1
|
Xu S, Kang A, Tian Y, Li X, Qin S, Yang R, Guo Y. Plant Flavonoids with Antimicrobial Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). ACS Infect Dis 2024; 10:3086-3097. [PMID: 38833551 DOI: 10.1021/acsinfecdis.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become a serious threat to human public health and global economic development, and there is an urgent need to develop new antimicrobial agents. Flavonoids are the largest group of plant secondary metabolites, and the anti-S. aureus and anti-MRSA activities of flavonoids have now been widely reported. The aim of this Review is to describe plant-derived flavonoid active ingredients and their effects and mechanisms of inhibitory activity against MRSA in order to provide insights for screening novel antimicrobial agents. Here, 85 plant-derived flavonoids (14 flavones, 21 flavonols, 26 flavanones, 9 isoflavones, 12 chalcones, and 3 other classes) with anti-MRSA activity are reviewed. Among these flavonoids, flavones and isoflavones generally showed the most significant anti-MRSA activity (MICs: 1-8 μg/mL). The results of the present Review display that most of the flavonoids with excellent anti-MRSA activity were derived from Morus alba L. and Paulownia tomentosa (Thunb.) Steud. The antibacterial mechanism of flavonoids against MRSA is mainly achieved by disruption of membrane structures, inhibition of efflux pumps, and inhibition of β-lactamases and bacterial virulence factors. We hope this Review can provide insights into the development of novel antimicrobials based on natural products for treating MRSA infections.
Collapse
Affiliation(s)
- Shengnan Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Ayue Kang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yue Tian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinhui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
2
|
Mazzantini D, Massimino M, Calvigioni M, Rossi V, Celandroni F, Lupetti A, Batoni G, Ghelardi E. Anti-staphylococcal activity of a polyphenol-rich citrus extract: synergy with β-lactams and low proficiency to induce resistance. Front Microbiol 2024; 15:1415400. [PMID: 39021634 PMCID: PMC11252074 DOI: 10.3389/fmicb.2024.1415400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Antibiotic resistance represents one of the most significant threats to public health in the 21st century. Polyphenols, natural molecules with antibacterial activity produced by plants, are being considered as alternative antimicrobial strategies to manage infections caused by drug-resistant bacteria. In this study, we investigated the antibacterial activity of a polyphenol mixture extracted from citrus fruits, against both antibiotic-susceptible and resistant strains of Staphylococcus aureus and Staphylococcus epidermidis. Methods Broth microdilution and time-kill curve experiments were used to test the extract anti-staphylococcal activity. Cytotoxicity was assessed by the hemolysis assay. The interaction between the mixture and antibiotics was investigated by the checkerboard assay. The effect of B alone and in combination with oxacillin on the membrane potential was investigated by the 3,3'-dipropylthiadicarbocyanine iodide assay. The ability of the extract to induce the development of resistance was verified by propagating S. aureus for 10 transfers in the presence of sub-inhibitory concentrations. Results The citrus extract was found to be active against all Staphylococcus strains at remarkably low concentrations (0.0031 and 0.0063%), displaying rapid bactericidal effects without being toxic on erythrocytes. In particular, B was found to rapidly cause membrane depolarization. When combined with methicillin, meropenem, and oxacillin, the mixture displayed synergistic activity exclusively against methicillin-resistant strains. We additionally show that the sequential exposure of S. aureus to sub-inhibitory concentrations did not induce the development of resistance against the extract. Discussion Overall, these findings support the potential use of the citrus extract as promising option to manage staphylococcal infections and suggest that it may counteract the mechanism behind methicillin-resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Ambade SS, Gupta VK, Bhole RP, Khedekar PB, Chikhale RV. A Review on Five and Six-Membered Heterocyclic Compounds Targeting the Penicillin-Binding Protein 2 (PBP2A) of Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules 2023; 28:7008. [PMID: 37894491 PMCID: PMC10609489 DOI: 10.3390/molecules28207008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Staphylococcus aureus is a common human pathogen. Methicillin-resistant Staphylococcus aureus (MRSA) infections pose significant and challenging therapeutic difficulties. MRSA often acquires the non-native gene PBP2a, which results in reduced susceptibility to β-lactam antibiotics, thus conferring resistance. PBP2a has a lower affinity for methicillin, allowing bacteria to maintain peptidoglycan biosynthesis, a core component of the bacterial cell wall. Consequently, even in the presence of methicillin or other antibiotics, bacteria can develop resistance. Due to genes responsible for resistance, S. aureus becomes MRSA. The fundamental premise of this resistance mechanism is well-understood. Given the therapeutic concerns posed by resistant microorganisms, there is a legitimate demand for novel antibiotics. This review primarily focuses on PBP2a scaffolds and the various screening approaches used to identify PBP2a inhibitors. The following classes of compounds and their biological activities are discussed: Penicillin, Cephalosporins, Pyrazole-Benzimidazole-based derivatives, Oxadiazole-containing derivatives, non-β-lactam allosteric inhibitors, 4-(3H)-Quinazolinones, Pyrrolylated chalcone, Bis-2-Oxoazetidinyl macrocycles (β-lactam antibiotics with 1,3-Bridges), Macrocycle-embedded β-lactams as novel inhibitors, Pyridine-Coupled Pyrimidinones, novel Naphthalimide corbelled aminothiazoximes, non-covalent inhibitors, Investigational-β-lactam antibiotics, Carbapenem, novel Benzoxazole derivatives, Pyrazolylpyridine analogues, and other miscellaneous classes of scaffolds for PBP2a. Additionally, we discuss the penicillin-binding protein, a crucial target in the MRSA cell wall. Various aspects of PBP2a, bacterial cell walls, peptidoglycans, different crystal structures of PBP2a, synthetic routes for PBP2a inhibitors, and future perspectives on MRSA inhibitors are also explored.
Collapse
Affiliation(s)
- Shraddha S. Ambade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MH, India (P.B.K.)
| | - Vivek Kumar Gupta
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra 282004, UP, India
| | - Ritesh P. Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, MH, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, MH, India
| | - Pramod B. Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MH, India (P.B.K.)
| | | |
Collapse
|
4
|
Handayani D, Aminah I, Pontana Putra P, Eka Putra A, Arbain D, Satriawan H, Efdi M, Celik I, Ekawati Tallei T. The depsidones from marine sponge-derived fungus Aspergillus unguis IB151 as an anti-MRSA agent: Molecular docking, pharmacokinetics analysis, and molecular dynamic simulation studies. Saudi Pharm J 2023; 31:101744. [PMID: 37649676 PMCID: PMC10462890 DOI: 10.1016/j.jsps.2023.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an emerging nosocomial pathogen among hospitalized patients, with high morbidity and mortality rates. The discovery of a novel antibacterial is urgently needed to address this resistance problem. The present study aims to explore the antibacterial potential of three depsidone compounds: 2-clorounguinol (1), unguinol (2), and nidulin (3), isolated from the marine sponge-derived fungus Aspergillus unguis IB1, both in vitro and in silico. The antibacterial activity of all compounds was evaluated by calculating the Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) against MRSA using agar diffusion and total plate count methods, respectively. Bacterial cell morphology changes were studied for the first time using scanning electron microscopy (SEM). Molecular docking, pharmacokinetics analysis, and molecular dynamics simulation were performed to determine possible protein-ligand interactions and the stability of the targeting penicillin-binding protein 2a (PBP2a) against 2-clorounguinol (1). The research findings indicated that compounds 1 to 3 exhibited MIC and MBC values of 2 µg/mL and 16 µg/mL against MRSA, respectively. MRSA cells displayed a distinct shape after the addition of the depsidone compound, as observed in SEM. According to the in silico study, 2-chlorounguinol exhibited the highest binding-free energy (BFE) with PBP2a (-6.7 kcal/mol). For comparison, (E)-3-(2-(4-cyanostyryl)-4-oxoquinazolin-3(4H)-yl) benzoic acid inhibits PBP2a with a BFE less than -6.6 kcal/mol. Based on the Lipinski's rule of 5, depsidone compounds constitute a class of compounds with good pharmacokinetic properties, being easily absorbed and permeable. These findings suggest that 2-chlorounguinol possesses potential antibacterial activity and could be developed as an antibiotic adjuvant to reduce antimicrobial resistance.
Collapse
Affiliation(s)
- Dian Handayani
- Faculty of Pharmacy/Sumatran Biota Laboratory, Andalas University, Padang 25163, Indonesia
| | - Ibtisamatul Aminah
- Faculty of Pharmacy/Sumatran Biota Laboratory, Andalas University, Padang 25163, Indonesia
- Department of Biomedical Science, Faculty of Medicine, Andalas University, Padang 25163, Indonesia
| | - Purnawan Pontana Putra
- Faculty of Pharmacy/Sumatran Biota Laboratory, Andalas University, Padang 25163, Indonesia
| | - Andani Eka Putra
- Department of Biomedical Science, Faculty of Medicine, Andalas University, Padang 25163, Indonesia
| | - Dayar Arbain
- Faculty of Pharmacy, 17 Agustus 1945 University, Sunter Permai Raya St, Jakarta 14350, Indonesia
| | - Herland Satriawan
- Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mai Efdi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang 25163, Indonesia
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| |
Collapse
|
5
|
Viktorová J, Kumar R, Řehořová K, Hoang L, Ruml T, Figueroa CR, Valdenegro M, Fuentes L. Antimicrobial Activity of Extracts of Two Native Fruits of Chile: Arrayan ( Luma apiculata) and Peumo ( Cryptocarya alba). Antibiotics (Basel) 2020; 9:antibiotics9080444. [PMID: 32722434 PMCID: PMC7459669 DOI: 10.3390/antibiotics9080444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 11/28/2022] Open
Abstract
Arrayan and peumo fruits are commonly used in the traditional medicine of Chile. In this study, the concentration of the extracts halving the bacterial viability and biofilms formation and disruption of the drug-sensitive and drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa was determined. The chemical composition of extracts was analyzed by high-resolution liquid chromatography coupled with mass spectrometry (U-HPLC/MS). The arrayan extract (Inhibitory concentration IC50 0.35 ± 0.01 mg/mL) was more effective than peumo extract (IC50 0.53 ± 0.02 mg/mL) in the inhibition of S. aureus planktonic cells. Similarly, the arrayan extract was more effective in inhibiting the adhesion (S. aureus IC50 0.23 ± 0.02 mg/mL, P. aeruginosa IC50 0.29 ± 0.02 mg/mL) than peumo extracts (S. aureus IC50 0.47 ± 0.03 mg/mL, P. aeruginosa IC50 0.35 ± 0.01 mg/mL). Both extracts inhibited quorum sensing in a concentration-dependent manner, and the most significant was the autoinducer-2 type communication inhibition by arrayan extract. Both extracts also disrupted preformed biofilm of P. aeruginosa (arrayan IC50 0.56 ± 0.04 mg/mL, peumo IC50 0.59 ± 0.04 mg/mL). However, neither arrayan nor peumo extracts disrupted S. aureus mature biofilm. U-HPLC/MS showed that both fruit extracts mainly possessed quercetin compounds; the peumo fruit extract also contained phenolic acids and phenylpropanoids. Our results suggested that both extracts could be used as natural antimicrobials for some skin and nosocomial infections.
Collapse
Affiliation(s)
- Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.V.); (R.K.); (K.Ř.); (L.H.); (T.R.)
| | - Rohitesh Kumar
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.V.); (R.K.); (K.Ř.); (L.H.); (T.R.)
| | - Kateřina Řehořová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.V.); (R.K.); (K.Ř.); (L.H.); (T.R.)
| | - Lan Hoang
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.V.); (R.K.); (K.Ř.); (L.H.); (T.R.)
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.V.); (R.K.); (K.Ř.); (L.H.); (T.R.)
| | - Carlos R. Figueroa
- Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca 3465548, Chile;
| | - Monika Valdenegro
- Agronomy School, Faculty of Agronomic and Food Sciences, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile;
| | - Lida Fuentes
- Regional Center for Studies in Healthy Food (CREAS), CONICYT-Regional GORE Valparaíso Project R17A10001, Avenida Universidad, Valparaíso 2340000, Chile
- Correspondence:
| |
Collapse
|
6
|
Alshwyeh HA. Phenolic profiling and antibacterial potential of Saudi Arabian native date palm (Phoenix dactylifera) cultivars. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1751196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
7
|
Rani N, Vijayakumar S, P T V L, Arunachalam A. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination. J Biomol Struct Dyn 2016; 34:1778-96. [PMID: 26360629 DOI: 10.1080/07391102.2015.1092096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth.
Collapse
Affiliation(s)
- Nidhi Rani
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , R. V. Nagar Kalapet, Pondicherry 605014 , India
| | - Saravanan Vijayakumar
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , R. V. Nagar Kalapet, Pondicherry 605014 , India.,b Centre for Advanced Study in Crystallography and Biophysics , University of Madras , Tamilnadu , India
| | - Lakshmi P T V
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , R. V. Nagar Kalapet, Pondicherry 605014 , India
| | - Annamalai Arunachalam
- c Department of Botany , Sethupathy Government Arts and Science College, Alagappa University , Ramanathpuram , Tamil Nadu , India
| |
Collapse
|