1
|
Liu Z, Fan Y, Cui M, Wang X, Zhao P. Investigation of tumour environments through advancements in microtechnology and nanotechnology. Biomed Pharmacother 2024; 178:117230. [PMID: 39116787 DOI: 10.1016/j.biopha.2024.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer has a significant negative social and economic impact on both developed and developing countries. As a result, understanding the onset and progression of cancer is critical for developing therapies that can improve the well-being and health of individuals with cancer. With time, study has revealed, the tumor microenvironment has great influence on this process. Micro and nanoscale engineering techniques can be used to study the tumor microenvironment. Nanoscale and Microscale engineering use Novel technologies and designs with small dimensions to recreate the TME. Knowing how cancer cells interact with one another can help researchers develop therapeutic approaches that anticipate and counteract cancer cells' techniques for evading detection and fighting anti-cancer treatments, such as microfabrication techniques, microfluidic devices, nanosensors, and nanodevices used to study or recreate the tumor microenvironment. Nevertheless, a complicated action just like the growth and in cancer advancement, and their intensive association along the environment around it that has to be studied in more detail.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Radiology, Shengjing Hospital of China Medical University, China
| | - Yan Fan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengyao Cui
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Pengfei Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
2
|
Kolahi Azar H, Gharibshahian M, Rostami M, Mansouri V, Sabouri L, Beheshtizadeh N, Rezaei N. The progressive trend of modeling and drug screening systems of breast cancer bone metastasis. J Biol Eng 2024; 18:14. [PMID: 38317174 PMCID: PMC10845631 DOI: 10.1186/s13036-024-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Bone metastasis is considered as a considerable challenge for breast cancer patients. Various in vitro and in vivo models have been developed to examine this occurrence. In vitro models are employed to simulate the intricate tumor microenvironment, investigate the interplay between cells and their adjacent microenvironment, and evaluate the effectiveness of therapeutic interventions for tumors. The endeavor to replicate the latency period of bone metastasis in animal models has presented a challenge, primarily due to the necessity of primary tumor removal and the presence of multiple potential metastatic sites.The utilization of novel bone metastasis models, including three-dimensional (3D) models, has been proposed as a promising approach to overcome the constraints associated with conventional 2D and animal models. However, existing 3D models are limited by various factors, such as irregular cellular proliferation, autofluorescence, and changes in genetic and epigenetic expression. The imperative for the advancement of future applications of 3D models lies in their standardization and automation. The utilization of artificial intelligence exhibits the capability to predict cellular behavior through the examination of substrate materials' chemical composition, geometry, and mechanical performance. The implementation of these algorithms possesses the capability to predict the progression and proliferation of cancer. This paper reviewed the mechanisms of bone metastasis following primary breast cancer. Current models of breast cancer bone metastasis, along with their challenges, as well as the future perspectives of using these models for translational drug development, were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Qi X, Zhou Q, Li X, Hu G. Generation of Multiple Concentration Gradients Using a Two-Dimensional Pyramid Array. Anal Chem 2024; 96:856-865. [PMID: 38104274 DOI: 10.1021/acs.analchem.3c04496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Concentration heterogeneity of diffusible reactants is a prevalent phenomenon in biochemical processes, requiring the generation of concentration gradients for the relevant experiments. In this study, we present a high-density pyramid array microfluidic network for the effective and precise generation of multiple concentration gradients. The complex gradient distribution in the 2D array can be adaptively adjusted by modulating the reactant velocities and concentrations at the inlets. In addition, the unique design of each reaction chamber and mixing block in the array ensures uniform concentrations within each chamber during dynamic changes, enabling large-scale reactions with low reactant volumes. Through detailed numerical simulation of mass transport within the complex microchannel networks, the proposed method allows researchers to determine the desired number of reaction chambers within a given concentration range based on experimental requirements and to quickly obtain the operating conditions with the help of machine learning-based prediction. The effectiveness in generating a multiple concentration gradient environment was further demonstrated by concentration-dependent calcium carbonate crystallization experiments. This device provides a highly efficient mixing and adaptable concentration platform that is well suited for high-throughput and multiplexed reactions.
Collapse
Affiliation(s)
- Xinlei Qi
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Qin Zhou
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Xuejin Li
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Zhang H, Ma Y, Wang Y, Niu L, Zou R, Zhang M, Liu H, Genin GM, Li A, Xu F. Rational Design of Soft-Hard Interfaces through Bioinspired Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204498. [PMID: 36228093 DOI: 10.1002/smll.202204498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Soft-hard tissue interfaces in nature present a diversity of hierarchical transitions in composition and structure to address the challenge of stress concentrations that would otherwise arise at their interface. The translation of these into engineered materials holds promise for improved function of biomedical interfaces. Here, soft-hard tissue interfaces found in the body in health and disease, and the application of the diverse, functionally graded, and hierarchical structures that they present to bioinspired engineering materials are reviewed. A range of such bioinspired engineering materials and associated manufacturing technologies that are on the horizon in interfacial tissue engineering, hydrogel bioadhesion at the interfaces, and healthcare and medical devices are described.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Min Zhang
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Sun Y, Zhang F, Li L, Chen K, Wang S, Ouyang Q, Luo C. Two-Layered Microfluidic Devices for High-Throughput Dynamic Analysis of Synthetic Gene Circuits in E. coli. ACS Synth Biol 2022; 11:3954-3965. [PMID: 36283074 DOI: 10.1021/acssynbio.2c00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Escherichia coli is a common chassis for synthetic gene circuit studies. In addition to the dose-response of synthetic gene circuits, the analysis of dynamic responses is also an important part of the future design of more complicated synthetic systems. Recently, microfluidic-based methods have been widely used for the analysis of gene expression dynamics. Here, we established a two-layered microfluidic platform for the systematic characterization of synthetic gene circuits (eight strains in eight different culture environments could be observed simultaneously with a 5 min time resolution). With this platform, both dose responses and dynamic responses with a high temporal resolution could be easily derived for further analysis. A controlled environment ensures the stability of the bacterial growth rate, excluding changes in gene expression dynamics caused by changes of the growth dilution rate. The precise environmental switch and automatic micrograph shooting ensured that there was nearly no time lag between the inducer addition and the data recording. We studied four four-node incoherent-feedforward-loop (IFFL) networks with different operators using this device. The experimental results showed that as the effect of inhibition increased, two of the IFFL networks generated pulselike dynamic gene expressions in the range of the inducer concentrations, which was different from the dynamics of the two other circuits with only a simple pattern of rising to the platform. Through fitting the dose-response curves and the dynamic response curves, corresponding parameters were derived and introduced to a simple model that could qualitatively explain the generation of pulse dynamics.
Collapse
Affiliation(s)
- Yanhong Sun
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics, Peking University, Beijing100871, China
| | - Fengyu Zhang
- School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China
| | - Lusi Li
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Kaiyue Chen
- Wenzhou Institute University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
| | - Shujing Wang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics, Peking University, Beijing100871, China
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics, Peking University, Beijing100871, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics, Peking University, Beijing100871, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China.,Wenzhou Institute University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
| |
Collapse
|
6
|
Paduthol G, Korma TS, Agrawal A, Paul D. Dynamic generation of power function gradient profiles in a universal microfluidic gradient generator by controlling the inlet flow rates. LAB ON A CHIP 2022; 22:592-604. [PMID: 34985077 DOI: 10.1039/d1lc00938a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a two-inlet universal microfluidic gradient generator capable of generating gradient profiles of the functional form xp in the same device by controlling only the inlet flow rates. We have developed an analytical model to predict the inlet flow rates needed to generate a user-specified gradient profile at the outlet. We have validated this model by performing both COMSOL simulations and experiments. Our experiments show an excellent match between the target functions (x0.33, x1, x2 and x3) and the gradient profiles generated in this device. Unlike the universal gradient generators reported earlier, our device does not require changing the positions of the internal barriers for each new gradient profile, thereby making it easier for the user to operate this device.
Collapse
Affiliation(s)
- Gauri Paduthol
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Teji Shenne Korma
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debjani Paul
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
7
|
Dai B, Long Y, Wu J, Huang S, Zhao Y, Zheng L, Tao C, Guo S, Lin F, Fu Y, Zhang D, Zhuang S. Generation of flow and droplets with an ultra-long-range linear concentration gradient. LAB ON A CHIP 2021; 21:4390-4400. [PMID: 34704106 DOI: 10.1039/d1lc00749a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the chemical and biological fields, the creation of concentration gradient microenvironments is an important approach for many applications, such as crystal growth and drug screening. Although many concentration gradient generators have been demonstrated, current generators can hardly produce ultra-long linear concentration gradients. In this paper, we propose a concentration-gradient flow/droplet generator which consists of a microfluidic flow switch, a cavity array for stage-by-stage concentration dilution, and an optional T-junction for droplet formation. The generator can realize an ultra-long continuously-varying concentration gradient along the flow direction. Generation of a 38 mm concentration gradient was demonstrated. The length can be further extended by enlarging the capacity of the cavities and increasing the number of the stages. The concentration gradient showed high linearity in the range of 10% to 90%. Moreover, cyclic generation of a concentration gradient flow and droplets with different concentrations was realized by the generator. In a demonstration of drug screening, the generator was employed to produce paclitaxel in different concentrations. A negative correlation between the 4T1 cell viability and the paclitaxel concentration was observed after the treatment. We envision that the concentration gradient generator will be a promising candidate for various drug screening applications.
Collapse
Affiliation(s)
- Bo Dai
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yan Long
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Jiandong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shaoqi Huang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuan Zhao
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Chunxian Tao
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Yongfeng Fu
- Department of Laboratory Medicine, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
8
|
Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Adv Drug Deliv Rev 2021; 175:113791. [PMID: 33965462 DOI: 10.1016/j.addr.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, immune checkpoint inhibitors (ICI) have proven to be tremendously effective for a subset of cancer patients. However, it is difficult to predict the response of individual patients and efforts are now directed at understanding the mechanisms of ICI resistance. Current models of patient tumors poorly recapitulate the immune contexture, which describe immune parameters that are associated with patient survival. In this Review, we discuss parameters that influence the induction of different immune contextures found within tumors and how engineering strategies may be leveraged to recapitulate these contextures to develop the next generation of immune-competent patient-derived in vitro models.
Collapse
|
9
|
Liu B, Ma Z, Yang J, Gao G, Liu H. A Concentration Gradients Tunable Generator with Adjustable Position of the Acoustically Oscillating Bubbles. MICROMACHINES 2020; 11:mi11090827. [PMID: 32878158 PMCID: PMC7570149 DOI: 10.3390/mi11090827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/29/2023]
Abstract
It is essential to control concentration gradients at specific locations for many biochemical experiments. This paper proposes a tunable concentration gradient generator actuated by acoustically oscillating bubbles trapped in the bubble channels using a controllable position based on the gas permeability of polydimethylsiloxane (PDMS). The gradient generator consists of a glass substrate, a PDMS chip, and a piezoelectric transducer. When the trapped bubbles are activated by acoustic waves, the solution near the gas–liquid interface is mixed. The volume of the bubbles and the position of the gas–liquid interface are regulated through the permeability of the PDMS wall. The tunable concentration gradient can be realized by changing the numbers and positions of the bubbles that enable the mixing of fluids in the main channel, and the amplitude of the applied voltage. This new device is easy to fabricate, responsive, and biocompatible, and therefore has great application prospects. In particular, it is suitable for biological research with high requirements for temporal controllability.
Collapse
Affiliation(s)
- Bendong Liu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (Z.M.); (J.Y.); (G.G.); (H.L.)
- Correspondence: ; Tel.: +86-010-67396187
| | - Zhigao Ma
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (Z.M.); (J.Y.); (G.G.); (H.L.)
| | - Jiahui Yang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (Z.M.); (J.Y.); (G.G.); (H.L.)
- Electrical and Mechanical College, Beijing Vocational College of Agriculture, Beijing 102208, China
| | - Guohua Gao
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (Z.M.); (J.Y.); (G.G.); (H.L.)
| | - Haibin Liu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (Z.M.); (J.Y.); (G.G.); (H.L.)
| |
Collapse
|
10
|
Guo Y, Gao Z, Liu Y, Li S, Zhu J, Chen P, Liu BF. Multichannel Synchronous Hydrodynamic Gating Coupling with Concentration Gradient Generator for High-Throughput Probing Dynamic Signaling of Single Cells. Anal Chem 2020; 92:12062-12070. [DOI: 10.1021/acs.analchem.0c02746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaolong Gao
- The Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yinan Liu
- Department of Genetics, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinchi Zhu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
12
|
Zhang T, Meng J, Li S, Yu C, Li J, Wei C, Dai S. A Microfluidic Concentration Gradient Maker with Tunable Concentration Profiles by Changing Feed Flow Rate Ratios. MICROMACHINES 2020; 11:E284. [PMID: 32164167 PMCID: PMC7142998 DOI: 10.3390/mi11030284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 01/14/2023]
Abstract
Microfluidic chips-in which chemical or biological fluid samples are mixed into linear or nonlinear concentration distribution profiles-have generated enormous enthusiasm of their ability to develop patterns for drug release and their potential toxicology applications. These microfluidic devices have untapped potential for varying concentration patterns by the use of one single device or by easy-to-operate procedures. To address this challenge, we developed a soft-lithography-fabricated microfluidic platform that enabled one single device to be used as a concentration maker, which could generate linear, bell-type, or even S-type concentration profiles by tuning the feed flow rate ratios of each independent inlet. Here, we present an FFRR (feed flow rate ratio) adjustment approach to generate tens of types of concentration gradient profiles with one single device. To demonstrate the advantages of this approach, we used a Christmas-tree-like microfluidic chip as the demo. Its performance was analyzed using numerical simulation models and experimental investigations, and it showed an excellent time response (~10 s). With on-demand flow rate ratios, the FFRR microfluidic device could be used for many lab-on-a-chip applications where flexible concentration profiles are required for analysis.
Collapse
Affiliation(s)
- Tao Zhang
- Hebei Key Laboratory of Robotic Sensing and Human-robot interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (T.Z.); (J.M.); (C.Y.); (C.W.)
| | - Jiyu Meng
- Hebei Key Laboratory of Robotic Sensing and Human-robot interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (T.Z.); (J.M.); (C.Y.); (C.W.)
| | - Shanshan Li
- Hebei Key Laboratory of Robotic Sensing and Human-robot interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (T.Z.); (J.M.); (C.Y.); (C.W.)
- National Key Laboratory of Reliability and Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Chengzhuang Yu
- Hebei Key Laboratory of Robotic Sensing and Human-robot interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (T.Z.); (J.M.); (C.Y.); (C.W.)
| | - Junwei Li
- Department of Computer Science and Electrical Engineering, Hebei University of Technology, Langfang 065000, China;
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Chunyang Wei
- Hebei Key Laboratory of Robotic Sensing and Human-robot interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (T.Z.); (J.M.); (C.Y.); (C.W.)
| | - Shijie Dai
- Hebei Key Laboratory of Robotic Sensing and Human-robot interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (T.Z.); (J.M.); (C.Y.); (C.W.)
| |
Collapse
|
13
|
Wang J, Wang G, Chen M, Wang Y, Ding G, Zhang Y, Kang Y, Pan X. An integrated microfluidic chip for treatment and detection of microalgae cells. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Shang M, Soon RH, Lim CT, Khoo BL, Han J. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. LAB ON A CHIP 2019; 19:369-386. [PMID: 30644496 DOI: 10.1039/c8lc00970h] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cancer is the leading cause of death worldwide. The complex and disorganized tumor microenvironment makes it very difficult to treat this disease. The most common in vitro drug screening method now is based on 2D culture models which poorly represent actual tumors. Therefore, many 3D tumor models which are more physiologically relevant have been developed to conduct in vitro drug screening and alleviate this situation. Among all these models, the microfluidic tumor model has the unique advantage of recapitulating the tumor microenvironment in a comparatively easier and representative fashion. While there are many review papers available on the related topic of microfluidic tumor models, in this review we aim to focus more on the possibility of generating "clinically actionable information" from these microfluidic systems, besides scientific insight. Our topics cover the tumor microenvironment, conventional 2D and 3D cultures, animal models, and microfluidic tumor models, emphasizing their link to anti-cancer drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Menglin Shang
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1, Create Way, Enterprise Wing, 138602, Singapore.
| | | | | | | | | |
Collapse
|
15
|
Shakeri A, Sun N, Badv M, Didar TF. Generating 2-dimensional concentration gradients of biomolecules using a simple microfluidic design. BIOMICROFLUIDICS 2017; 11:044111. [PMID: 28852431 PMCID: PMC5552394 DOI: 10.1063/1.4991550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/26/2017] [Indexed: 05/21/2023]
Abstract
This study reports a microfluidic device for generating 2-dimensional concentration gradients of biomolecules along the width and length of a chamber and conventional 1-dimensional gradients along the width of its lateral parallel channels. The gradient profile can be precisely controlled by the applied flow rate. The proposed design is simple and straightforward, has a small footprint size compared to previously reported devices such as tree-shape designs, and for the first time, provides capability of generating desired 2D and 1D gradients, simultaneously. The finite element simulation analysis proves the feasibility of the microfluidic device, and the fluorescently labelled IgG antibody is used to demonstrate generated chemical gradients. This simple microfluidic device can be implemented for a wide range of high-throughput concentration gradient applications such as chemotaxis, drug screening, and organs-on-chips.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Nick Sun
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Maryam Badv
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | | |
Collapse
|
16
|
Pham P, Vo T, Luo X. Steering air bubbles with an add-on vacuum layer for biopolymer membrane biofabrication in PDMS microfluidics. LAB ON A CHIP 2017; 17:248-255. [PMID: 27942655 DOI: 10.1039/c6lc01362g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Membrane functionality is crucial in microfluidics for realizing operations such as filtration, separation, concentration, signaling among cells and gradient generation. Currently, common methods often sandwich commercially available membranes in multi-layer devices, or use photopolymerization or temperature-induced gelation to fabricate membrane structures in one-layer devices. Biofabrication offers an alternative to forming membrane structures with biomimetic materials and mechanisms in mild conditions. We have recently developed a biofabrication strategy to form parallel biopolymer membranes in gas-permeable polydimethylsiloxane (PDMS) microfluidic devices, which used positive pressure to dissipate air bubbles through PDMS to initiate membrane formation but required careful pressure balancing between two flows. Here, we report a technical innovation by simply placing as needed an add-on PDMS vacuum layer on PDMS microfluidic devices to dissipate air bubbles and guide the biofabrication of biopolymer membranes. Vacuuming through PDMS was simply achieved by either withdrawing a syringe or releasing a squeezed nasal aspirator. Upon vacuuming, air bubbles dissipated within minutes, membranes were effortlessly formed, and the add-on vacuum layer can be removed. Subsequent membrane growth could be robustly controlled with the flows and pH of solutions. This new process is user-friendly and has achieved a 100% success rate in more than 200 trials in membrane biofabrication.
Collapse
Affiliation(s)
- Phu Pham
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| | - Thanh Vo
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| | - Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| |
Collapse
|
17
|
Ha JH, Kim TH, Lee JM, Ahrberg CD, Chung BG. Analysis of 3D multi-layer microfluidic gradient generator. Electrophoresis 2016; 38:270-277. [DOI: 10.1002/elps.201600443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Jang Ho Ha
- Department of Mechanical Engineering; Sogang University; Seoul Korea
| | - Tae Hyeon Kim
- Department of Mechanical Engineering; Sogang University; Seoul Korea
| | - Jong Min Lee
- Department of Mechanical Engineering; Sogang University; Seoul Korea
| | | | - Bong Geun Chung
- Department of Mechanical Engineering; Sogang University; Seoul Korea
| |
Collapse
|
18
|
Liu PH, Urban PL. Plug-Volume-Modulated Dilution Generator for Flask-Free Chemistry. Anal Chem 2016; 88:11663-11669. [DOI: 10.1021/acs.analchem.6b03244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Pei-Han Liu
- Department
of Applied Chemistry
and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| | - Pawel L. Urban
- Department
of Applied Chemistry
and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| |
Collapse
|
19
|
Luo X, Vo T, Jambi F, Pham P, Choy JS. Microfluidic partition with in situ biofabricated semipermeable biopolymer membranes for static gradient generation. LAB ON A CHIP 2016; 16:3815-3823. [PMID: 27713976 DOI: 10.1039/c6lc00742b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report an in situ biofabrication strategy that conveniently partitions microfluidic networks into physically separated while chemically communicating microchannels with semipermeable biopolymer membranes, which enable the facile generation of static gradients for biomedical applications. The biofabrication of parallel biopolymer membranes was initiated with the dissipation of trapped air bubbles in parallel apertures in polydimethylsiloxane (PDMS) microfluidic devices, followed by tunable membrane growth with precise temporal and spatial control to the desired thickness. Static gradients were generated within minutes and well maintained over time by pure diffusion of molecules through the biofabricated semipermeable membranes. As an example application, the static gradient of alpha factor was generated to study the development of the "shmoo" morphology of yeast over time. The in situ biofabrication provides a simple approach to generate static gradients and an ideal platform for biological applications where flow-free static gradients are indispensable.
Collapse
Affiliation(s)
- Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| | - Thanh Vo
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| | - Fahad Jambi
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| | - Phu Pham
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| | - John S Choy
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, USA
| |
Collapse
|
20
|
|
21
|
Abstract
The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell-drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers.
Collapse
|
22
|
Oliveira A, Pelegati V, Carvalho H, Cesar C, Bastos R, de la Torre L. Cultivation of yeast in diffusion-based microfluidic device. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Hu C, Lin YS, Chen H, Liu J, Nie F. Concentration gradient generator for H460 lung cancer cell sensitivity to resist the cytotoxic action of curcumin in microenvironmental pH conditions. RSC Adv 2016. [DOI: 10.1039/c6ra20804e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We proposed and demonstrated a concentration gradient generator (CGG) to resist H460 lung cancer cells using curcumin in microenvironmental pH conditions.
Collapse
Affiliation(s)
- Chunfei Hu
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Yu-Sheng Lin
- Division of Nanobionic Research
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Hongmei Chen
- Division of Nanobionic Research
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Jingjing Liu
- Division of Nanobionic Research
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Fuqiang Nie
- Division of Nanobionic Research
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|