1
|
Bohorquez LC, de Sousa J, Garcia-Garcia T, Dugar G, Wang B, Jonker MJ, Noirot-Gros MF, Lalk M, Hamoen LW. Metabolic and chromosomal changes in a Bacillus subtilis whiA mutant. Microbiol Spectr 2023; 11:e0179523. [PMID: 37916812 PMCID: PMC10714963 DOI: 10.1128/spectrum.01795-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE WhiA is a conserved DNA-binding protein that influences cell division in many Gram-positive bacteria and, in B. subtilis, also chromosome segregation. How WhiA works in Bacillus subtilis is unknown. Here, we tested three hypothetical mechanisms using metabolomics, fatty acid analysis, and chromosome confirmation capture experiments. This revealed that WhiA does not influence cell division and chromosome segregation by modulating either central carbon metabolism or fatty acid composition. However, the inactivation of WhiA reduces short-range chromosome interactions. These findings provide new avenues to study the molecular mechanism of WhiA in the future.
Collapse
Affiliation(s)
- Laura C. Bohorquez
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Joana de Sousa
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Transito Garcia-Garcia
- Laboratoire de Genetique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Gaurav Dugar
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijs J. Jonker
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Marie-Françoise Noirot-Gros
- Laboratoire de Genetique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leendert W. Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Horak I, Jansen van Rensburg PJ, Claassens S. Effect of cultivation media and temperature on metabolite profiles of three nematicidal Bacillus species. NEMATOLOGY 2021. [DOI: 10.1163/15685411-bja10137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Globally, root-knot nematode (RKN) infestations cause great financial losses. Although agrochemicals are used to manage these pests, there is increased interest in using biocontrol agents based on natural antagonistic microorganisms, such as Bacillus. These nematicidal bacteria demonstrate antagonism towards RKN through different modes of action, including specialised metabolite production. The aim of this study was to compare metabolite profiles of nematicidal Bacillus species and assess the influence of cultivation conditions on these profiles. Two hyphenated metabolomics platforms, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), were employed to profile and compare metabolite features produced during the cultivation of three nematicidal Bacillus species (Bacillus firmus, B. cereus and B. soli) in complex Luria-Bertani broth (LB) and a simpler minimal broth (MB), at three different temperatures (25, 30 and 37°C). Cultivation in complex LB as opposed to simpler MB resulted in the production of more statistically significant metabolite features. Selected temperatures in this study did not have a significant influence on metabolite profiles. Moreover, media-specific influences outweighed temperature-specific influences on metabolite profiles. Results from this study are a valuable first step in establishing suitable cultivation conditions for the production of Bacillus metabolites of interest.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | | | - Sarina Claassens
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
3
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Menezes RC, Piechulla B, Warber D, Svatoš A, Kai M. Metabolic Profiling of Rhizobacteria Serratia plymuthica and Bacillus subtilis Revealed Intra- and Interspecific Differences and Elicitation of Plipastatins and Short Peptides Due to Co-cultivation. Front Microbiol 2021; 12:685224. [PMID: 34135882 PMCID: PMC8200778 DOI: 10.3389/fmicb.2021.685224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Rhizobacteria live in diverse and dynamic communities having a high impact on plant growth and development. Due to the complexity of the microbial communities and the difficult accessibility of the rhizosphere, investigations of interactive processes within this bacterial network are challenging. In order to better understand causal relationships between individual members of the microbial community of plants, we started to investigate the inter- and intraspecific interaction potential of three rhizobacteria, the S. plymuthica isolates 4Rx13 and AS9 and B. subtilis B2g, using high resolution mass spectrometry based metabolic profiling of structured, low-diversity model communities. We found that by metabolic profiling we are able to detect metabolite changes during cultivation of all three isolates. The metabolic profile of S. plymuthica 4Rx13 differs interspecifically to B. subtilis B2g and surprisingly intraspecifically to S. plymuthica AS9. Thereby, the release of different secondary metabolites represents one contributing factor of inter- and intraspecific variations in metabolite profiles. Interspecific co-cultivation of S. plymuthica 4Rx13 and B. subtilis B2g showed consistently distinct metabolic profiles compared to mono-cultivated species. Thereby, putative known and new variants of the plipastatin family are increased in the co-cultivation of S. plymuthica 4Rx13 and B. subtilis B2g. Interestingly, intraspecific co-cultivation of S. plymuthica 4Rx13 and S. plymuthica AS9 revealed a distinct interaction zone and showed distinct metabolic profiles compared to mono-cultures. Thereby, several putative short proline-containing peptides are increased in co-cultivation of S. plymuthica 4Rx13 with S. plymuthica AS9 compared to mono-cultivated strains. Our results demonstrate that the release of metabolites by rhizobacteria alters due to growth and induced by social interactions between single members of the microbial community. These results form a basis to elucidate the functional role of such interaction-triggered compounds in establishment and maintenance of microbial communities and can be applied under natural and more realistic conditions, since rhizobacteria also interact with the plant itself and many other members of plant and soil microbiota.
Collapse
Affiliation(s)
- Riya C Menezes
- Research Group Mass Spectrometry/Proteomics, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Birgit Piechulla
- Department of Biochemistry, University of Rostock, Institute for Biological Sciences, Rostock, Germany
| | - Dörte Warber
- Department of Biochemistry, University of Rostock, Institute for Biological Sciences, Rostock, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Marco Kai
- Research Group Mass Spectrometry/Proteomics, Max-Planck Institute for Chemical Ecology, Jena, Germany.,Department of Biochemistry, University of Rostock, Institute for Biological Sciences, Rostock, Germany
| |
Collapse
|
5
|
Song Y, He S, Abdallah II, Jopkiewicz A, Setroikromo R, van Merkerk R, Tepper PG, Quax WJ. Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4785-4794. [PMID: 33877851 PMCID: PMC8154554 DOI: 10.1021/acs.jafc.1c00498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Engineering strategies to improve terpenoids' production in Bacillus subtilis mainly focus on 2C-methyl-d-erythritol-4-phosphate (MEP) pathway overexpression. To systematically engineer the chassis strain for higher amorphadiene (precursor of artemisinin) production, a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system was established in B. subtilis to facilitate precise and efficient genome editing. Then, this system was employed to engineer three more modules to improve amorphadiene production, including the terpene synthase module, the branch pathway module, and the central metabolic pathway module. Finally, our combination of all of the useful strategies within one strain significantly increased extracellular amorphadiene production from 81 to 116 mg/L after 48 h flask fermentation without medium optimization. For the first time, we attenuated the FPP-derived competing pathway to improve amorphadiene biosynthesis and investigated how the TCA cycle affects amorphadiene production in B. subtilis. Overall, this study provides a universal strategy for further increasing terpenoids' production in B. subtilis by comprehensive and systematic metabolic engineering.
Collapse
Affiliation(s)
- Yafeng Song
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Siqi He
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ingy I. Abdallah
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, 21521 Alexandria, Egypt
| | - Anita Jopkiewicz
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rita Setroikromo
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ronald van Merkerk
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pieter G. Tepper
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J. Quax
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
6
|
Zeki ÖC, Eylem CC, Reçber T, Kır S, Nemutlu E. Integration of GC–MS and LC–MS for untargeted metabolomics profiling. J Pharm Biomed Anal 2020; 190:113509. [DOI: 10.1016/j.jpba.2020.113509] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
|
7
|
Sousa J, Westhoff P, Methling K, Lalk M. The Absence of Pyruvate Kinase Affects Glucose-Dependent Carbon Catabolite Repression in Bacillus subtilis. Metabolites 2019; 9:metabo9100216. [PMID: 31590319 PMCID: PMC6835821 DOI: 10.3390/metabo9100216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022] Open
Abstract
Pyruvate is a key intermediate of diverse metabolic pathways of central carbon metabolism. In addition to being the end product of glycolysis, pyruvate is an essential carbon distribution point to oxidative metabolism, amino acid and fatty acid syntheses, and overflow metabolite production. Hence, a tight regulation of pyruvate kinase (Pyk) activity is of great importance. This study aimed to analyze targeted metabolites from several pathways and possible changes in Bacillus subtilis lacking Pyk. Wild type and Δpyk cells were cultivated in chemically defined medium with glucose and pyruvate as carbon sources, and the extracted metabolites were analyzed by 1H-NMR, GC-MS, HPLC-MS, and LC-MS/MS. The results showed that the perturbation created in the pyruvate node drove an adaptation to new conditions by altering the nutritional compounds’ consumption. In Δpyk, pyruvate, which is subject to glucose-dependent carbon catabolite repression, did not comply with the hierarchy in carbon source utilization. Other metabolic alterations were observed such as the higher secretion of the overflow metabolites acetoin and 2,3-butanediol by Δpyk. Our results help to elucidate the regulatory transport of glucose and pyruvate in B. subtilis and possible metabolic reroute to alternative pathways in the absence of Pyk.
Collapse
Affiliation(s)
- Joana Sousa
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany.
- Innovayt S/A, Av. João Paulo II 30, 4715-213 Braga, Portugal.
| | - Philipp Westhoff
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany.
- Institute of Plant Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany.
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany.
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
8
|
Strain-level diversity of commercial probiotic isolates of Bacillus, Lactobacillus, and Saccharomyces species illustrated by molecular identification and phenotypic profiling. PLoS One 2019; 14:e0213841. [PMID: 30901338 PMCID: PMC6430388 DOI: 10.1371/journal.pone.0213841] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Probiotic products are becoming more prevalent as awareness of the role of beneficial microbes in health increases. Ingredient labels of these products often omit identifications at the strain level, making it difficult to track down applicable published research. In this study, we investigated whether products labeled with the same species name contained different strains of those species. From 21 commercially available probiotic supplements and beverages, we cultured five main species: Bacillus coagulans, Bacillus subtilis, Lactobacillus plantarum, Lactobacillus rhamnosus, and the yeast Saccharomyces boulardii. To confirm the identity of each bacterial isolate, we applied standard molecular approaches: 16S rRNA gene sequencing and Matrix Assisted Laser Desorption Ionization Time-of-Flight mass spectrometry (MALDI-TOF MS). Phenotypic profiling and identification were performed with the Biolog Microbial Identification system. All of the bacterial isolates were correctly identified by at least one approach. Sequencing the 16S rRNA gene led to 82% of species identifications matching the product label, with 71% of isolates identified by MALDI-TOF MS and 60% identified correctly with the Biolog system. Analysis of the Biolog phenotypic profiles revealed different patterns of carbon source usage by each species, with sugars preferentially utilized by all except B. subtilis. To assess the strain-level differences, we compared strains of the same species and found variability in carbohydrate utilization and tolerance to environmental stressors (salt, acidity, antibiotics). By demonstrating that products listing the same species often contain strains with different 16S sequences and phenotypes, this study highlights that current labels of probiotic supplements do not sufficiently convey the strain diversity in these products.
Collapse
|
9
|
Bley Folly B, Ortega AD, Hubmann G, Bonsing-Vedelaar S, Wijma HJ, van der Meulen P, Milias-Argeitis A, Heinemann M. Assessment of the interaction between the flux-signaling metabolite fructose-1,6-bisphosphate and the bacterial transcription factors CggR and Cra. Mol Microbiol 2018; 109:278-290. [DOI: 10.1111/mmi.14008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Brenda Bley Folly
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Alvaro D. Ortega
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Cell Biology, Faculty of Biology; Complutense University of Madrid; José Antonio Nováis 12 28040 Madrid Spain
| | - Georg Hubmann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Silke Bonsing-Vedelaar
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Hein J. Wijma
- Biotechnology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Pieter van der Meulen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
10
|
Buffing MF, Link H, Christodoulou D, Sauer U. Capacity for instantaneous catabolism of preferred and non-preferred carbon sources in Escherichia coli and Bacillus subtilis. Sci Rep 2018; 8:11760. [PMID: 30082753 PMCID: PMC6079084 DOI: 10.1038/s41598-018-30266-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/26/2018] [Indexed: 02/08/2023] Open
Abstract
Making the right choice for nutrient consumption in an ever-changing environment is a key factor for evolutionary success of bacteria. Here we investigate the regulatory mechanisms that enable dynamic adaptation between non-preferred and preferred carbon sources for the model Gram-negative and -positive species Escherichia coli and Bacillus subtilis, respectively. We focus on the ability for instantaneous catabolism of a gluconeogenic carbon source upon growth on a glycolytic carbon source and vice versa. By following isotopic tracer dynamics on a 1–2 minute scale, we show that flux reversal from the preferred glucose to non-preferred pyruvate as the sole carbon source is primarily transcriptionally regulated. In the opposite direction, however, E. coli can reverse its flux instantaneously by means of allosteric regulation, whereas in B. subtilis this flux reversal is transcriptionally regulated. Upon removal of transcriptional regulation, B. subtilis assumes the ability of instantaneous glucose catabolism. Using an approach that combines quantitative metabolomics and kinetic modelling, we then identify the additionally necessary key metabolite-enzyme interactions that implement the instantaneous flux reversal in the transcriptionally deregulated B. subtilis, and validate the most relevant allosteric interactions.
Collapse
Affiliation(s)
- Marieke F Buffing
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dimitris Christodoulou
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Liu Y, Li J, Du G, Chen J, Liu L. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions. Biotechnol Adv 2017; 35:20-30. [DOI: 10.1016/j.biotechadv.2016.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022]
|
12
|
Zwicker P, Schultze N, Niehs S, Methling K, Wurster M, Albrecht D, Bernhardt J, Wachlin G, Lalk M, Lindequist U, Haertel B. A proteomic approach for the identification of immunotoxic properties of Tulipalin A. Proteomics 2016; 16:2997-3008. [DOI: 10.1002/pmic.201600130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Paula Zwicker
- Institute of Pharmacy, Pharmaceutical Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Nadin Schultze
- Institute of Pharmacy, Pharmaceutical Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Sarah Niehs
- Institute of Biochemistry, Biochemistry of Metabolism/Metabolomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Karen Methling
- Institute of Biochemistry, Biochemistry of Metabolism/Metabolomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Martina Wurster
- Institute of Biochemistry, Biochemistry of Metabolism/Metabolomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Dirk Albrecht
- Institute of Microbiology, Microbial Physiology and Molecular Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Jörg Bernhardt
- Institute of Microbiology, Microbial Physiology and Molecular Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Gerhild Wachlin
- Institute of Microbiology, Microbial Physiology and Molecular Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Michael Lalk
- Institute of Biochemistry, Biochemistry of Metabolism/Metabolomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Ulrike Lindequist
- Institute of Pharmacy, Pharmaceutical Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Beate Haertel
- Institute of Pharmacy, Pharmaceutical Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| |
Collapse
|
13
|
Gallegos-Monterrosa R, Mhatre E, Kovács ÁT. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium. MICROBIOLOGY-SGM 2016; 162:1922-1932. [PMID: 27655338 DOI: 10.1099/mic.0.000371] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacillus subtilis is an intensively studied Gram-positive bacterium that has become one of the models for biofilm development. B. subtilis 168 is a well-known domesticated strain that has been suggested to be deficient in robust biofilm formation. Moreover, the diversity of available B. subtilis laboratory strains and their derivatives have made it difficult to compare independent studies related to biofilm formation. Here, we analysed numerous 168 stocks from multiple laboratories for their ability to develop biofilms in different set-ups and media. We report a wide variation among the biofilm-forming capabilities of diverse stocks of B. subtilis 168, both in architecturally complex colonies and liquid-air interface pellicles, as well as during plant root colonization. Some 168 variants are indeed unable to develop robust biofilm structures, while others do so as efficiently as the non-domesticated NCIB 3610 strain. In all cases studied, the addition of glucose to the medium dramatically improved biofilm development of the laboratory strains. Furthermore, the expression of biofilm matrix component operons, epsA-O and tapA-sipW-tasA, was monitored during colony biofilm formation. We found a lack of direct correlation between the expression of these genes and the complexity of wrinkles in colony biofilms. However, the presence of a single mutation in the exopolysaccharide-related gene epsC correlates with the ability of the stocks tested to form architecturally complex colonies and pellicles, and to colonize plant roots.
Collapse
Affiliation(s)
- Ramses Gallegos-Monterrosa
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Eisha Mhatre
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
14
|
Resilience in the Face of Uncertainty: Sigma Factor B Fine-Tunes Gene Expression To Support Homeostasis in Gram-Positive Bacteria. Appl Environ Microbiol 2016; 82:4456-4469. [PMID: 27208112 DOI: 10.1128/aem.00714-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gram-positive bacteria are ubiquitous and diverse microorganisms that can survive and sometimes even thrive in continuously changing environments. The key to such resilience is the ability of members of a population to respond and adjust to dynamic conditions in the environment. In bacteria, such responses and adjustments are mediated, at least in part, through appropriate changes in the bacterial transcriptome in response to the conditions encountered. Resilience is important for bacterial survival in diverse, complex, and rapidly changing environments and requires coordinated networks that integrate individual, mechanistic responses to environmental cues to enable overall metabolic homeostasis. In many Gram-positive bacteria, a key transcriptional regulator of the response to changing environmental conditions is the alternative sigma factor σ(B) σ(B) has been characterized in a subset of Gram-positive bacteria, including the genera Bacillus, Listeria, and Staphylococcus Recent insight from next-generation-sequencing results indicates that σ(B)-dependent regulation of gene expression contributes to resilience, i.e., the coordination of complex networks responsive to environmental changes. This review explores contributions of σ(B) to resilience in Bacillus, Listeria, and Staphylococcus and illustrates recently described regulatory functions of σ(B).
Collapse
|
15
|
Haloalkaliphilic Bacillus species from solar salterns: an ideal prokaryote for bioprospecting studies. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1221-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
16
|
Mitsunaga H, Meissner L, Palmen T, Bamba T, Büchs J, Fukusaki E. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945. J Biosci Bioeng 2015; 121:413-9. [PMID: 26419706 DOI: 10.1016/j.jbiosc.2015.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/30/2015] [Accepted: 08/21/2015] [Indexed: 12/24/2022]
Abstract
Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis.
Collapse
Affiliation(s)
- Hitoshi Mitsunaga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Osaka, Japan.
| | - Lena Meissner
- AVT - Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringer Weg 1, 52074 Aachen, Germany.
| | - Thomas Palmen
- AVT - Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringer Weg 1, 52074 Aachen, Germany.
| | - Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Osaka, Japan; Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8285 Fukuoka, Japan.
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringer Weg 1, 52074 Aachen, Germany.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Osaka, Japan.
| |
Collapse
|