2
|
Pereira E, do Quental L, Palma E, Oliveira MC, Mendes F, Raposinho P, Correia I, Lavrado J, Di Maria S, Belchior A, Vaz P, Santos I, Paulo A. Evaluation of Acridine Orange Derivatives as DNA-Targeted Radiopharmaceuticals for Auger Therapy: Influence of the Radionuclide and Distance to DNA. Sci Rep 2017; 7:42544. [PMID: 28211920 PMCID: PMC5304164 DOI: 10.1038/srep42544] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023] Open
Abstract
A new family of 99mTc(I)- tricarbonyl complexes and 125I-heteroaromatic compounds bearing an acridine orange (AO) DNA targeting unit was evaluated for Auger therapy. Characterization of the DNA interaction, performed with the non-radioactive Re and 127I congeners, confirmed that all compounds act as DNA intercalators. Both classes of compounds induce double strand breaks (DSB) in plasmid DNA but the extent of DNA damage is strongly dependent on the linker between the Auger emitter (99mTc or 125I) and the AO moiety. The in vitro evaluation was complemented with molecular docking studies and Monte Carlo simulations of the energy deposited at the nanometric scale, which corroborated the experimental data. Two of the tested compounds, 125I-C5 and 99mTc-C3, place the corresponding radionuclide at similar distances to DNA and produce comparable DSB yields in plasmid and cellular DNA. These results provide the first evidence that 99mTc can induce DNA damage with similar efficiency to that of 125I, when both are positioned at comparable distances to the double helix. Furthermore, the high nuclear retention of 99mTc-C3 in tumoral cells suggests that 99mTc-labelled AO derivatives are more promising for the design of Auger-emitting radiopharmaceuticals than the 125I-labelled congeners.
Collapse
Affiliation(s)
- Edgar Pereira
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Letícia do Quental
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Elisa Palma
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.,Centro Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal
| | - Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Paula Raposinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Isabel Correia
- Centro Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal
| | - João Lavrado
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Salvatore Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Ana Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Isabel Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
3
|
Wang Y, Xu R, Luo G, Lei Q, Shu Q, Yao Z, Li H, Zhou J, Tan J, Yang S, Zhan R, He W, Wu J. Biomimetic fibroblast-loaded artificial dermis with "sandwich" structure and designed gradient pore sizes promotes wound healing by favoring granulation tissue formation and wound re-epithelialization. Acta Biomater 2016; 30:246-257. [PMID: 26602823 DOI: 10.1016/j.actbio.2015.11.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 12/18/2022]
Abstract
The structure of dermal scaffolds greatly affects the engineered tissue's functions and the activities of seeded cells. Current strategies of dermal scaffold design tend to yield a homogeneous architecture with a uniform pore size. However, the structures of the human dermis are not homogeneous in terms of either interstitial spaces or architecture at different dermal depths. In the present study, a biomimetic fibroblasts-loaded artificial dermis composed of three-layer scaffolds with different pore sizes was prepared. The three-layer scaffolds, which look similar to a sandwich, mimic the natural structures of the human dermis, which has comparatively larger pores in the outer layers and smaller pores in the middle layer. The fibroblasts-loaded artificial dermis were shown to favor wound healing by promoting granulation tissue formation and wound re-epithelialization, as determined by a histological study and Western blotting. Our data indicated that the biomimetic fibroblasts-loaded artificial dermis with "Sandwich" structure and designed gradient pore sizes may hold promise as tissue-engineered dermis. STATEMENT OF SIGNIFICANCE Pore size effect on wound healing had been extensively studied. However, it is still not well understood whether dermal scaffolds with a uniform pore size are better than that with varied pore sizes, which are similar to human dermis as determined by our previous work. In our study, we demonstrated that the "sandwich" collagen scaffolds mimicking the natural structures of the human dermis significantly promoted wound healing compared with the "Homogeneous" scaffolds with a uniform pore size. These results may be helpful in the design of dermal scaffolds.
Collapse
Affiliation(s)
- Yuzhen Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Rui Xu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Qiang Lei
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Qin Shu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Zhihui Yao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Junyi Zhou
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jianglin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Sisi Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China.
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China.
| |
Collapse
|