1
|
Hocher A, Borrel G, Fadhlaoui K, Brugère JF, Gribaldo S, Warnecke T. Growth temperature and chromatinization in archaea. Nat Microbiol 2022; 7:1932-1942. [PMID: 36266339 PMCID: PMC7613761 DOI: 10.1038/s41564-022-01245-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/07/2022] [Indexed: 11/08/2022]
Abstract
DNA in cells is associated with proteins that constrain its structure and affect DNA-templated processes including transcription and replication. HU and histones are the main constituents of chromatin in bacteria and eukaryotes, respectively, with few exceptions. Archaea, in contrast, have diverse repertoires of nucleoid-associated proteins (NAPs). To analyse the evolutionary and ecological drivers of this diversity, we combined a phylogenomic survey of known and predicted NAPs with quantitative proteomic data. We identify the Diaforarchaea as a hotbed of NAP gain and loss, and experimentally validate candidate NAPs in two members of this clade, Thermoplasma volcanium and Methanomassiliicoccus luminyensis. Proteomic analysis across a diverse sample of 19 archaea revealed that NAP investment varies from <0.03% to >5% of total protein. This variation is predicted by growth temperature. We propose that high levels of chromatinization have evolved as a mechanism to prevent uncontrolled helix denaturation at higher temperatures, with implications for the origin of chromatin in both archaea and eukaryotes.
Collapse
Affiliation(s)
- Antoine Hocher
- Medical Research Council London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Evolutionary Biology of the Microbial Cell, Paris, France
| | - Khaled Fadhlaoui
- Université Clermont Auvergne, CNRS, Lab Microorganismes: Génome et Environnement LMGE, Clermont-Ferrand, France
| | - Jean-François Brugère
- Université Clermont Auvergne, CNRS, Lab Microorganismes: Génome et Environnement LMGE, Clermont-Ferrand, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Evolutionary Biology of the Microbial Cell, Paris, France
| | - Tobias Warnecke
- Medical Research Council London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
2
|
Zhang M, Chen Y, Jin X, Cai Y, Yuan Y, Fu C, Yu L. New different origins and evolutionary processes of AP2/EREBP transcription factors in Taxus chinensis. BMC PLANT BIOLOGY 2019; 19:413. [PMID: 31590655 PMCID: PMC6781369 DOI: 10.1186/s12870-019-2044-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/20/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Taxus spp. produces the anticancer drug, taxol, and hence is planted as an industrial crop in China. APETALA2/ethylene response element binding proteins (AP2/EREBPs) are the key regulators of plant development, growth, and stress responses. Several homologues control taxol biosynthesis. Identifying the AP2/EREBP proteins from Taxus is important to increase breeding and production and clarify their evolutionary processes. RESULTS Among the 90 genes from multi Taxus chinensis transcriptome datasets, 81 encoded full-length AP2-containing proteins. A domain structure highly similar to that of angiosperm AP2/EREBPs was found in 2 AP2, 2 ANT, 1 RAV, 28 dehydration-responsive element-binding proteins, and 47 ethylene-responsive factors contained, indicating that they have extremely conservative evolution processes. A new subgroup protein, TcA3Bz1, contains three conserved AP2 domains and, a new domain structure of AP2/EREBPs that is different from that of known proteins. The new subtype AP2 proteins were also present in several gymnosperms (Gingko biloba) and bryophytes (Marchantia polymorpha). However, no homologue was found in Selaginella moellendorffii, indicating unknown evolutionary processes accompanying this plant's evolution. Moreover, the structures of the new subgroup AP2/EREBPs have different conserved domains, such as B3, zf-C3Hc3H, and agent domains, indicating their divergent evolution in bryophytes and gymnosperms. Interestingly, three repeats of AP2 domains have separately evolved from mosses to gymnosperms for most of the new proteins, but the AP2 domain of Gb_11937 has been replicated. CONCLUSION The new subtype AP2/EREBPs have different origins and would enrich our knowledge of the molecular structure, origin, and evolutionary processes of AP2/EREBP transcription factors in plants.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
| | - Ying Chen
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
| | - Xiaofei Jin
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
| | - Yuxin Cai
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
| | - Yuanyuan Yuan
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
| | - Chunhua Fu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
| | - Longjiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074 People’s Republic of China
| |
Collapse
|
3
|
du Preez LL, Patterton HG. The effect of epigenetic modifications on the secondary structures and possible binding positions of the N-terminal tail of histone H3 in the nucleosome: a computational study. J Mol Model 2017; 23:137. [PMID: 28353152 PMCID: PMC5391383 DOI: 10.1007/s00894-017-3308-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/06/2017] [Indexed: 11/05/2022]
Abstract
The roles of histone tails as substrates for reversible chemical modifications and dynamic cognate surfaces for the binding of regulatory proteins are well established. Despite these crucial roles, experimentally derived knowledge of the structure and possible binding sites of histone tails in chromatin is limited. In this study, we utilized molecular dynamics of isolated histone H3 N-terminal peptides to investigate its structure as a function of post-translational modifications that are known to be associated with defined chromatin states. We observed a structural preference for α-helices in isoforms associated with an inactive chromatin state, while isoforms associated with active chromatin states lacked α-helical content. The physicochemical effect of the post-translational modifications was highlighted by the interaction of arginine side-chains with the phosphorylated serine residues in the inactive isoform. We also showed that the isoforms exhibit different tail lengths, and, using molecular docking of the first 15 N-terminal residues of an H3 isoform, identified potential binding sites between the superhelical gyres on the octamer surface, close to the site of DNA entry/exit in the nucleosome. We discuss the possible functional role of the binding of the H3 tail within the nucleosome on both nucleosome and chromatin structure and stability.
Collapse
Affiliation(s)
- Louis L du Preez
- Department of Microbiological, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| | - Hugh-G Patterton
- Division of Bioinformatics and Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|