Ayub M, Bayley H. Engineered transmembrane pores.
Curr Opin Chem Biol 2016;
34:117-126. [PMID:
27658267 DOI:
10.1016/j.cbpa.2016.08.005]
[Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022]
Abstract
Today, hundreds of researchers are working on nanopores, making an impact in both basic science and biotechnology. Proteins remain the most versatile sources of nanopores, based on our ability to engineer them with sub-nanometer precision. Recent work aimed at the construction and discovery of novel pores has included unnatural amino acid mutagenesis and the application of selection techniques. The diversity of structures has now been increased through the development of helix-based pores as well as the better-known β barrels. New developments also include truncated pores, which pierce bilayers through lipid rearrangement, and hybrid pores, which do away with bilayers altogether. Pore dimers, which span two lipid bilayers, have been constructed and pores based on DNA nanostructures are gaining in importance. While nanopore DNA sequencing has received enthusiastic attention, protein pores have a wider range of potential applications, requiring specifications that will require engineering efforts to continue for years to come.
Collapse