1
|
Zhang S, Xu B, Elsayed M, Nan F, Liang W, Valley JK, Liu L, Huang Q, Wu MC, Wheeler AR. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation. Chem Soc Rev 2022; 51:9203-9242. [DOI: 10.1039/d2cs00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the fundamentals, recent progress and state-of-the-art applications of optoelectronic tweezers technology, and demonstrates that optoelectronic tweezers technology is a versatile and powerful toolbox for nano-/micro-manipulation.
Collapse
Affiliation(s)
- Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Bingrui Xu
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Mohamed Elsayed
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Justin K. Valley
- Berkeley Lights, Inc, 5858 Horton Street #320, Emeryville, CA 94608, USA
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Room 711, Building No 6, Science and Technology Park, 5 Zhongguancun South St, Haidian District, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Ming C. Wu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Aaron R. Wheeler
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
3
|
Li S, Ren L, Huang PH, Yao X, Cuento RA, McCoy JP, Cameron CE, Levine SJ, Huang TJ. Acoustofluidic Transfer of Inflammatory Cells from Human Sputum Samples. Anal Chem 2016; 88:5655-61. [PMID: 27183317 PMCID: PMC5466821 DOI: 10.1021/acs.analchem.5b03383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For sputum analysis, the transfer of inflammatory cells from liquefied sputum samples to a culture medium or buffer solution is a critical step because it removes the inflammatory cells from the presence of residual dithiothreitol (DTT), a reagent that reduces cell viability and interferes with further sputum analyses. In this work, we report an acoustofluidic platform for transferring inflammatory cells using standing surface acoustic waves (SSAW). In particular, we exploit the acoustic radiation force generated from a SSAW field to actively transfer inflammatory cells from a solution containing residual DTT to a buffer solution. The viability and integrity of the inflammatory cells are maintained during the acoustofluidic-based cell transfer process. Our acoustofluidic technique removes residual DTT generated in sputum liquefaction and facilitates immunophenotyping of major inflammatory cells from sputum samples. It enables cell transfer in a continuous flow, which aids the development of an automated, integrated system for on-chip sputum processing and analysis.
Collapse
Affiliation(s)
- Sixing Li
- Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
- The Molecular, Cellular and Integrative Biosciences (MCIBS) Graduate Program, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
| | - Liqiang Ren
- Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
| | - Xianglan Yao
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland 20892, United States
| | - Rosemarie A. Cuento
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland 20892, United States
| | - J. Philip McCoy
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland 20892, United States
| | - Craig E. Cameron
- The Molecular, Cellular and Integrative Biosciences (MCIBS) Graduate Program, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Stewart J. Levine
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland 20892, United States
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
- The Molecular, Cellular and Integrative Biosciences (MCIBS) Graduate Program, The Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Li S, Ding X, Mao Z, Chen Y, Nama N, Guo F, Li P, Wang L, Cameron CE, Huang TJ. Standing surface acoustic wave (SSAW)-based cell washing. LAB ON A CHIP 2015; 15:331-8. [PMID: 25372273 PMCID: PMC4442640 DOI: 10.1039/c4lc00903g] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell/bead washing is an indispensable sample preparation procedure used in various cell studies and analytical processes. In this article, we report a standing surface acoustic wave (SSAW)-based microfluidic device for cell and bead washing in a continuous flow. In our approach, the acoustic radiation force generated in a SSAW field is utilized to actively extract cells or beads from their original medium. A unique configuration of tilted-angle standing surface acoustic wave (taSSAW) is employed in our device, enabling us to wash beads with >98% recovery rate and >97% washing efficiency. We also demonstrate the functionality of our device by preparing high-purity (>97%) white blood cells from lysed blood samples through cell washing. Our SSAW-based cell/bead washing device has the advantages of label-free manipulation, simplicity, high biocompatibility, high recovery rate, and high washing efficiency. It can be useful for many lab-on-a-chip applications.
Collapse
Affiliation(s)
- Sixing Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Oyman G, Geyik C, Ayranci R, Ak M, Odaci Demirkol D, Timur S, Coskunol H. Peptide-modified conducting polymer as a biofunctional surface: monitoring of cell adhesion and proliferation. RSC Adv 2014. [DOI: 10.1039/c4ra08481k] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A designed bio-functional surface is a promising candidate forcell-culture-on-a-chipapplications.
Collapse
Affiliation(s)
- Gizem Oyman
- Ege University
- Graduate School of Natural and Applied Sciences
- Biotechnology Dept
- 35100-Bornova/Izmir, Turkey
| | - Caner Geyik
- Ege University
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science
- 35100-Bornova/Izmir, Turkey
| | - Rukiye Ayranci
- Pamukkale University
- Faculty of Arts and Science
- Chemistry Dept
- Denizli, Turkey
| | - Metin Ak
- Pamukkale University
- Faculty of Arts and Science
- Chemistry Dept
- Denizli, Turkey
| | - Dilek Odaci Demirkol
- Ege University
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science
- 35100-Bornova/Izmir, Turkey
- Ege University
- Faculty of Science
| | - Suna Timur
- Ege University
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science
- 35100-Bornova/Izmir, Turkey
- Ege University
- Faculty of Science
| | - Hakan Coskunol
- Ege University
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science
- 35100-Bornova/Izmir, Turkey
- Ege University
- Faculty of Medicine
| |
Collapse
|