1
|
Mikra C, Mitrakas A, Ghizzani V, Katsani KR, Koffa M, Koukourakis M, Psomas G, Protti S, Fagnoni M, Fylaktakidou KC. Effect of Arylazo Sulfones on DNA: Binding, Cleavage, Photocleavage, Molecular Docking Studies and Interaction with A375 Melanoma and Non-Cancer Cells. Int J Mol Sci 2023; 24:1834. [PMID: 36768159 PMCID: PMC9915714 DOI: 10.3390/ijms24031834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A set of arylazo sulfones, known to undergo N-S bond cleavage upon light exposure, has been synthesized, and their activity in the dark and upon irradiation towards DNA has been investigated. Their interaction with calf-thymus DNA has been examined, and the significant affinity observed (most probably due to DNA intercalation) was analyzed by means of molecular docking "in silico" calculations that pointed out polar contacts, mainly via the sulfonyl moiety. Incubation with plasmid pBluescript KS II revealed DNA cleavage that has been studied over time and concentration. UV-A irradiation considerably improved DNA damage for most of the compounds, whereas under visible light the effect was slightly lower. Moving to in vitro experiments, irradiation was found to slightly enhance the death of the cells in the majority of the compounds. Naphthylazosulfone 1 showed photo-disruptive effect under UV-A irradiation (IC50 ~13 μΜ) followed by derivatives 14 and 17 (IC50 ~100 μΜ). Those compounds were irradiated in the presence of two non-cancer cell lines and were found equally toxic only upon irradiation and not in the dark. The temporal and spatial control of light, therefore, might provide a chance for these novel scaffolds to be useful for the development of phototoxic pharmaceuticals.
Collapse
Affiliation(s)
- Chrysoula Mikra
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Achilleas Mitrakas
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Virginia Ghizzani
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Katerina R. Katsani
- Laboratory of Biochemistry and Molecular Virology, Molecular Biology and Genetics Department, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Maria Koffa
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | - Michael Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Konstantina C. Fylaktakidou
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Cannon J, Tang S, Choi SK. Caged Oxime Reactivators Designed for the Light Control of Acetylcholinesterase Reactivation †. Photochem Photobiol 2021; 98:334-346. [PMID: 34558680 DOI: 10.1111/php.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023]
Abstract
Despite its promising role in the active control of biological functions by light, photocaging remains untested in acetylcholinesterase (AChE), a key enzyme in the cholinergic family. Here, we describe synthesis, photochemical properties and biochemical activities of two caged oxime compounds applied in the photocontrolled reactivation of the AChE inactivated by reactive organophosphate. Each of these consists of a photocleavable coumarin cage tethered to a known oxime reactivator for AChE that belongs in an either 2-(hydroxyimino)acetamide or pyridiniumaldoxime class. Of these, the first caged compound was able to successfully go through oxime uncaging upon irradiation at long-wavelength ultraviolet light (365 nm) or visible light (420 nm). It was further evaluated in AChE assays in vitro under variable light conditions to define its activity in the photocontrolled reactivation of paraoxon-inactivated AChE. This assay result showed its lack of activity in the dark but its induction of activity under light conditions only. In summary, this article reports a first class of light-activatable modulators for AChE and it offers assay methods and novel insights that help to achieve an effective design of caged compounds in the enzyme control.
Collapse
Affiliation(s)
- Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Panagopoulos A, Balalas T, Mitrakas A, Vrazas V, Katsani KR, Koumbis AE, Koukourakis MI, Litinas KE, Fylaktakidou KC. 6-Nitro-Quinazolin-4(3H)-one Exhibits Photodynamic Effects and Photodegrades Human Melanoma Cell Lines. A Study on the Photoreactivity of Simple Quinazolin-4(3H)-ones. Photochem Photobiol 2021; 97:826-836. [PMID: 33386640 DOI: 10.1111/php.13376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
Photochemo and photodynamic therapies are minimally invasive approaches for the treatment of cancers and powerful weapons for competing bacterial resistance to antibiotics. Synthetic and naturally occurring quinazolinones are considered privileged anticancer and antibacterial agents, with several of them to have emerged as commercially available drugs. In the present study, applying a single-step green microwave irradiation mediated protocol we have synthesized eleven quinazolinon-4(3H)-ones, from cheap readily available anthranilic acids, in very good yields and purity. These products were irradiated in the presence of pBR322 plasmid DNA under UVB, UVA and visible light. Four of the compounds proved to be very effective DNA photocleavers, at low concentrations, being time and concentration dependent as well as pH independent. Participation of reactive oxygen species was related to the substitution of quinazolinone derivatives. 6-Nitro-quinazolinone in combination with UVA irradiation was found to be in vitro photodestructive for three cell lines; glioblastoma (U87MG and T98G) and mainly melanoma (A-375). Thus, certain appropriately substituted quinazolinones may serve as new lead photosensitizers for the development of promising biotechnological applications and as novel photochemo and photodynamic therapeutics.
Collapse
Affiliation(s)
- Anastasios Panagopoulos
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, Dragana, Alexandroupolis, Greece
| | - Thomas Balalas
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Achilleas Mitrakas
- Department of Radiotherapy/Oncology, Democritus University of Thrace/University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Vassilios Vrazas
- Laboratory of Biochemistry and Molecular Virology, Molecular Biology and Genetics Department, Democritus University of Thrace, Dragana, Alexandroupolis, Greece
| | - Katerina R Katsani
- Laboratory of Biochemistry and Molecular Virology, Molecular Biology and Genetics Department, Democritus University of Thrace, Dragana, Alexandroupolis, Greece
| | - Alexandros E Koumbis
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace/University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Konstantinos E Litinas
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina C Fylaktakidou
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, Dragana, Alexandroupolis, Greece.,Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Reactivity of Coordinated 2-Pyridyl Oximes: Synthesis, Structure, Spectroscopic Characterization and Theoretical Studies of Dichlorodi{(2-Pyridyl)Furoxan}Zinc(II) Obtained from the Reaction between Zinc(II) Nitrate and Pyridine-2-Chloroxime. INORGANICS 2020. [DOI: 10.3390/inorganics8090047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work reports our first results in the area of the reactivity of coordinated chloroximes. The 1:2:2:2 Zn(NO3)2∙6H2O/Eu(NO3)3∙6H2O/ClpaoH/Et3N reaction mixture in MeOH, where ClpaoH is pyridine-2-chloroxime, resulted in complex [ZnCl2(L)] (1); L is the di(2-pyridyl)furoxan [3,4-di(2-pyridyl)-1,2,5-oxadiazole-2-oxide] ligand. The same complex can be isolated in the absence of the lanthanoid. The direct reaction of ZnCl2 and pre-synthesized L in MeOH also provides access to 1. In the tetrahedral complex, L behaves as a Npyridyl,N′pyridyl-bidentate ligand, forming an unusual seven-membered chelating ring. The Hirshfeld Surface analysis of the crystal structure reveals a multitude of intermolecular interactions, which generate an interesting 3D architecture. The complex has been characterized by FTIR and Raman spectroscopies. The structure of 1 is not retained in DMSO (dimethylsulfoxide) solution, as proven by NMR (1H, 13C, 15N) spectroscopy and its molar conductivity value. Upon excitation at 375 nm, solid 1 emits blue light with a maximum at 452 nm; the emission is of an intraligand character. The geometric and energetic profiles of possible pathways involved in the reaction of ClpaoH and Zn(NO3)2∙6H2O in MeOH in the presence of Et3N has been investigated by DFT (Density Functional Theory) computational methodologies at the PBE0/Def2-TZVP(Cr)∪6-31G(d,p)(E)/Polarizable Continuum Model (PCM) level of theory. This study reveals an unprecedented cross-coupling reaction between two coordinated 2-pyridyl nitrile oxide ligands.
Collapse
|
5
|
Perontsis S, Geromichalos GD, Pekou A, Hatzidimitriou AG, Pantazaki A, Fylaktakidou KC, Psomas G. Structure and biological evaluation of pyridine-2-carboxamidine copper(II) complex resulting from N′-(4-nitrophenylsulfonyloxy)2-pyridine-carboxamidoxime. J Inorg Biochem 2020; 208:111085. [DOI: 10.1016/j.jinorgbio.2020.111085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
|
6
|
Gritzapis PS, Varras PC, Andreou NP, Katsani KR, Dafnopoulos K, Psomas G, Peitsinis ZV, Koumbis AE, Fylaktakidou KC. p-Pyridinyl oxime carbamates: synthesis, DNA binding, DNA photocleaving activity and theoretical photodegradation studies. Beilstein J Org Chem 2020; 16:337-350. [PMID: 32256851 PMCID: PMC7082612 DOI: 10.3762/bjoc.16.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
A number of p-pyridinyl oxime carbamate derivatives were prepared upon the reaction of the corresponding oximes with isocyanates. These novel compounds reacted photochemically in the presence of supercoiled plasmid DNA. Structure-activity relationship (SAR) studies revealed that the substituent on the imine group was not affecting the extend of the DNA damage, whereas the substituent of the carbamate group was critical, with the halogenated derivatives to be able to cause extensive single and double stranded DNA cleavages, acting as "synthetic nucleases", independently of oxygen and pH. Calf thymus-DNA affinity studies showed a good-to-excellent affinity of selected both active and non-active derivatives. Preliminary theoretical studies were performed, in an effort to explain the reasons why some derivatives cause photocleavage and some others not, which were experimentally verified using triplet state activators and quenchers. These theoretical studies seem to allow the prediction of the activity of derivatives able to pass intersystem crossing to their triplet energy state and thus create radicals able to damage DNA. With this study, it is shown that oxime carbamate derivatives have the potential to act as novel effective photobase generating DNA-photocleavers, and are proposed as new leads for "on demand" biotechnological applications in drug discovery and medicine.
Collapse
Affiliation(s)
- Panagiotis S Gritzapis
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
| | - Panayiotis C Varras
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
| | - Nikolaos-Panagiotis Andreou
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
| | - Katerina R Katsani
- Laboratory of Biochemistry and Molecular Virology, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
| | - Konstantinos Dafnopoulos
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
- Laboratory of Inorganic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Zisis V Peitsinis
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Alexandros E Koumbis
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Konstantina C Fylaktakidou
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
7
|
Janockova J, Zilecka E, Kasparkova J, Brabec V, Soukup O, Kuca K, Kozurkova M. Assessment of DNA-binding affinity of cholinesterase reactivators and electrophoretic determination of their effect on topoisomerase I and II activity. MOLECULAR BIOSYSTEMS 2017; 12:2910-20. [PMID: 27412811 DOI: 10.1039/c6mb00332j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we describe the biochemical properties and biological activity of a series of cholinesterase reactivators (symmetrical bisquaternary xylene-linked compounds, K106-K114) with ctDNA. The interaction of the studied derivatives with ctDNA was investigated using UV-Vis, fluorescence, CD and LD spectrometry, and electrophoretic and viscometric methods. The binding constants K were estimated to be in the range 1.05 × 10(5)-5.14 × 10(6) M(-1) and the percentage of hypochromism was found to be 10.64-19.28% (from UV-Vis titration). The used methods indicate that the studied samples are groove binders. Electrophoretic methods proved that the studied compounds clearly influence calf thymus Topo I (at 5 μM concentration, except for compounds K107, K111 and K114 which were effective at higher concentrations) and human Topo II (K110 partially inhibited Topo II effects even at 5 μM concentration) activity.
Collapse
Affiliation(s)
- J Janockova
- Institute of Chemistry, Department of Biochemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 040 01 Kosice, Slovak Republic. and Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - E Zilecka
- Institute of Chemistry, Department of Biochemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 040 01 Kosice, Slovak Republic.
| | - J Kasparkova
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - V Brabec
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - O Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - K Kuca
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - M Kozurkova
- Institute of Chemistry, Department of Biochemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 040 01 Kosice, Slovak Republic. and Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Wojciechowska I, Wojciechowska A, Wieszczycka K, Aksamitowski P, Zembrzuska J, Framski G. Quantitative analysis of amphiphilic N-alkyloxypyridinecarboximidamide by liquid chromatography-tandem mass spectrometry. CHEMICAL PAPERS 2017; 71:953-960. [PMID: 28496290 PMCID: PMC5403844 DOI: 10.1007/s11696-016-0019-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/29/2016] [Indexed: 11/29/2022]
Abstract
LC–MS/MS method to determine hydrophobic N-alkyloxy substituted amidines: N-(2-ethylhexyloxy)pyridine-2-carboximidamide, N-(2-ethylhexyloxy)pyridine-3-carboximidamide, N-(2-ethylhexyloxy)pyridine-4-carboximidamide, N-decyloxy pyridine-2-carboximidamide, N-decyloxypyridine-3-carboximidamide and N-decyloxypyridine-4-carboximidamide was developed and validated in terms of linearity, precision and accuracy. The developed method was successfully applied to monitor and control the synthesis process. The experimental data points indicated that the straight chain alkyl bromide reacted most rapidly than branched alkyl bromide and the enhancement of the reaction efficiency strongly depended on reaction temperature.
Collapse
Affiliation(s)
- Irmina Wojciechowska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo St. 4, 60-965 Poznan, Poland
| | - Aleksandra Wojciechowska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo St. 4, 60-965 Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo St. 4, 60-965 Poznan, Poland
| | - Przemysław Aksamitowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo St. 4, 60-965 Poznan, Poland
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo St. 4, 60-965 Poznan, Poland
| | - Grzegorz Framski
- Institute of Bioorganic Chemistry, Polish Academy of Science, Z. Noskowskiego St. 12/14, 61-704 Poznan, Poland
| |
Collapse
|
9
|
Hegde D, Naik GN, Vadavi RS, V. SK, Barretto DA, Gudasi KB. Transition metal complexes of N′-(2-(hydroxyimino)propanoyl)isonicotinohydrazide: Synthesis, characterization, DNA interaction and anticancer evaluation. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.02.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Morales S, Aceña JL, García Ruano JL, Cid MB. Sustainable Synthesis of Oximes, Hydrazones, and Thiosemicarbazones under Mild Organocatalyzed Reaction Conditions. J Org Chem 2016; 81:10016-10022. [PMID: 27668816 DOI: 10.1021/acs.joc.6b01912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pyrrolidine catalyzes very efficiently, presumably via iminium activation, the formation of acyloximes, acylhydrazones, and thiosemicarbazones derived from aromatic and aliphatic aldehydes using equimolar amounts of reagents and green solvents. Experimental simplicity and excellent yields after a simple filtration are the main advantages of the method, being an alternative to those currently available especially for the acyl derivatives, which do not work under uncatalyzed conditions. Its application to the synthesis of acyloximes by direct condensation between aldehydes and acylhydroxylamines is unprecedented.
Collapse
Affiliation(s)
- Sara Morales
- Department of Organic Chemistry, Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid, Spain
| | - José Luis Aceña
- Department of Organic Chemistry, Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid, Spain
| | - José Luis García Ruano
- Department of Organic Chemistry, Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid, Spain
| | - M Belén Cid
- Department of Organic Chemistry, Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
11
|
Pyridine and p-Nitrophenyl Oxime Esters with Possible Photochemotherapeutic Activity: Synthesis, DNA Photocleavage and DNA Binding Studies. Molecules 2016; 21:molecules21070864. [PMID: 27376258 PMCID: PMC6272938 DOI: 10.3390/molecules21070864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
Compared to standard treatments for various diseases, photochemotherapy and photo-dynamic therapy are less invasive approaches, in which DNA photocleavers represent promising tools for novel “on demand” chemotherapeutics. A series of p-nitrobenzoyl and p-pyridoyl ester conjugated aldoximes, amidoximes and ethanone oximes were subjected to UV irradiation at 312 nm with supercoiled circular plasmid DNA. The compounds which possessed appropriate properties were additionally subjected to UVA irradiation at 365 nm. The ability of most of the compounds to photocleave DNA was high at 312 nm, whereas higher concentrations were required at 365 nm as a result of their lower UV absorption. The affinity of selected compounds to calf-thymus (CT) DNA was studied by UV spectroscopy, viscosity experiments and competitive studies with ethidium bromide (EB) revealing that all compounds interacted with CT DNA. The fluorescence emission spectra of the pre-treated EB-DNA exhibited a moderate to significant quenching in the presence of the compounds indicating the binding of the compounds to CT DNA via intercalation as concluded also by DNA-viscosity experiments. For the oxime esters the DNA photocleavage and affinity studies aimed to clarify the role of the oxime nature (aldoxime, ketoxime, amidoxime) and the role of the pyridine and p-nitrophenyl moieties both as oxime substituents and ester conjugates.
Collapse
|
12
|
Andreou NP, Dafnopoulos K, Tortopidis C, Koumbis AE, Koffa M, Psomas G, Fylaktakidou KC. Alkyl and aryl sulfonyl p-pyridine ethanone oximes are efficient DNA photo-cleavage agents. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 158:30-8. [DOI: 10.1016/j.jphotobiol.2016.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 01/30/2023]
|
13
|
Papastergiou A, Perontsis S, Gritzapis P, Koumbis AE, Koffa M, Psomas G, Fylaktakidou KC. Evaluation of O-alkyl and aryl sulfonyl aromatic and heteroaromatic amidoximes as novel potent DNA photo-cleavers. Photochem Photobiol Sci 2016; 15:351-60. [DOI: 10.1039/c5pp00439j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
O-Alkyl and aryl p-pyridine sulfonyl amidoxime derivatives are effective novel DNA photo-cleavers, generating highly efficient sulfonyloxyl radicals, able to cause a high ratio of single to double strand nicks.
Collapse
Affiliation(s)
- A. Papastergiou
- Laboratory of Organic
- Bioorganic and Natural Product Chemistry
- Molecular Biology and Genetics Department
- Democritus University of Thrace
- Alexandroupolis
| | - S. Perontsis
- Laboratory of Inorganic Chemistry
- Chemistry Department
- Aristotle University of Thessaloniki
- Thessaloniki
- Greece
| | - P. Gritzapis
- Laboratory of Organic
- Bioorganic and Natural Product Chemistry
- Molecular Biology and Genetics Department
- Democritus University of Thrace
- Alexandroupolis
| | - A. E. Koumbis
- Laboratory of Organic Chemistry
- Chemistry Department
- Aristotle University of Thessaloniki
- Thessaloniki
- Greece
| | - M. Koffa
- Laboratory of Cellular Biology and Cell Cycle
- Molecular Biology and Genetics Department
- Democritus University of Thrace
- Alexandroupolis
- Greece
| | - G. Psomas
- Laboratory of Inorganic Chemistry
- Chemistry Department
- Aristotle University of Thessaloniki
- Thessaloniki
- Greece
| | - K. C. Fylaktakidou
- Laboratory of Organic
- Bioorganic and Natural Product Chemistry
- Molecular Biology and Genetics Department
- Democritus University of Thrace
- Alexandroupolis
| |
Collapse
|