1
|
Steinbeck L, Wolff HJM, Middeldorf M, Linkhorst J, Wessling M. Porous Anisometric PNIPAM Microgels: Tailored Porous Structure and Thermal Response. Macromol Rapid Commun 2024:e2300680. [PMID: 38461409 DOI: 10.1002/marc.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Indexed: 03/11/2024]
Abstract
The porous structure of microgels significantly influences their properties and, thus, their suitability for various applications, in particular as building blocks for tissue scaffolds. Porosity is one of the crucial features for microgel-cell interactions and significantly increases the cells' accumulation and proliferation. Consequently, tailoring the porosity of microgels in an effortless way is important but still challenging, especially for nonspherical microgels. This work presents a straightforward procedure to fabricate complex-shaped poly(N-isopropyl acrylamide) (PNIPAM) microgels with tuned porous structures using the so-called cononsolvency effect during microgel polymerization. Therefore, the classical solvent in the reaction solution is exchanged from water to water-methanol mixtures in a stop-flow lithography process. For cylindrical microgels with a higher methanol content during fabrication, a greater degree of collapsing is observed, and their aspect ratio increases. Furthermore, the collapsing and swelling velocities change with the methanol content, indicating a modified porous structure, which is confirmed by electron microscopy micrographs. Furthermore, swelling patterns of the microgel variants occur during cooling, revealing their thermal response as a highly heterogeneous process. These results show a novel procedure to fabricate PNIPAM microgels of any elongated 2D shape with tailored porous structure and thermoresponsiveness by introducing the cononsolvency effect during stop-flow lithography polymerization.
Collapse
Affiliation(s)
- Lea Steinbeck
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Hanna J M Wolff
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Maximilian Middeldorf
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - John Linkhorst
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Matthias Wessling
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| |
Collapse
|
2
|
Sahin MA, Werner H, Udani S, Di Carlo D, Destgeer G. Flow lithography for structured microparticles: fundamentals, methods and applications. LAB ON A CHIP 2022; 22:4007-4042. [PMID: 35920614 DOI: 10.1039/d2lc00421f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Structured microparticles, with unique shapes, customizable sizes, multiple materials, and spatially-defined chemistries, are leading the way for emerging 'lab on a particle' technologies. These microparticles with engineered designs find applications in multiplexed diagnostics, drug delivery, single-cell secretion assays, single-molecule detection assays, high throughput cytometry, micro-robotics, self-assembly, and tissue engineering. In this article we review state-of-the-art particle manufacturing technologies based on flow-assisted photolithography performed inside microfluidic channels. Important physicochemical concepts are discussed to provide a basis for understanding the fabrication technologies. These photolithography technologies are compared based on the structural as well as compositional complexity of the fabricated particles. Particles are categorized, from 1D to 3D particles, based on the number of dimensions that can be independently controlled during the fabrication process. After discussing the advantages of the individual techniques, important applications of the fabricated particles are reviewed. Lastly, a future perspective is provided with potential directions to improve the throughput of particle fabrication, realize new particle shapes, measure particles in an automated manner, and adopt the 'lab on a particle' technologies to other areas of research.
Collapse
Affiliation(s)
- Mehmet Akif Sahin
- Control and Manipulation of Microscale Living Objects, Central Institute for Translational Cancer Research (TranslaTUM), Department of Electrical and Computer Engineering, Technical University of Munich, Einsteinstraße 25, Munich 81675, Germany.
| | - Helen Werner
- Control and Manipulation of Microscale Living Objects, Central Institute for Translational Cancer Research (TranslaTUM), Department of Electrical and Computer Engineering, Technical University of Munich, Einsteinstraße 25, Munich 81675, Germany.
| | - Shreya Udani
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
- Department of Mechanical and Aerospace Engineering, California NanoSystems Institute and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, USA
| | - Ghulam Destgeer
- Control and Manipulation of Microscale Living Objects, Central Institute for Translational Cancer Research (TranslaTUM), Department of Electrical and Computer Engineering, Technical University of Munich, Einsteinstraße 25, Munich 81675, Germany.
| |
Collapse
|
3
|
Choi HS, Ahn GN, Na GS, Cha HJ, Kim DP. A Perfluoropolyether Microfluidic Device for Cell-Based Drug Screening with Accurate Quantitative Analysis. ACS Biomater Sci Eng 2022; 8:4577-4585. [DOI: 10.1021/acsbiomaterials.2c00435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hyun Sun Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Gwang-Noh Ahn
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Gi-Su Na
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dong-Pyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
4
|
Kittel Y, Kuehne AJC, De Laporte L. Translating Therapeutic Microgels into Clinical Applications. Adv Healthc Mater 2022; 11:e2101989. [PMID: 34826201 DOI: 10.1002/adhm.202101989] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Microgels are crosslinked, water-swollen networks with a 10 nm to 100 µm diameter and can be modified chemically or biologically to render them biocompatible for advanced clinical applications. Depending on their intended use, microgels require different mechanical and structural properties, which can be engineered on demand by altering the biochemical composition, crosslink density of the polymer network, and the fabrication method. Here, the fundamental aspects of microgel research and development, as well as their specific applications for theranostics and therapy in the clinic, are discussed. A detailed overview of microgel fabrication techniques with regards to their intended clinical application is presented, while focusing on how microgels can be employed as local drug delivery materials, scavengers, and contrast agents. Moreover, microgels can act as scaffolds for tissue engineering and regeneration application. Finally, an overview of microgels is given, which already made it into pre-clinical and clinical trials, while future challenges and chances are discussed. This review presents an instructive guideline for chemists, material scientists, and researchers in the biomedical field to introduce them to the fundamental physicochemical properties of microgels and guide them from fabrication methods via characterization techniques and functionalization of microgels toward specific applications in the clinic.
Collapse
Affiliation(s)
- Yonca Kittel
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Alexander J. C. Kuehne
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Institute of Organic and Macromolecular Chemistry Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
- Institute of Technical and Macromolecular Chemistry (ITMC) Polymeric Biomaterials RWTH University Aachen Worringerweg 2 52074 Aachen Germany
| | - Laura De Laporte
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Max Planck School‐Matter to Life (MtL) Jahnstraße 29 69120 Heidelberg Germany
- Advanced Materials for Biomedicine (AMB) Institute of Applied Medical Engineering (AME) Center for Biohybrid Medical Systems (CBMS) University Hospital RWTH 52074 Aachen Germany
| |
Collapse
|
5
|
Destgeer G, Ouyang M, Wu CY, Di Carlo D. Fabrication of 3D concentric amphiphilic microparticles to form uniform nanoliter reaction volumes for amplified affinity assays. LAB ON A CHIP 2020; 20:3503-3514. [PMID: 32895694 DOI: 10.1039/d0lc00698j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Reactions performed in uniform microscale volumes have enabled numerous applications in the analysis of rare entities (e.g. cells and molecules). Here, highly monodisperse aqueous droplets are formed by simply mixing microscale multi-material particles, consisting of concentric hydrophobic outer and hydrophilic inner layers, with oil and water. The particles are manufactured in batch using a 3D printed device to co-flow four concentric streams of polymer precursors which are polymerized with UV light. The cross-sectional shapes of the particles are altered by microfluidic nozzle design in the 3D printed device. Once a particle encapsulates an aqueous volume, each "dropicle" provides uniform compartmentalization and customizable shape-coding for each sample volume to enable multiplexing of uniform reactions in a scalable manner. We implement an enzymatically-amplified immunoassay using the dropicle system, yielding a detection limit of <1 pM with a dynamic range of at least 3 orders of magnitude. Multiplexing using two types of shape-coded particles was demonstrated without cross talk, laying a foundation for democratized single-entity assays.
Collapse
Affiliation(s)
- Ghulam Destgeer
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
6
|
Concepts for efficient preparation of particulate polymer carrier systems by droplet-based microfluidics. Int J Pharm 2020; 584:119401. [DOI: 10.1016/j.ijpharm.2020.119401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|
7
|
Tian Y, Wang L. Complex three‐dimensional microparticles from microfluidic lithography. Electrophoresis 2020; 41:1491-1502. [DOI: 10.1002/elps.201900322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Ye Tian
- Department of Mechanical EngineeringThe University of Hong Kong Pokfulam Hong Kong
- College of Medicine and Biological Information EngineeringNortheastern University Shenyang P.R. China
- HKU‐Zhejiang Institute of Research and Innovation (HKU‐ZIRI) Hangzhou P.R. China
| | - Liqiu Wang
- Department of Mechanical EngineeringThe University of Hong Kong Pokfulam Hong Kong
- HKU‐Zhejiang Institute of Research and Innovation (HKU‐ZIRI) Hangzhou P.R. China
| |
Collapse
|
8
|
Wolff HJM, Linkhorst J, Göttlich T, Savinsky J, Krüger AJD, de Laporte L, Wessling M. Soft temperature-responsive microgels of complex shape in stop-flow lithography. LAB ON A CHIP 2020; 20:285-295. [PMID: 31802080 DOI: 10.1039/c9lc00749k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stop-flow lithography (SFL) has emerged as a facile high-throughput fabrication method for μm-sized anisometric particles; yet, the fabrication of soft, anisometric microgels has not frequently been addressed in the literature. Furthermore, and to the best of the authors' knowledge, no soft, complex-shaped microgels with temperature-responsive behavior have been fabricated with this technology before. However, such microgels have tremendous potential as building blocks and actuating elements in rapidly developing fields, such as tissue engineering and additive manufacturing of soft polymeric building blocks, bio-hybrid materials, or soft micro-robotics. Given their great potential, we prove in this work that SFL is a viable method for the fabrication of soft, temperature-responsive, and complex-shaped microgels. The microgels, fabricated in this work, consist of poly(N-isopropylacrylamide) (pNIPAm), which is crosslinked with N,N'-methylenebis(acrylamide). The results confirm that the shape of the pNIPAm microgels is determined by the transparency mask, used in SFL. Furthermore, it is shown that, in order to realize stable microgels, a minimum threshold of crosslinker concentration of 2 wt% is required. Above this threshold, the stiffness of pNIPAm microgels can be deliberately altered by adjusting the concentration of the crosslinker. The fabricated pNIPAm microgels show the targeted temperature-responsive behavior. Within this context, temperature-dependent reversible swelling is confirmed, even for fractal-like geometries, such as micro snowflakes. Thus, these microgels provide the targeted unique combination of softness, shape complexity, and temperature responsiveness and increase the freedom of design for actuated building blocks.
Collapse
Affiliation(s)
- Hanna J M Wolff
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - John Linkhorst
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Tim Göttlich
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Johann Savinsky
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Andreas J D Krüger
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Laura de Laporte
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany and RWTH Aachen University, ITMC - Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074 Aachen, Germany
| | - Matthias Wessling
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany. and DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| |
Collapse
|
9
|
Liu Y, Wu C, Lu H, Yang Y, Li W, Shen Y. Programmable higher-order biofabrication of self-locking microencapsulation. Biofabrication 2019; 11:035019. [DOI: 10.1088/1758-5090/aafd14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Guerzoni LPB, Rose JC, Gehlen DB, Jans A, Haraszti T, Wessling M, Kuehne AJC, De Laporte L. Cell Encapsulation in Soft, Anisometric Poly(ethylene) Glycol Microgels Using a Novel Radical-Free Microfluidic System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900692. [PMID: 30993907 DOI: 10.1002/smll.201900692] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Complex 3D artificial tissue constructs are extensively investigated for tissue regeneration. Frequently, materials and cells are delivered separately without benefitting from the synergistic effect of combined administration. Cell delivery inside a material construct provides the cells with a supportive environment by presenting biochemical, mechanical, and structural signals to direct cell behavior. Conversely, the cell/material interaction is poorly understood at the micron scale and new systems are required to investigate the effect of micron-scale features on cell functionality. Consequently, cells are encapsulated in microgels to avoid diffusion limitations of nutrients and waste and facilitate analysis techniques of single or collective cells. However, up to now, the production of soft cell-loaded microgels by microfluidics is limited to spherical microgels. Here, a novel method is presented to produce monodisperse, anisometric poly(ethylene) glycol microgels to study cells inside an anisometric architecture. These microgels can potentially direct cell growth and can be injected as rod-shaped mini-tissues that further assemble into organized macroscopic and macroporous structures post-injection. Their aspect ratios are adjusted with flow parameters, while mechanical and biochemical properties are altered by modifying the precursors. Encapsulated primary fibroblasts are viable and spread and migrate across the 3D microgel structure.
Collapse
Affiliation(s)
- Luis P B Guerzoni
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Jonas C Rose
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - David B Gehlen
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Alexander Jans
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Tamàs Haraszti
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Matthias Wessling
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
- AVT.CVT, Forckenbeckstrasse 51, 52074, Aachen, Germany
| | - Alexander J C Kuehne
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074, Aachen, Germany
| |
Collapse
|
11
|
Alkayyali T, Cameron T, Haltli B, Kerr R, Ahmadi A. Microfluidic and cross-linking methods for encapsulation of living cells and bacteria - A review. Anal Chim Acta 2019; 1053:1-21. [DOI: 10.1016/j.aca.2018.12.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
|
12
|
|
13
|
Kim HU, Choi DG, Lee H, Shim MS, Bong KW. Fabrication of dual stimuli-responsive multicompartmental drug carriers for tumor-selective drug release. LAB ON A CHIP 2018; 18:754-764. [PMID: 29387861 DOI: 10.1039/c7lc01063j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
There has been increasing attention to the development of multi-stimuli-responsive drug carriers for precisely controlled drug release at target disease areas. In this study, pH- and redox-responsive hybrid drug carriers were fabricated by using both ketal-based acid-cleavable precursors and disulfide-based reducible precursors via stop-flow lithography. pH- and redox-sensitive drug release of the dual stimuli-responsive hybrid particles was confirmed, demonstrating their feasibility for selective and efficient drug release into tumor tissues in acidic and highly reductive environments. It was also found that the drug release rate of the particles was fine-tuned by modulating monomer compositions in the precursor. Importantly, the dual stimuli-responsive hybrid particles exhibited synergistic, controlled drug release in complex stimuli (both pH and redox stimuli) environments. To achieve tumor-selective combination chemotherapy, multicompartmental drug carriers consist of an acid-degradable compartment and a reducible compartment, which can separately encapsulate individual model drugs in each of the compartments. The multicompartmental particles exhibited independent drug release upon exposure to the corresponding stimulus. The dual stimuli-responsive, multicompartmental particles are effective drug carriers for tumor-selective release of a drug cocktail, leading to synergistic combination chemotherapy.
Collapse
Affiliation(s)
- Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | | | | | | | | |
Collapse
|
14
|
Kim J, An H, Seo Y, Jung Y, Lee JS, Choi N, Bong KW. Flow lithography in ultraviolet-curable polydimethylsiloxane microfluidic chips. BIOMICROFLUIDICS 2017; 11:024120. [PMID: 28469763 PMCID: PMC5407903 DOI: 10.1063/1.4982698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/17/2017] [Indexed: 05/07/2023]
Abstract
Flow Lithography (FL) is the technique used for the synthesis of hydrogel microparticles with various complex shapes and distinct chemical compositions by combining microfluidics with photolithography. Although polydimethylsiloxane (PDMS) has been used most widely as almost the sole material for FL, PDMS microfluidic chips have limitations: (1) undesired shrinkage due to the thermal expansion of masters used for replica molding and (2) interfacial delamination between two thermally cured PDMS layers. Here, we propose the utilization of ultraviolet (UV)-curable PDMS (X-34-4184) for FL as an excellent alternative material of the conventional PDMS. Our proposed utilization of the UV-curable PDMS offers three key advantages, observed in our study: (1) UV-curable PDMS exhibited almost the same oxygen permeability as the conventional PDMS. (2) The almost complete absence of shrinkage facilitated the fabrication of more precise reverse duplication of microstructures. (3) UV-cured PDMS microfluidic chips were capable of much stronger interfacial bonding so that the burst pressure increased to ∼0.9 MPa. Owing to these benefits, we demonstrated a substantial improvement of productivity in synthesizing polyethylene glycol diacrylate microparticles via stop flow lithography, by applying a flow time (40 ms) an order of magnitude shorter. Our results suggest that UV-cured PDMS chips can be used as a general platform for various types of flow lithography and also be employed readily in other applications where very precise replication of structures on micro- or sub-micrometer scales and/or strong interfacial bonding are desirable.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
15
|
Yang W, Yu H, Li G, Wang Y, Liu L. High-Throughput Fabrication and Modular Assembly of 3D Heterogeneous Microscale Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602769. [PMID: 27862956 DOI: 10.1002/smll.201602769] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/14/2016] [Indexed: 06/06/2023]
Abstract
3D hydrogel microstructures that encapsulate cells have been used in broad applications in microscale tissue engineering, personalized drug screening, and regenerative medicine. Recent technological advances in microstructure assembly, such as bioprinting, magnetic assembly, microfluidics, and acoustics, have enabled the construction of designed 3D tissue structures with spatially organized cells in vitro. However, a bottleneck exists that still hampers the application of microtissue structures, due to a lack of techniques that combined high-throughput fabrication and flexible assembly. Here, a versatile method for fabricating customized microstructures and reorganizing building blocks composed of functional components into a combined single geometric shape is demonstrated. The arbitrary microstructures are dynamically synthesized in a microfluidic device and then transferred to an optically induced electrokinetics chip for manipulation and assembly. Moreover, building blocks containing different cells can be arranged into a desired geometry with specific shape and size, which can be used for microscale tissue engineering.
Collapse
Affiliation(s)
- Wenguang Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110000, P. R. China
| | - Gongxin Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110000, P. R. China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110000, P. R. China
| |
Collapse
|
16
|
Yanagawa F, Sugiura S, Kanamori T. Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen Ther 2016; 3:45-57. [PMID: 31245472 PMCID: PMC6581842 DOI: 10.1016/j.reth.2016.02.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023] Open
Abstract
The development of biologically relevant three-dimensional (3D) tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.
Collapse
Affiliation(s)
- Fumiki Yanagawa
- Drug Assay Device Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shinji Sugiura
- Drug Assay Device Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Toshiyuki Kanamori
- Drug Assay Device Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|