1
|
Tzeliou CE, Mermigki MA, Tzeli D. Review on the QM/MM Methodologies and Their Application to Metalloproteins. Molecules 2022; 27:molecules27092660. [PMID: 35566011 PMCID: PMC9105939 DOI: 10.3390/molecules27092660] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
The multiscaling quantum mechanics/molecular mechanics (QM/MM) approach was introduced in 1976, while the extensive acceptance of this methodology started in the 1990s. The combination of QM/MM approach with molecular dynamics (MD) simulation, otherwise known as the QM/MM/MD approach, is a powerful and promising tool for the investigation of chemical reactions’ mechanism of complex molecular systems, drug delivery, properties of molecular devices, organic electronics, etc. In the present review, the main methodologies in the multiscaling approaches, i.e., density functional theory (DFT), semiempirical methodologies (SE), MD simulations, MM, and their new advances are discussed in short. Then, a review on calculations and reactions on metalloproteins is presented, where particular attention is given to nitrogenase that catalyzes the conversion of atmospheric nitrogen molecules N₂ into NH₃ through the process known as nitrogen fixation and the FeMo-cofactor.
Collapse
Affiliation(s)
- Christina Eleftheria Tzeliou
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece; (C.E.T.); (M.A.M.)
| | - Markella Aliki Mermigki
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece; (C.E.T.); (M.A.M.)
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece; (C.E.T.); (M.A.M.)
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
- Correspondence: ; Tel.: +30-210-727-4307
| |
Collapse
|
2
|
Prejanò M, Vidossich P, Russo N, De Vivo M, Marino T. Insights into the Catalytic Mechanism of Domains CD1 and CD2 in Histone Deacetylase 6 from Quantum Calculations. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Ponte Pietro Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Ponte Pietro Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Ponte Pietro Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
3
|
Toviwek B, Gleeson D, Gleeson MP. QM/MM and molecular dynamics investigation of the mechanism of covalent inhibition of TAK1 kinase. Org Biomol Chem 2021; 19:1412-1425. [PMID: 33501482 DOI: 10.1039/d0ob02273j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TAK1 is a serine/threonine kinase which is involved in the moderation of cell survival and death via the TNFα signalling pathway. It is also implicated in a range of cancer and anti-inflammatory diseases. Drug discovery efforts on this target have focused on both traditional reversible ATP-binding site inhibitors and increasingly popular irreversible covalent binding inhibitors. Irreversible inhibitors can offer benefits in terms of potency, selectivity and PK/PD meaning they are increasingly pursued where the strategy exists. TAK1 kinase differs from the better-known kinase EGFR in that the reactive cysteine nucleophile targeted by electrophilic inhibitors is located towards the back of the ATP binding site, not at its mouth. While a wealth of structural and computational effort has been spent exploring EGFR, only limited studies on TAK1 have been reported. In this work we report the first QM/MM study on TAK1 aiming to better understand aspects of covalent adduct formation. Our goal is to identify the general base in the catalytic reaction, whether the process proceeds via a stepwise or concerted pathway, and how the highly flexible G-loop and A-loop affect the catalytic cysteine located nearby.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | | | | |
Collapse
|
4
|
Kollar J, Frecer V. Diarylcyclopropane hydroxamic acid inhibitors of histone deacetylase 4 designed by combinatorial approach and QM/MM calculations. J Mol Graph Model 2018; 85:97-110. [PMID: 30145395 DOI: 10.1016/j.jmgm.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 12/01/2022]
Abstract
Inhibitors of histone deacetylase superfamily (HDAC), which induce cell cycle arrest, trigger cell death and reduce angiogenesis appear as promising anti-cancer drugs targeting the epigenetic regulation of gene expression. Approved HDAC inhibitors were found effective against haematological and solid malignancies, other HDACIs are currently in clinical trials for the treatment of neurological diseases or immune disorders. Among those, diarylcyclopropane hydroxamic acids (DCHA) were found to be potent and selective inhibitors of the class IIa HDACs, specifically HDAC4, a pharmacological target for the treatment of Huntington's disease and muscular atrophy. Crystallographic analysis revealed that one of the aryl groups of the DCHA fills the lower specificity pocket of the HDAC4 catalytic site that is specific for the class IIa HDACs. We have used computer-assisted combinatorial chemistry, hybrid quantum mechanics/molecular mechanics (QM/MM) with implicit solvation and QSAR models to optimize DCHA inhibitors and propose more potent DCHA analogues. The QM/MM approach has been selected since the process of inhibitor binding to the catalytic zinc and polar amino acid residues of the deacetylase active site induces considerable rearrangement of electron density of the inhibitor. Virtual combinatorial library consisting of 12180 DCHA analogues was focused by means of structure-based evaluation to form a small combinatorial subset enriched in potentially interesting inhibitor candidates. Two validated QSAR models making use of computed relative binding affinities of the DCHA inhibitors to the HDAC4 (ΔΔGcomQM/MM) were utilized to estimate the inhibitory potencies of the new analogues. The predicted half-maximal inhibitory concentrations (IC50pre) of the designed analogues fall into the low nanomolar concentration range and their predicted ADME properties are also favourable. The best designed DCHA analogues contain indazole, phenylpiperidine, phenyloxazole or hydroxypyridine moieties and stabilize bound inhibitors by hydrogen bonds to the catalytic water molecule and backbone carbonyl groups of the deacetylase active site residues. This makes them more potent and more specific inhibitors towards the HDAC4 isoform than the known diarylcyclopropane hydroxamic acids. The analogues are recommended for synthesis and experimental verification of inhibitory potencies in medicinal chemistry laboratories.
Collapse
Affiliation(s)
- Jakub Kollar
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava SK-84215, Slovakia; Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava SK-83232, Slovakia
| | - Vladimir Frecer
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava SK-83232, Slovakia; International Centre for Applied Research and Sustainable Technology (ICARST n.o.), Bratislava SK-84104, Slovakia.
| |
Collapse
|
5
|
Chotpatiwetchkul W, Boonyarattanakalin K, Gleeson D, Gleeson MP. Exploring the catalytic mechanism of dihydropteroate synthase: elucidating the differences between the substrate and inhibitor. Org Biomol Chem 2018. [PMID: 28639657 DOI: 10.1039/c7ob01272a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dihydropteroate synthase (DHPS) catalyzes the condensation of 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (DHPPP) with p-aminobenzoic acid (pABA) and is a well validated target for anti-malarial and anti-bacterial drugs. However, in recent years its utility as a therapeutic target has diminished considerably due to multiple mutations. As such, considerable structural biology and medicinal chemistry effort has been expended to understand and overcome this issue. To date no detailed computational analysis of the protein mechanism has been made despite the detailed crystal structures and multiple mechanistic proposals being made. In this study the mechanistic proposals for DHPS have been systematically investigated using a hybrid QM/MM method. We aimed to compare the energetics associated with SN1 and SN2 processes, whether the SN1 process involves a carbocation or neutral DHP intermediate, uncover the identity of the general base in the catalytic mechanism, and understand the differences in substrate vs. inhibitor reactivity. Our results suggest a reaction that follows an SN1 process with the rate determining step being C-O bond breaking to give a carbocation intermediate. Comparative studies on the inhibitor STZ confirm the experimental observations that it is also a DHPS substrate.
Collapse
Affiliation(s)
- Warot Chotpatiwetchkul
- Faculty of Pharmacy, Siam University, 38 Petkasem Rd., Phasicharoen, Bangkok, 10160, Thailand
| | | | | | | |
Collapse
|
6
|
Kollar J, Frecer V. How accurate is the description of ligand–protein interactions by a hybrid QM/MM approach? J Mol Model 2017; 24:11. [DOI: 10.1007/s00894-017-3537-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/15/2017] [Indexed: 11/28/2022]
|
7
|
Mechanisms of histone lysine-modifying enzymes: A computational perspective on the role of the protein environment. J Mol Graph Model 2016; 67:69-84. [DOI: 10.1016/j.jmgm.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
|
8
|
Jongkon N, Chotpatiwetchkul W, Gleeson MP. Probing the Catalytic Mechanism Involved in the Isocitrate Lyase Superfamily: Hybrid Quantum Mechanical/Molecular Mechanical Calculations on 2,3-Dimethylmalate Lyase. J Phys Chem B 2015. [PMID: 26224328 DOI: 10.1021/acs.jpcb.5b04732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The isocitrate lyase (ICL) superfamily catalyzes the cleavage of the C(2)-C(3) bond of various α-hydroxy acid substrates. Members of the family are found in bacteria, fungi, and plants and include ICL itself, oxaloacetate hydrolase (OAH), 2-methylisocitrate lyase (MICL), and (2R,3S)-dimethylmalate lyase (DMML) among others. ICL and related targets have been the focus of recent studies to treat bacterial and fungal infections, including tuberculosis. The catalytic process by which this family achieves C(2)-C(3) bond breaking is still not clear. Extensive structural studies have been performed on this family, leading to a number of plausible proposals for the catalytic mechanism. In this paper, we have applied quantum mechanical/molecular mechanical (QM/MM) methods to the most recently reported family member, DMML, to assess whether any of the mechanistic proposals offers a clear energetic advantage over the others. Our results suggest that Arg161 is the general base in the reaction and Cys124 is the general acid, giving rise to a rate-determining barrier of approximately 10 kcal/mol.
Collapse
Affiliation(s)
- Nathjanan Jongkon
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut's University of Technology, North Bangkok , Bangkok 10800, Thailand
| | - Warot Chotpatiwetchkul
- Department of Chemistry, Faculty of Science, Kasetsart University , Chatuchak, Bangkok 10903, Thailand
| | - M Paul Gleeson
- Department of Chemistry, Faculty of Science, Kasetsart University , Chatuchak, Bangkok 10903, Thailand
| |
Collapse
|