular ROS of HCT116 cells were determined using a DCFH-DA fluorescence probe. RESULTS ACE significantly reduces cell viability in a dose-dependent manner and triggers apoptosis. To explore the underlying mechanism, we performed transcriptome analysis of ACE-treated colon cancer HCT116 cells. Bioinformatics analyses showed that ACE treatment is associated with pathways in cancer. We further used Cytoscape to analyze hub genes in this network. Among them, BMP4, which is associated with cancer cell death through regulation of the tumor suppressor p53, was significantly decreased at both mRNA and protein levels in ACE treatment groups. We found that cell death is reversible via inactivation or knockdown of p53 gene and reduction of reactive oxygen species (ROS) generation in response to ACE exposure, indicating that p53 plays an important role in ROS generation induced by ACE. Meanwhile, ROS scavenger NAC was used to verify that cell death is reversible via reduction of ROS. CONCLUSION Our findings demonstrate that ACE has potential as an anticancer agent that induces apoptosis through BMP4 and p53-dependent response to ROS in human colon cancer.
Collapse
Affiliation(s)
- Ruqian Ding
- Beijing Advanced Innovation Center for Big-Data Precision Medicine, Beihang University, Beijing, 100083, China
| | - Xianling Ning
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
5
|
Yang HL, Kuo YT, Vudhya Gowrisankar Y, Lin KY, Hsu LS, Huang PJ, Lin HC, Hseu YC. The Leaf Extracts of Toona sinensis and Fermented Culture Broths of Antrodia camphorata Synergistically Cause Apoptotic Cell Death in Promyelocytic Leukemia Cells. Integr Cancer Ther 2020; 19:1534735420923734. [PMID: 32618215 PMCID: PMC7336824 DOI: 10.1177/1534735420923734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Toona sinensis is a common edible vegetable that is used in
certain Chinese dishes and has importance in folk medicine. The leaf extracts of
T sinensis possess and exhibit anticancer efficacy against
various cancer cell types. In Taiwanese folklore, Antrodia
camphorata, also known as “Niu-Cheng-Zi,” is used in traditional
medicine to treat various illnesses. Its fruit and mycelium possess various
potent antiproliferative properties. Two studies from our group have reported
that T sinensis or A camphorata has the
ability to cause apoptosis in various cancer cells. Conversely, underlying
molecular mechanisms and any beneficial effects remain unknown. This study shows
anticancer efficacy for both T sinensis and A
camphorata co-treatments that target HL-60 cells. The combination
index values indicate that 40 µg/mL of T sinensis and 25 µg/mL
of A camphorata as a combined treatment shows a synergetic
effect, which reduces HL-60 cell proliferation. Alternately, this treatment
exhibited no cytotoxic effects for human umbilical vein endothelial cells.
Western blot data showed that T sinensis and A
camphorata as a combined treatment result in augmented expression
of apoptosis, cytochrome c release, Bcl-2 inhibition, expression of Bax, Fas,
and FasL, as well as the cleavage of Bid in HL-60 cells. Moreover, this combined
treatment overshadowed monotherapy in its ability to inhibit uPAR, MMP-9, MMP-2,
COX-2 expression, and PGE2 secretions. Our study strongly implies
that this combined treatment offers more beneficial effects to suppress and
treat leukemia due to apoptosis-mediated cell inhibition. Further in
vivo studies related to the combined treatment could establish its
future potential.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ya-Ting Kuo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | | | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Jane Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Hui-Chang Lin
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, School of Pharmacy, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center of Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Lu L, Chen G, Yang J, Ma Z, Yang Y, Hu Y, Lu Y, Cao Z, Wang Y, Wang X. Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed Pharmacother 2019; 112:108625. [PMID: 30784920 DOI: 10.1016/j.biopha.2019.108625] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), with the capacity for self-renewal and differentiation into multiple cell types, exhibit the property of homing towards tumor sites and immunosuppression and have been used as tumor-tropic vectors for tumor therapy. However, few studies have investigated the underlying molecular mechanisms that link MSCs to targeted tumor cells. In this study, we elucidated the inhibitory effects and mechanisms of human bone marrow mesenchymal stem cells (hBMSCs) on human glioma U251 cells using a co-culture system in vitro. The anti-tumor activity of co-cultured hBMSCs was assessed by morphological changes, the MTT assay, and Hoechst 33258 staining. Cell apoptosis and cell cycle distribution were evaluated by flow cytometry. Cell migration and invasion were evaluated using a 24-well Transwell chamber. A proteomics approach was used to identify differentially expressed proteins after hBMSCs treatment in U251 cells, and quantitative polymerase chain reaction was used to validate the results. Bioinformatics analyses were also implemented to better understand the identified proteins, and Western blotting analyses were used to analyze the associated proteins. The results showed that hBMSCs could inhibit cell proliferation and induce cell cycle arrest in the G1 phase, resulting in apoptosis of U251 cells. Transwell and Matrigel invasion assays showed that hBMSCs reduced the migration and invasion of U251 cells. Using proteomics, 11 differentially expressed proteins were identified and observed. Bioinformatics analyses indicated that the identified proteins participated in several biological processes and exhibited various molecular functions, mainly related to the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. Moreover, hBMSCs regulated changes in proteins linked to cell apoptosis and cell cycle progression and inhibited the epithelial-mesenchymal transition (EMT)-like and PI3K/AKT pathway. Taken together, the findings in our study suggest that hBMSCs inhibit U251 cells proliferation and the EMT-like by downregulating the PI3K/AKT signaling pathway, which indicates that hBMSCs have a potential antitumor characteristics and should be further explored in future glioma therapy.
Collapse
Affiliation(s)
- Li Lu
- Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Guohu Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Yang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yan Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhangqi Cao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yan Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xuexi Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu, 730000, China; School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
7
|
Pharmacological activities of antroquinonol- Mini review. Chem Biol Interact 2019; 297:8-15. [DOI: 10.1016/j.cbi.2018.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
|
8
|
Zhu PL, Fu XQ, Li JK, Tse AKW, Guo H, Yin CL, Chou JY, Wang YP, Liu YX, Chen YJ, Hossen MJ, Zhang Y, Pan SY, Zhao ZJ, Yu ZL. Antrodia camphorata Mycelia Exert Anti-liver Cancer Effects and Inhibit STAT3 Signaling in vitro and in vivo. Front Pharmacol 2018; 9:1449. [PMID: 30618745 PMCID: PMC6304454 DOI: 10.3389/fphar.2018.01449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the major form of primary liver cancer, is a common cause of cancer-related death worldwide. Signal transducer and activator of transcription 3 (STAT3) signaling is constantly activated in HCC and has been proposed as a chemotherapeutic target for HCC. Antrodia camphorata (AC), a medicinal mushroom unique to Taiwan, is traditionally used for treating HCC. Whereas natural AC is scarce, cultured AC mycelia are becoming alternatives. In this study, we investigated the anti-HCC effects of the ethyl acetate fraction of an ethanolic extract of AC mycelia (EEAC), particularly exploring the involvement of STAT3 signaling in these effects. We found that EEAC reduced cell viability, induced apoptosis, and retarded migration and invasion in cultured HepG2 and SMMC-7721 cells. Immunoblotting results showed that EEAC downregulated protein levels of phosphorylated and total STAT3 and JAK2 (an upstream kinase of STAT3) in HCC cells. Real-time PCR analyses showed that STAT3, but not JAK2, mRNA levels were decreased by EEAC. EEAC also lowered the protein level of nuclear STAT3, decreased the transcriptional activity of STAT3, and downregulated protein levels of STAT3-targeted molecules, including anti-apoptotic proteins Bcl-xL and Bcl-2, and invasion-related proteins MMP-2 and MMP-9. Over-activation of STAT3 in HCC cells diminished the cytotoxic effects of EEAC. In SMMC-7721 cell-bearing mice, EEAC (100 mg/kg, i.g. for 18 days) significantly inhibited tumor growth. Consistent with our in vitro data, EEAC induced apoptosis and suppressed JAK2/STAT3 activation/phosphorylation in the tumors. Taken together, EEAC exerts anti-HCC effects both in vitro and in vivo; and inhibition of STAT3 signaling is, at least in part, responsible for these effects. We did not observe significant toxicity of EEAC in normal human liver-derived cells, nude mice and rats. Our results provide a pharmacological basis for developing EEAC as a safe and effective agent for HCC management.
Collapse
Affiliation(s)
- Pei-Li Zhu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiu-Qiong Fu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jun-Kui Li
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Anfernee Kai-Wing Tse
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hui Guo
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Cheng-Le Yin
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ji-Yao Chou
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ya-Ping Wang
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Yu-Xi Liu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ying-Jie Chen
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Muhammad Jahangir Hossen
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yi Zhang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Si-Yuan Pan
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zong-Jie Zhao
- Shenzhen Union Assets Biological Technology Co., Ltd., Shenzhen, China
| | - Zhi-Ling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| |
Collapse
|
9
|
Chen YF, Chang CH, Huang ZN, Su YC, Chang SJ, Jan JS. The JAK inhibitor antcin H exhibits direct anticancer activity while enhancing chemotherapy against LMP1-expressed lymphoma. Leuk Lymphoma 2018; 60:1193-1203. [DOI: 10.1080/10428194.2018.1512709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yu-Fon Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zih-Ning Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chu Su
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
Yang HL, Korivi M, Chen CH, Peng WJ, Chen CS, Li ML, Hsu LS, Liao JW, Hseu YC. Antrodia camphorata attenuates cigarette smoke-induced ROS production, DNA damage, apoptosis, and inflammation in vascular smooth muscle cells, and atherosclerosis in ApoE-deficient mice. ENVIRONMENTAL TOXICOLOGY 2017; 32:2070-2084. [PMID: 28370894 DOI: 10.1002/tox.22422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
Cigarette smoke exposure activates several cellular mechanisms predisposing to atherosclerosis, including oxidative stress, dyslipidemia, and vascular inflammation. Antrodia camphorata, a renowned medicinal mushroom in Taiwan, has been investigated for its antioxidant, anti-inflammatory, and antiatherosclerotic properties in cigarette smoke extracts (CSE)-treated vascular smooth muscle cells (SMCs), and ApoE-deficient mice. Fermented culture broth of Antrodia camphorata (AC, 200-800 µg/mL) possesses effective antioxidant activity against CSE-induced ROS production. Treatment of SMCs (A7r5) with AC (30-120 µg/mL) remarkably ameliorated CSE-induced morphological aberrations and cell death. Suppressed ROS levels by AC corroborate with substantial inhibition of CSE-induced DNA damage in AC-treated A7r5 cells. We found CSE-induced apoptosis through increased Bax/Bcl-2 ratio, was substantially inhibited by AC in A7r5 cells. Notably, upregulated SOD and catalase expressions in AC-treated A7r5 cells perhaps contributed to eradicate the CSE-induced ROS generation, and prevents DNA damage and apoptosis. Besides, AC suppressed AP-1 activity by inhibiting the c-Fos/c-Jun expressions, and NF-κB activation through inhibition of I-κBα degradation against CSE-stimulation. This anti-inflammatory property of AC was accompanied by suppressed CSE-induced VEGF, PDGF, and EGR-1 overexpressions in A7r5 cells. Furthermore, AC protects lung fibroblast (MRC-5) cells from CSE-induced cell death. In vivo data showed that AC oral administration (0.6 mg/d/8-wk) prevents CSE-accelerated atherosclerosis in ApoE-deficient mice. This antiatherosclerotic property was associated with increased serum total antioxidant status, and decreased total cholesterol and triacylglycerol levels. Thus, Antrodia camphorata may be useful for prevention of CSE-induced oxidative stress and diseases. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2070-2084, 2017.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Mallikarjuna Korivi
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Cheng-Hsien Chen
- Department of Applied Chemistry, Chao Yang University of Technology, Taichung, Taiwan
| | - Wei-Jung Peng
- Department of Applied Chemistry, Chao Yang University of Technology, Taichung, Taiwan
| | - Chee-Shan Chen
- Department of Applied Chemistry, Chao Yang University of Technology, Taichung, Taiwan
| | - Mei-Ling Li
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Bailon-Moscoso N, Cevallos-Solorzano G, Romero-Benavides JC, Orellana MIR. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies. Curr Genomics 2017; 18:106-131. [PMID: 28367072 PMCID: PMC5345333 DOI: 10.2174/1389202917666160808125645] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/13/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022] Open
Abstract
Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation.
Collapse
|
12
|
Chang CT, Hseu YC, Thiyagarajan V, Huang HC, Hsu LS, Huang PJ, Liu JY, Liao JW, Yang HL. Antrodia salmonea induces G 2 cell-cycle arrest in human triple-negative breast cancer (MDA-MB-231) cells and suppresses tumor growth in athymic nude mice. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:9-19. [PMID: 27986611 DOI: 10.1016/j.jep.2016.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/19/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antrodia salmonea (AS), is a well-known folk medicinal mushroom in Taiwan, has been reported to exhibit anti-oxidant, anti-angiogenic, and anti-inflammatory effects. MATERIALS AND METHODS In the present study, we examined the effects of AS on cell-cycle arrest in vitro in MDA-MB-231 cells and on tumor regression in vivo using an athymic nude mice model. RESULTS AS (0-200μg/mL) treatment significantly induced G2 cell-cycle arrest in MDA-MB-231 cells by reducing the levels of cyclin B1, cyclin A, cyclin E, and CDC2 proteins. In addition, N-acetylcysteine (NAC) pretreatment prevented AS induced G2 cell-cycle arrest, indicating that ROS accumulation and subsequent cell cycle arrest might be a major mechanism of AS-induced cytotoxicity. Further, AS treatment decreased COX-2 expression and induced PARP cleavage was significantly reversed by NAC pretreatment in MDA-MB-231 cells. The in vivo study results revealed that AS treatment was effective in terms of delaying the tumor incidence and reducing the tumor growth in MDA-MB-231-xenografted nude mice. TUNEL assay, immunohistochemical staining and Western blotting confirmed that AS significantly modulated the xenografted tumor progression as demonstrated by induction of apoptosis, autophagy, and cell-cycle arrest. CONCLUSION Our data strongly suggest that Antrodia salmonea could be an anti-cancer agent for human breast cancer.
Collapse
Affiliation(s)
- Chia-Ting Chang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics,Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Varadharajan Thiyagarajan
- Department of Cosmeceutics,Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Hui-Chi Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, 40402 Taichung, Taiwan
| | - Pei-Jane Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
13
|
Hu YD, Lu RQ, Liao XR, Zhang BB, Xu GR. Stimulating the biosynthesis of antroquinonol by addition of effectors and soybean oil in submerged fermentation ofAntrodia camphorata. Biotechnol Appl Biochem 2015; 63:398-406. [DOI: 10.1002/bab.1387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/12/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Yong-Dan Hu
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| | - Rui-Qiu Lu
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| | - Xiang-Ru Liao
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| | - Bo-Bo Zhang
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| | - Gan-Rong Xu
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| |
Collapse
|
14
|
Lee CI, Wu CC, Hsieh SL, Lee CL, Chang YP, Chang CC, Wang YZ, Wang JJ. Anticancer effects on human pancreatic cancer cells of triterpenoids, polysaccharides and 1,3-β-d-glucan derived from the fruiting body of Antrodia camphorata. Food Funct 2014; 5:3224-32. [DOI: 10.1039/c4fo00720d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|