1
|
Ravikumar A, de Brevern AG, Srinivasan N. Conformational Strain Indicated by Ramachandran Angles for the Protein Backbone Is Only Weakly Related to the Flexibility. J Phys Chem B 2021; 125:2597-2606. [PMID: 33666418 DOI: 10.1021/acs.jpcb.1c00168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies on energy associated with free dipeptides have shown that conformers with unfavorable (ϕ,ψ) torsion angles have higher energy compared to conformers with favorable (ϕ,ψ) angles. It is expected that higher energy confers higher dynamics and flexibility to that part of the protein. Here, we explore a potential relationship between conformational strain in a residue due to unfavorable (ϕ,ψ) angles and its flexibility and dynamics in the context of protein structures. We compared flexibility of strained and relaxed residues, which are recognized based on outlier/allowed and favorable (ϕ,ψ) angles respectively, using normal-mode analysis (NMA). We also performed in-depth analysis on flexibility and dynamics at catalytic residues in protein kinases, which exhibit different strain status in different kinase structures using NMA and molecular dynamics simulations. We underline that strain of a residue, as defined by backbone torsion angles, is almost unrelated to the flexibility and dynamics associated with it. Even the overall trend observed among all high-resolution structures in which relaxed residues tend to have slightly higher flexibility than strained residues is counterintuitive. Consequently, we propose that identifying strained residues based on (ϕ,ψ) values is not an effective way to recognize energetic strain in protein structures.
Collapse
Affiliation(s)
- Ashraya Ravikumar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India, 560012
| | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, Paris F-75739, France.,University of Paris, Paris F-75739, France.,Institut National de la Transfusion Sanguine (INTS), Paris F-75739, France.,Laboratoire d'Excellence GR-Ex, Paris F-75739, France
| | | |
Collapse
|
2
|
Yazhini A, Srinivasan N. How good are comparative models in the understanding of protein dynamics? Proteins 2020; 88:874-888. [PMID: 31999374 DOI: 10.1002/prot.25879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/04/2020] [Accepted: 01/25/2020] [Indexed: 12/27/2022]
Abstract
The 3D structure of a protein is essential to understand protein dynamics. If experimentally determined structure is unavailable, comparative models could be used to infer dynamics. However, the effectiveness of comparative models, compared to experimental structures, in inferring dynamics is not clear. To address this, we compared dynamics features of ~800 comparative models with their crystal structures using normal mode analysis. Average similarity in magnitude, direction, and correlation of residue motions is >0.8 (where value 1 is identical) indicating that the dynamics of models and crystal structures are highly similar. Accuracy of 3D structure and dynamics is significantly higher for models built on multiple and/or high sequence identity templates (>40%). Three-dimensional (3D) structure and residue fluctuations of models are closer to that of crystal structures than to templates (TM score 0.9 vs 0.7 and square inner product 0.92 vs 0.88). Furthermore, long-range molecular dynamics simulations on comparative models of RNase 1 and Angiogenin showed significant differences in the conformational sampling of conserved active-site residues that characterize differences in their activity levels. Similar analyses on two EGFR kinase variant models highlight the effect of mutations on the functional state-specific αC helix motions and these results corroborate with the previous experimental observations. Thus, our study adds confidence to the use of comparative models in understanding protein dynamics.
Collapse
Affiliation(s)
- Arangasamy Yazhini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
3
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
4
|
Kalaivani R, Narwani TJ, de Brevern AG, Srinivasan N. Long-range molecular dynamics show that inactive forms of Protein Kinase A are more dynamic than active forms. Protein Sci 2018; 28:543-560. [PMID: 30468265 DOI: 10.1002/pro.3556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/11/2018] [Accepted: 11/18/2018] [Indexed: 12/24/2022]
Abstract
Many protein kinases are characterized by at least two structural forms corresponding to the highest level of activity (active) and low or no activity, (inactive). Further, protein dynamics is an important consideration in understanding the molecular and mechanistic basis of enzyme function. In this work, we use protein kinase A (PKA) as the model system and perform microsecond range molecular dynamics (MD) simulations on six variants which differ from one another in terms of active and inactive form, with or without bound ligands, C-terminal tail and phosphorylation at the activation loop. We find that the root mean square fluctuations in the MD simulations are generally higher for the inactive forms than the active forms. This difference is statistically significant. The higher dynamics of inactive states has significant contributions from ATP binding loop, catalytic loop, and αG helix. Simulations with and without C-terminal tail show this differential dynamics as well, with lower dynamics both in the active and inactive forms if C-terminal tail is present. Similarly, the dynamics associated with the inactive form is higher irrespective of the phosphorylation status of Thr 197. A relatively stable stature of active kinases may be better suited for binding of substrates and detachment of the product. Also, phosphoryl group transfer from ATP to the phosphosite on the substrate requires precise transient coordination of chemical entities from three different molecules, which may be facilitated by the higher stability of the active state.
Collapse
Affiliation(s)
- R Kalaivani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - T J Narwani
- INSERM, U 1134, DSIMB, F-75739, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739, Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739, Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739, Paris, France
| | - A G de Brevern
- INSERM, U 1134, DSIMB, F-75739, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739, Paris, France.,Institut National de la Transfusion Sanguine (INTS), F-75739, Paris, France.,Laboratoire d'Excellence GR-Ex, F-75739, Paris, France
| | - N Srinivasan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
5
|
Dong Z, Zhou H, Tao P. Combining protein sequence, structure, and dynamics: A novel approach for functional evolution analysis of PAS domain superfamily. Protein Sci 2017; 27:421-430. [PMID: 29052279 DOI: 10.1002/pro.3329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/10/2017] [Accepted: 10/15/2017] [Indexed: 11/11/2022]
Abstract
PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence-structure-dynamics-function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence-conserved residues and build phylogenetic tree. Three-dimensional structure alignment was also applied to obtain structure-conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas, 75275
| | - Hongyu Zhou
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas, 75275
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas, 75275
| |
Collapse
|
6
|
Kalaivani R, de Brevern AG, Srinivasan N. Conservation of structural fluctuations in homologous protein kinases and its implications on functional sites. Proteins 2016; 84:957-78. [PMID: 27028938 DOI: 10.1002/prot.25044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/02/2016] [Accepted: 03/17/2016] [Indexed: 11/11/2022]
Abstract
Our aim is to explore the similarities in structural fluctuations of homologous kinases. Gaussian Network Model based Normal Mode Analysis was performed on 73 active conformation structures in Ser/Thr/Tyr kinase superfamily. Categories of kinases with progressive evolutionary divergence, viz. (i) Same kinase with many crystal structures, (ii) Within-Subfamily, (iii) Within-Family, (iv) Within-Group, and (v) Across-Group, were analyzed. We identified a flexibility signature conserved in all kinases involving residues in and around the catalytic loop with consistent low-magnitude fluctuations. However, the overall structural fluctuation profiles are conserved better in closely related kinases (Within-Subfamily and Within-family) than in distant ones (Within-Group and Across-Group). A substantial 65.4% of variation in flexibility was not accounted by variation in sequences or structures. Interestingly, we identified substructural residue-wise fluctuation patterns characteristic of kinases of different categories. Specifically, we recognized statistically significant fluctuations unique to families of protein kinase A, cyclin-dependent kinases, and nonreceptor tyrosine kinases. These fluctuation signatures localized to sites known to participate in protein-protein interactions typical of these kinase families. We report for the first time that residues characterized by fluctuations unique to the group/family are involved in interactions specific to the group/family. As highlighted for Src family, local regions with differential fluctuations are proposed as attractive targets for drug design. Overall, our study underscores the importance of consideration of fluctuations, over and above sequence and structural features, in understanding the roles of sites characteristic of kinases. Proteins 2016; 84:957-978. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Raju Kalaivani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, Paris, F-75739, France.,Sorbonne Paris Cité, University of Paris Diderot, Paris, F-75739, France.,Institut National de la Transfusion Sanguine (INTS), Paris, F-75739, France.,Laboratoire d'Excellence GR-Ex, Paris, F-75739, France
| | | |
Collapse
|
7
|
From residue coevolution to protein conformational ensembles and functional dynamics. Proc Natl Acad Sci U S A 2015; 112:13567-72. [PMID: 26487681 DOI: 10.1073/pnas.1508584112] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The analysis of evolutionary amino acid correlations has recently attracted a surge of renewed interest, also due to their successful use in de novo protein native structure prediction. However, many aspects of protein function, such as substrate binding and product release in enzymatic activity, can be fully understood only in terms of an equilibrium ensemble of alternative structures, rather than a single static structure. In this paper we combine coevolutionary data and molecular dynamics simulations to study protein conformational heterogeneity. To that end, we adapt the Boltzmann-learning algorithm to the analysis of homologous protein sequences and develop a coarse-grained protein model specifically tailored to convert the resulting contact predictions to a protein structural ensemble. By means of exhaustive sampling simulations, we analyze the set of conformations that are consistent with the observed residue correlations for a set of representative protein domains, showing that (i) the most representative structure is consistent with the experimental fold and (ii) the various regions of the sequence display different stability, related to multiple biologically relevant conformations and to the cooperativity of the coevolving pairs. Moreover, we show that the proposed protocol is able to reproduce the essential features of a protein folding mechanism as well as to account for regions involved in conformational transitions through the correct sampling of the involved conformers.
Collapse
|