1
|
Heimann D, Kohnhäuser D, Kohnhäuser AJ, Brönstrup M. Antibacterials with Novel Chemical Scaffolds in Clinical Development. Drugs 2025:10.1007/s40265-024-02137-x. [PMID: 39847315 DOI: 10.1007/s40265-024-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high. A detailed analysis of the scientific foundations behind each of these compounds is provided, including their pharmacodynamic profiles, current development state, and potential for overcoming existing limitations in antibiotic therapy. By presenting this subset of chemically novel antibacterials, the review highlights the ability to innovate in antibiotic drug development to counteract bacterial resistance and improve treatment outcomes.
Collapse
Affiliation(s)
- Dominik Heimann
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Daniel Kohnhäuser
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | | | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- Institute of Organic Chemistry and Biomolecular Drug Research Centre (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany.
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
2
|
Ge S, Zhao Y, Liu D, Dong X, Zhang Y, Yang H, Li Y. Characterization of a N-acylhomoserine lactonase from Serratia sp. and its biofouling mitigation in a membrane bioreactor. Microbiol Res 2022; 264:127175. [DOI: 10.1016/j.micres.2022.127175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
|
3
|
Inhibiting the metallo-β-lactamases: challenges and strategies to overcome bacterial β-lactam resistance. Future Med Chem 2022; 14:1021-1025. [DOI: 10.4155/fmc-2022-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Multi Evaluation of a Modified GoldNano Carb Test for Carbapenemase Detection in Clinical Isolates of Gram-Negative Bacilli. Antibiotics (Basel) 2022; 11:antibiotics11050684. [PMID: 35625328 PMCID: PMC9137630 DOI: 10.3390/antibiotics11050684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Carbapenemase-producing Gram-negative bacteria have been increasingly reported. Simple and sensitive methods for carbapenemase detection are still needed. In this study, a gold nanoparticle (AuNP) solution was modified by the addition of zinc sulfate (ZnSO4) for improving the conventional GoldNano Carb (cGoldC) test, and the modified GoldC (mGoldC) test was then evaluated for phenotypic detection of carbapenemase production in Gram-negative bacilli clinical isolates. ZnSO4 was added to give final concentrations of 0.25, 0.5, 0.75, and 1 mM. The performance of the mGoldC test was evaluated in Enterobacterales, Acinetobacter spp., and Pseudomonas aeruginosa isolates from six hospitals in different regions using polymerase chain reaction (PCR) as a gold standard. The AuNP solution with 0.25 mM ZnSO4 was used for the mGoldC test. Evaluation of the mGoldC test in 495 Enterobacterales, 212 Acinetobacter spp., and 125 P. aeruginosa isolates (including 444 carbapenemase producers and 388 non-carbapenemase producers) revealed sensitivity, specificity, a positive likelihood ratio, and a negative likelihood ratio of 98.6%, 98.2%, 54.7, and 0.01, respectively. This test is fast, easy to perform, cost-effective (~0.25 USD per test), and highly sensitive and specific for routine carbapenemase detection, thus leading to effective antimicrobial therapy and infection control measures.
Collapse
|
5
|
Chen C, Oelschlaeger P, Wang D, Xu H, Wang Q, Wang C, Zhao A, Yang KW. Structure and Mechanism-Guided Design of Dual Serine/Metallo-Carbapenemase Inhibitors. J Med Chem 2022; 65:5954-5974. [PMID: 35420040 DOI: 10.1021/acs.jmedchem.2c00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Serine/metallo-carbapenemase-coproducing pathogens, often referred to as "superbugs", are a significant clinical problem. They hydrolyze nearly all available β-lactam antibiotics, especially carbapenems considered as last-resort antibiotics, seriously endangering efficacious antibacterial treatment. Despite the continuous global spread of carbapenem resistance, no dual-action inhibitors are available in therapy. This Perspective is the first systematic investigation of all chemotypes, modes of inhibition, and crystal structures of dual serine/metallo-carbapenemase inhibitors. An overview of the key strategy for designing dual serine/metallo-carbapenemase inhibitors and their mechanism of action is provided, as guiding rules for the development of clinically available dual inhibitors, coadministrated with carbapenems, to overcome the carbapenem resistance issue.
Collapse
Affiliation(s)
- Cheng Chen
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona 91766, California, United States
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310030, P. R. China
| | - Qian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Chinese Medicine, Jinshui District 450046, Zhengzhou, P. R. China
| | - Cheng Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
6
|
Dong X, Shi P, Liu W, Bai J, Bian L. Metallo-beta-lactamase CphA evolving into more efficient hydrolases through gene mutation is a novel pathway for the resistance of super bacteria. Appl Microbiol Biotechnol 2022; 106:2471-2480. [PMID: 35316383 DOI: 10.1007/s00253-022-11879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/07/2022] [Accepted: 03/05/2022] [Indexed: 11/02/2022]
Abstract
The evolution of metallo-beta-lactamase CphA in discontinuous gradient concentration of imipenem was investigated in this work. The results suggested that single-base mutations K218R, K249T, K249M, Q253H, and a frameshift mutation M1 were observed. Compared with wild type, the minimum inhibitory concentration (MICs) of K249T, K249M, and M1 increased by at least 128 times and that of K218R increased by 64 times. And the catalytic efficiency increased by 312% and 653%, respectively. It is speculated from the details of the structural changes revealed by molecular dynamics simulations that the carbon skeleton migration caused by the outward motion of the loop 3 in the mutant may have significantly increased the cavity volume of the binding pocket, which is more conducive to the entry and expulsion of imipenem and its hydrolytic product. And the conformational change of the TDRAGGN (71-77) is located at the bottom of the binding pocket from order α-helix to disorder random coil enabled the binding pocket to be more conducive to accommodate and hold the imipenem respectively. All these indicated that during the repeated drug resistance, the wild-type achieved gene mutations and conformational change and evolved to the mutant enzymes with a more delicate structure and stronger hydrolysis ability. KEY POINTS: • The mutation and evolution of CphA under the selective pressure of imipenem. • The CphA evolved to the mutants with stronger hydrolysis capacity. • A novel pathway for the resistance of super bacteria.
Collapse
Affiliation(s)
- Xiaoting Dong
- College of Life Science, Northwest University, 229 Taibai Bei Road, Xi'an, 710069, Shaan'xi Province, China
| | - Penghui Shi
- College of Life Science, Northwest University, 229 Taibai Bei Road, Xi'an, 710069, Shaan'xi Province, China
| | - Wenli Liu
- College of Life Science, Northwest University, 229 Taibai Bei Road, Xi'an, 710069, Shaan'xi Province, China
| | - Jiakun Bai
- College of Life Science, Northwest University, 229 Taibai Bei Road, Xi'an, 710069, Shaan'xi Province, China
| | - Liujiao Bian
- College of Life Science, Northwest University, 229 Taibai Bei Road, Xi'an, 710069, Shaan'xi Province, China.
| |
Collapse
|
7
|
A Novel Cooperative Metallo-β-Lactamase Fold Metallohydrolase from Pathogen Vibrio vulnificus Exhibits β-Lactam Antibiotic-Degrading Activities. Antimicrob Agents Chemother 2021; 65:e0032621. [PMID: 34228542 DOI: 10.1128/aac.00326-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a pathogen that accounts for one of the highest mortality rates and is responsible for most reported seafood-related illnesses and deaths worldwide. Owing to the threats of pathogens with β-lactamase activity, it is important to identify and characterize β-lactamases with clinical significance. In this study, the protein sequence of the metallo-β-lactamase (MBL) fold metallohydrolase from V. vulnificus (designated Vmh) was analyzed, and its oligomeric state, β-lactamase activity, and metal binding ability were determined. BLASTp analysis indicated that the V. vulnificus Vmh protein showed no significant sequence identity with any experimentally identified Ambler class B MBLs or enzymes containing the MBL protein fold; it was also predicted to have a signal peptide of 19 amino acids at its N terminus and an MBL protein fold from amino acid residues 23 to 216. Recombinant V. vulnificus Vmh protein was overexpressed and purified. Analytical ultracentrifugation and electrospray ionization-mass spectrometry (MS) data demonstrated its monomeric state in an aqueous solution. Recombinant V. vulnificus Vmh protein showed broad degrading activities against β-lactam antibiotics, such as penicillins, cephalosporins, and imipenems, with kcat/Km values ranging from 6.23 × 102 to 1.02 × 104 M-1 s-1. The kinetic reactions of this enzyme exhibited sigmoidal behavior, suggesting the possibility of cooperativity. Zinc ions were required for the enzyme activity, which was abolished by adding the metal chelator EDTA. Inductively coupled plasma-MS indicated that this enzyme might bind two zinc ions per molecule as a cofactor.
Collapse
|
8
|
Llull R, Montalbán G, Vidal I, Gomila RM, Bauzá A, Frontera A. Theoretical study of spodium bonding in the active site of three Zn-proteins and several model systems. Phys Chem Chem Phys 2021; 23:16888-16896. [PMID: 34328165 DOI: 10.1039/d1cp02150h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this manuscript, three examples retrieved from the PDB are selected to demonstrate the existence and relevance of spodium bonding (SpB) in biological systems. SpB is defined as an attractive noncovalent interaction between elements of group 12 of the periodic table acting as a Lewis acid and any atom or group of atoms acting as an electron donor. The utilization of this term (SpB) is convenient to differentiate classical coordination bonds from noncovalent interactions. In the latter, the distance between the electron rich and the spodium atoms is longer than the sum of the covalent radii but shorter than the sum of the van der Waals radii. In most Zn-dependent metalloenzymes, the spodium atom is bonded to three imidazole moieties belonging to the side chains of histidine amino-acids. Herein, in addition to the investigation of the SpB in the active site of three exemplifying enzymes, theoretical models where the Zn(ii) atom is bonded either to three imidazole or triazole ligands are used in order to investigate the strength of the SpB and its competition with hydrogen bonding. A series of Lewis bases and anions have been used as SpB acceptors combined with six SpB donors (receptors) of general formula [ZnY3X]+ (Y = imidazole and triazole and X = Cl, N3 and SCH3). In addition to the investigation of the energetic and geometric features of the complexes, the SpB interactions have been further characterized using the natural bond orbital (NBO) method, quantum theory of "atoms-in-molecules" and the noncovalent interaction plot (NCI plot).
Collapse
Affiliation(s)
- Rosa Llull
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| | | | | | | | | | | |
Collapse
|
9
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
10
|
Levina EO, Khrenova MG. Metallo-β-Lactamases: Influence of the Active Site Structure on the Mechanisms of Antibiotic Resistance and Inhibition. BIOCHEMISTRY (MOSCOW) 2021; 86:S24-S37. [PMID: 33827398 DOI: 10.1134/s0006297921140030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review focuses on bacterial metallo-β-lactamases (MβLs) responsible for the inactivation of β-lactams and associated antibiotic resistance. The diversity of the active site structure in the members of different MβL subclasses explains different mechanisms of antibiotic hydrolysis and should be taken into account when searching for potential MβL inhibitors. The review describes the features of the antibiotic inactivation mechanisms by various MβLs studied by X-ray crystallography, NMR, kinetic measurements, and molecular modeling. The mechanisms of enzyme inhibition for each MβL subclass are discussed.
Collapse
Affiliation(s)
- Elena O Levina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Maria G Khrenova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia. .,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
11
|
Kullappan M, Mallavarapu Ambrose J, Surapaneni KM. Understanding the binding conformation of ceftolozane/tazobactam with Metallo-β-lactamases VIM-5 and IMP-7 of Pseudomonas aeruginosa: A molecular docking and virtual screening process. J Mol Recognit 2021; 34:e2898. [PMID: 33780080 DOI: 10.1002/jmr.2898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/11/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is one of the community-acquired and healthcare-associated infections causing organisms. It has become resistant to most of the available antibiotics and is termed multi-drug resistance (MDR). There are a limited number of antibiotics are available to treat such MDR organism causing infections. The ceftolozane/tazobactam is one among the combination drug therapy (CDT) prescribed for the treatment of MDR causing infections. The resistance for the same CDT was observed in the MDR P. aeruginosa harboring VIM-5 and IMP-7 Metallo beta (β)-lactamases (MBLs). To explore the resistance mechanism at the molecular level, docking studies were carried out for antibiotics against VIM-5 and IMP-7 MBLs. The Zn2 metal ions carry out the nucleophile attack on the carbonyl carbon of the β-lactam ring along with conserved water molecules. To find lead compounds against the MBLs, a virtual screening process was carried out. We have employed MODELLER for structure modeling, AutoDock for molecular docking and AutoDock Vina, Molinspiration, PASS prediction & admetSAR in virtual screening. The search of low binding energy ceftolozane analogs against VIM-5 and IMP-7 MBLs has resulted in the ZINC000029060075 and ZINC000009163636 analogs. Similarly, the screening of high binding energy inhibitors against VIM-5 and IMP-7 MBLs has resulted in ZINC000003831503 and ZINC000000897247 tazobactam analogs respectively. The ADMET prediction results in the non-toxicity of the lead compounds. Our study may provide new insights for the scientist who are designing novel drugs against MDR P. aeruginosa causing infections.
Collapse
Affiliation(s)
- Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, India
| | - Jenifer Mallavarapu Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Clinical Skills & Simulation and Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, India
| |
Collapse
|
12
|
Ali A, Gupta D, Khan AU. Role of non-active site residues in maintaining New Delhi metallo-β-lactamase-1(NDM-1) function: an approach of site-directed mutagenesis and docking. FEMS Microbiol Lett 2021; 368:fnz003. [PMID: 30624634 DOI: 10.1093/femsle/fnz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/05/2019] [Indexed: 12/17/2023] Open
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) has been known to hydrolyze nearly all β-lactam antibiotics, leading to a multidrug-resistant state. Hence, it is important to study its structure and function in relation to controlling infections caused by such resistant bacterial strains. Mutagenesis is one of the approaches used to explore it. No study has been performed to explore the role of non-active site residues in the enzyme activity. This study includes mutations of three non-active site residues to comprehend its structure and function simultaneously. Three non-active site laboratory mutants of NDM-1 were generated by site-directed mutagenesis. The minimum inhibitory concentrations of cefotaxime, cefoxitin, imipenem and meropenem were reduced by up to 4-fold for these mutants compared with wild-type. The hydrolytic activity of mutants was also found to be reduced. Mutants showed a significant change in secondary structure compared with wild-type, as determined by CD spectrophotometry. The catalytic properties and stability of these mutants were found to be reduced. Hence, it revealed an imperative role of non-active site residues in the enzymatic activity of NDM-1.
Collapse
|
13
|
Zhao D, Li H, Yue C, Sun K, Dai Y, Zhang H, Liu Y, Gao Y, Li J. Captopril potentiated meropenem activity against MBL-producing carbapenem-resistant Klebsiella pneumoniae: in vitro and in vivo study. J Inorg Biochem 2021; 218:111381. [PMID: 33647540 DOI: 10.1016/j.jinorgbio.2021.111381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
This study investigated whether captopril can reverse drug resistance in metallo-β-lactamase (MBL)-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) and increase their sensitivity to antimicrobial agents. And also aimed to further characterize the affinity of captopril for imipenemase 4 (IMP-4) to explore the drug resistance treatment of MBL-producing bacteria. Five clinically isolated MBL-producing strains of CRKP were screened and the combined effects of captopril and meropenem were examined in vitro and in vivo to analyze whether captopril can reverse antimicrobial resistance in drug-resistant bacteria. Additionally, enzyme inhibition kinetics was analyzed to characterize the affinity of captopril for IMP-4. In MBL-producing Klebsiella pneumoniae, combined treatment with captopril significantly reduced the minimum inhibitory concentration (MIC) of carbapenems to 1 μg/mL at least, and captopril inhibited New-Delhi metallo-β-lactamase 1 (NDM-1) and IMP-4 in a concentration-dependent manner in vitro. Following the infection of Galleria mellonella by IMP-expressing bacteria, the survival rates were significantly higher in the combination treatment group than in the monotherapy groups. And the bacterial load in the combination treatment group was significantly lower than those in the monotherapy groups and IMP-4-producing bacteria were more sensitive to the combination treatment than NDM-1-producing bacteria. Additionally, enzyme inhibition kinetics firstly illustrated that the half-maximal inhibitory concentration of captopril for IMP-4 was 26.34 μM, and the dissociation constant was 37.14 μM. In brief, captopril potentiated meropenem activity and restored its efficacy against MBL-producing CRKP. Additionally, analysis of enzyme inhibition kinetics confirmed that captopril has good inhibitory effects on IMP-4 activity. Therefore, captopril or its derivatives may have clinical utility for overcoming antibiotic resistance.
Collapse
Affiliation(s)
- Dongmei Zhao
- Department of Infectious Disease, The First Affilated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongru Li
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Chengcheng Yue
- Department of Infectious Disease, The First Affilated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kaili Sun
- Department of Infectious Diseases, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanyuan Dai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Zhang
- Department of Infectious Disease, The First Affilated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Liu
- Department of Infectious Disease, The First Affilated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yufeng Gao
- Department of Infectious Disease, The First Affilated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affilated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Infectious Diseases, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China; Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
14
|
Lence E, González‐Bello C. Bicyclic Boronate β‐Lactamase Inhibitors: The Present Hope against Deadly Bacterial Pathogens. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica Universidade de Santiago de Compostela calle Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| | - Concepción González‐Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica Universidade de Santiago de Compostela calle Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| |
Collapse
|
15
|
García-Betancur JC, Appel TM, Esparza G, Gales AC, Levy-Hara G, Cornistein W, Vega S, Nuñez D, Cuellar L, Bavestrello L, Castañeda-Méndez PF, Villalobos-Vindas JM, Villegas MV. Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2020; 19:197-213. [PMID: 32813566 DOI: 10.1080/14787210.2020.1813023] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Carbapenemases are β-lactamases able to hydrolyze a wide range of β-lactam antibiotics, including carbapenems. Carbapenemase production in Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter spp., with and without the co-expression of other β-lactamases is a serious public health threat. Carbapenemases belong to three main classes according to the Ambler classification: class A, class B, and class D. AREAS COVERED Carbapenemase-bearing pathogens are endemic in Latin America. In this review, we update the status of carbapenemases in Latin America and the Caribbean. EXPERT OPINION Understanding the current epidemiology of carbapenemases in Latin America and the Caribbean is of critical importance to improve infection control policies limiting the dissemination of multi-drug-resistant pathogens and in implementing appropriate antimicrobial therapy.
Collapse
Affiliation(s)
| | - Tobias Manuel Appel
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque . Bogotá, Colombia
| | - German Esparza
- Programa de Aseguramiento de Calidad. PROASECAL SAS, Bogotá, Colombia
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP , São Paulo, Brazil
| | | | | | - Silvio Vega
- Complejo Hospitalario Metropolitano , Ciudad de Panamá, Panama
| | - Duilio Nuñez
- Infectious Diseases División, IPS Hospital Central , Asunción, Paraguay
| | - Luis Cuellar
- Servicio de Infectologia, Instituto Nacional de Enfermedades Neoplasicas , Lima, Peru
| | | | - Paulo F Castañeda-Méndez
- Department of Infectious Diseases, Hospital San Angel Inn Universidad , Ciudad de México, Mexico
| | | | - María Virginia Villegas
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque . Bogotá, Colombia.,Centro Médico Imbanaco . Cali, Colombia
| |
Collapse
|
16
|
Palacios AR, Rossi MA, Mahler GS, Vila AJ. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Biomolecules 2020; 10:E854. [PMID: 32503337 PMCID: PMC7356002 DOI: 10.3390/biom10060854] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
β-Lactam antibiotics are the most widely prescribed antibacterial drugs due to their low toxicity and broad spectrum. Their action is counteracted by different resistance mechanisms developed by bacteria. Among them, the most common strategy is the expression of β-lactamases, enzymes that hydrolyze the amide bond present in all β-lactam compounds. There are several inhibitors against serine-β-lactamases (SBLs). Metallo-β-lactamases (MBLs) are Zn(II)-dependent enzymes able to hydrolyze most β-lactam antibiotics, and no clinically useful inhibitors against them have yet been approved. Despite their large structural diversity, MBLs have a common catalytic mechanism with similar reaction species. Here, we describe a number of MBL inhibitors that mimic different species formed during the hydrolysis process: substrate, transition state, intermediate, or product. Recent advances in the development of boron-based and thiol-based inhibitors are discussed in the light of the mechanism of MBLs. We also discuss the use of chelators as a possible strategy, since Zn(II) ions are essential for substrate binding and catalysis.
Collapse
Affiliation(s)
- Antonela R. Palacios
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - María-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - Graciela S. Mahler
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad de la Republica (UdelaR), Montevideo 11800, Uruguay;
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| |
Collapse
|
17
|
MBLinhibitors.com, a Website Resource Offering Information and Expertise for the Continued Development of Metallo--Lactamase Inhibitors. Biomolecules 2020; 10:biom10030459. [PMID: 32188106 PMCID: PMC7175331 DOI: 10.3390/biom10030459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/29/2022] Open
Abstract
In an effort to facilitate the discovery of new, improved inhibitors of the metallo-β-lactamases (MBLs), a new, interactive website called MBLinhibitors.com was developed. Despite considerable efforts from the science community, there are no clinical inhibitors of the MBLs, which are now produced by human pathogens. The website, MBLinhibitors.com, contains a searchable database of known MBL inhibitors, and inhibitors can be searched by chemical name, chemical formula, chemical structure, Simplified Molecular-Input Line-Entry System (SMILES) format, and by the MBL on which studies were conducted. The site will also highlight a “MBL Inhibitor of the Month”, and researchers are invited to submit compounds for this feature. Importantly, MBLinhibitors.com was designed to encourage collaboration, and researchers are invited to submit their new compounds, using the “Submit” function on the site, as well as their expertise using the “Collaboration” function. The intention is for this site to be interactive, and the site will be improved in the future as researchers use the site and suggest improvements. It is hoped that MBLinhibitors.com will serve as the one-stop site for any important information on MBL inhibitors and will aid in the discovery of a clinically useful MBL inhibitor.
Collapse
|
18
|
Levina EO, Khrenova MG, Astakhov AA, Tsirelson VG. Revealing electronic features governing hydrolysis of cephalosporins in the active site of the L1 metallo-β-lactamase. RSC Adv 2020; 10:8664-8676. [PMID: 35496524 PMCID: PMC9050041 DOI: 10.1039/c9ra10649a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/14/2020] [Indexed: 11/21/2022] Open
Abstract
The QM/MM simulations followed by electron density feature analysis are carried out to deepen the understanding of the reaction mechanism of cephalosporin hydrolysis in the active site of the L1 metallo-β-lactamase. The differences in reactivity of ten similar cephalosporin compounds are explained by using an extended set of bonding descriptors. The limiting step of the reaction is characterized by the proton transfer to the nitrogen atom of the cephalosporin thiazine ring accompanied with formation of the C4
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C3 double bond in its N–C4–C3 fragment. The temporary N⋯H–Ow hydrogen bond, which is formed in the transition state of the limiting step of the reaction was recognized as a key atomic interaction governing the reactivity of various cephalosporins. Non-local real-space bonding descriptors show that different extent of localization of electron lone pair at N atom in the transition state affect the reactivity of compounds: smaller electron localization is typical for the less reactive species. In particular, the Fermi hole analysis shows how exchange electron correlation in the N⋯H–Ow fragment control electron lone pair localization. Delocalization tensor, linear response kernel and source function indicate that features of electron delocalization in the N–C4–C3 fragment of cephalosporins in the transition state complexes determine the differences in C4–C3 bond for substrates with high and low rate constants. The C4–C3 bond of the N–C4–C3 fragment at the transition state is similar to that of the preceding intermediate for the less reactive species and resembles the features of the enzyme–product complex for more reactive compounds. The power and limitations of the descriptors applied for solving the problem are discussed and the generality of approach is stressed. Combination of QM/MM and modern bonding descriptors explains different reactivity of cephalosporins in the active site of the L1 metallo-β-lactamase.![]()
Collapse
Affiliation(s)
- Elena O. Levina
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Moscow
- Russia
- Moscow Institute of Physics and Technology
- Dolgoprudny
| | - Maria G. Khrenova
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Moscow
- Russia
- Lomonosov Moscow State University
- Moscow
| | - Andrey A. Astakhov
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Moscow
- Russia
- Joint Institute for Nuclear Research
- Dubna
| | - Vladimir G. Tsirelson
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Moscow
- Russia
- Mendeleev University of Chemical Technology of Russia
- Moscow
| |
Collapse
|
19
|
Chen J, Wang J, Pang L, Wang W, Zhao J, Zhu W. Deciphering molecular mechanism behind conformational change of the São Paolo metallo-β-lactamase 1 by using enhanced sampling. J Biomol Struct Dyn 2019; 39:140-151. [DOI: 10.1080/07391102.2019.1707121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Abstract
Natural and nonnatural amino acids represent important building blocks for the development of peptidomimetic scaffolds, especially for targeting proteolytic enzymes and for addressing protein–protein interactions. Among all the different amino acids derivatives, proline is particularly relevant in chemical biology and medicinal chemistry due to its secondary structure’s inducing and stabilizing properties. Also, the pyrrolidine ring is a conformationally constrained template that can direct appendages into specific clefts of the enzyme binding site. Thus, many papers have appeared in the literature focusing on the use of proline and its derivatives as scaffolds for medicinal chemistry applications. In this review paper, an insight into the different biological outcomes of d-proline and l-proline in enzyme inhibitors is presented, especially when associated with matrix metalloprotease and metallo-β-lactamase enzymes.
Collapse
|
21
|
Prandina A, Radix S, Le Borgne M, Jordheim LP, Bousfiha Z, Fröhlich C, Leiros HKS, Samuelsen Ø, Frøvold E, Rongved P, Åstrand OAH. Synthesis and biological evaluation of new dipicolylamine zinc chelators as metallo-β-lactamase inhibitors. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Liu X, Dong S, Ma Y, Xu H, Zhao H, Gao Q. N-(Sulfamoylbenzoyl)-L-proline Derivatives as Potential Non-β-lactam ESBL Inhibitors: Structure-Based Lead Identification, Medicinal Chemistry and Synergistic Antibacterial Activities. Med Chem 2019; 15:196-206. [DOI: 10.2174/1573406414666180816123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/01/2018] [Accepted: 06/04/2018] [Indexed: 11/22/2022]
Abstract
Background:
There is an urgent need to develop novel inhibitors against clinically
widespread extended-spectrum β-lactamases (ESBLs) to meet the challenges of the ever-evolving
threat of antibiotic resistances. Most existing ESBL inhibitors sharing a common chemical feature
of β-lactam ring in their molecule, this structural characteristic makes them intrinsically susceptible
to enzymatic breakdown by the resistance mechanisms employed by the bacteria.
Objective:
The aim of this study was to screen and discover novel lead compounds by using Lproline
as initial scaffold to create a “non-sulfur, non-β-lactam” new chemotypes for potential
ESBL inhibitors.
Methods:
Structure-based molecular docking and virtual screening were employed in the novel
inhibitor generation process for lead compound screening and SAR analysis. Evaluation of the
ESBL inhibitory activity of the lead compounds was performed in combination with three of the
most susceptible antibiotics: ceftazidime, meropenem and ampicillin, against thirteen ESBL enzymes
including four new CTX-M harboring strains and four KPC-2 producing species.
Results:
L-proline derived (S)-1-(2-sulfamoylbenzoyl)pyrrolidine-2-carboxylic acid (compound
6) as a “non-sulfur, non-β-lactam” and the most potential ESBL inhibitor was identified. Compound
6 possesses ideal anti-resistance activities by reducing MICs of ceftazidime, meropenem
and ampicillin by 16-133, 32-133 and 67-267 fold respectiveily. The inhibitory mechanism of 6
with CTX-M, KPC-2 and penicillinase were proposed and probed with molecular docking analysis.
Conclusion:
Given that the simple proline derivative but promising synergistic antibacterial
properties of compound 6 augers well for further investigations into its in vivo efficacy.
Collapse
Affiliation(s)
- Xinyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Shengjie Dong
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yuru Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Hu Xu
- Department of Medicinal Chemistry, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, China
| | - Hongxia Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
23
|
de Arruda EGR, Rocha BA, Barrionuevo MVF, Aðalsteinsson HM, Galdino FE, Loh W, Lima FA, Abbehausen C. The influence of ZnII coordination sphere and chemical structure over the reactivity of metallo-β-lactamase model compounds. Dalton Trans 2019; 48:2900-2916. [DOI: 10.1039/c8dt03905d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The first coordination sphere influences the reactivity of metallo-β-lactamase monozinc model complexes.
Collapse
|
24
|
Khrenova MG, Krivitskaya AV, Tsirelson VG. The QM/MM-QTAIM approach reveals the nature of the different reactivity of cephalosporins in the active site of L1 metallo-β-lactamase. NEW J CHEM 2019. [DOI: 10.1039/c9nj00254e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We combine the QM/MM and the QTAIM approaches to predict the reactivity of cephalosporins in the active site of L1 metallo-β-lactamase.
Collapse
Affiliation(s)
- Maria G. Khrenova
- A.N. Bach Institute of Biochemistry
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Moscow
- Russia
- Department of Chemistry
| | - Alexandra V. Krivitskaya
- A.N. Bach Institute of Biochemistry
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Moscow
- Russia
- Mendeleev University of Chemical Technology
| | - Vladimir G. Tsirelson
- A.N. Bach Institute of Biochemistry
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Moscow
- Russia
- Mendeleev University of Chemical Technology
| |
Collapse
|
25
|
Somboro AM, Osei Sekyere J, Amoako DG, Essack SY, Bester LA. Diversity and Proliferation of Metallo-β-Lactamases: a Clarion Call for Clinically Effective Metallo-β-Lactamase Inhibitors. Appl Environ Microbiol 2018; 84:e00698-18. [PMID: 30006399 PMCID: PMC6121990 DOI: 10.1128/aem.00698-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The worldwide proliferation of life-threatening metallo-β-lactamase (MBL)-producing Gram-negative bacteria is a serious concern to public health. MBLs are compromising the therapeutic efficacies of β-lactams, particularly carbapenems, which are last-resort antibiotics indicated for various multidrug-resistant bacterial infections. Inhibition of enzymes mediating antibiotic resistance in bacteria is one of the major promising means for overcoming bacterial resistance. Compounds having potential MBL-inhibitory activity have been reported, but none are currently under clinical trials. The need for developing safe and efficient MBL inhibitors (MBLIs) is obvious, particularly with the continuous spread of MBLs worldwide. In this review, the emergence and escalation of MBLs in Gram-negative bacteria are discussed. The relationships between different class B β-lactamases identified up to 2017 are represented by a phylogenetic tree and summarized. In addition, approved and/or clinical-phase serine β-lactamase inhibitors are recapitulated to reflect the successful advances made in developing class A β-lactamase inhibitors. Reported MBLIs, their inhibitory properties, and their purported modes of inhibition are delineated. Insights into structural variations of MBLs and the challenges involved in developing potent MBLIs are also elucidated and discussed. Currently, natural products and MBL-resistant β-lactam analogues are the most promising agents that can become clinically efficient MBLIs. A deeper comprehension of the mechanisms of action and activity spectra of the various MBLs and their inhibitors will serve as a bedrock for further investigations that can result in clinically useful MBLIs to curb this global menace.
Collapse
Affiliation(s)
- Anou M Somboro
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Daniel G Amoako
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Linda A Bester
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
26
|
Malathi K, Ramaiah S. Mechanism of imipenem resistance in metallo‐β‐lactamases expressing pathogenic bacterial spp. and identification of potential inhibitors: An in silico approach. J Cell Biochem 2018; 120:584-591. [DOI: 10.1002/jcb.27414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Kullappan Malathi
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu India
| |
Collapse
|
27
|
Zhang D, Markoulides MS, Stepanovs D, Rydzik AM, El-Hussein A, Bon C, Kamps JJAG, Umland KD, Collins PM, Cahill ST, Wang DY, von Delft F, Brem J, McDonough MA, Schofield CJ. Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases. Bioorg Med Chem 2018; 26:2928-2936. [PMID: 29655609 PMCID: PMC6008492 DOI: 10.1016/j.bmc.2018.02.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Metallo-β-lactamases (MBLs) enable bacterial resistance to almost all classes of β-lactam antibiotics. We report studies on enethiol containing MBL inhibitors, which were prepared by rhodanine hydrolysis. The enethiols inhibit MBLs from different subclasses. Crystallographic analyses reveal that the enethiol sulphur displaces the di-Zn(II) ion bridging 'hydrolytic' water. In some, but not all, cases biophysical analyses provide evidence that rhodanine/enethiol inhibition involves formation of a ternary MBL enethiol rhodanine complex. The results demonstrate how low molecular weight active site Zn(II) chelating compounds can inhibit a range of clinically relevant MBLs and provide additional evidence for the potential of rhodanines to be hydrolysed to potent inhibitors of MBL protein fold and, maybe, other metallo-enzymes, perhaps contributing to the complex biological effects of rhodanines. The results imply that any medicinal chemistry studies employing rhodanines (and related scaffolds) as inhibitors should as a matter of course include testing of their hydrolysis products.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Marios S Markoulides
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Dmitrijs Stepanovs
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Anna M Rydzik
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ahmed El-Hussein
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom; The National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - Corentin Bon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jos J A G Kamps
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Klaus-Daniel Umland
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Patrick M Collins
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Samuel T Cahill
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - David Y Wang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom; Structural Genomics Consortium (SGC), University of Oxford, Oxford, OX3 7DQ, UK; (e)Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A McDonough
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
28
|
Shi P, Zhang Y, Li Y, Bian L. Probing the interaction of l
-captopril with metallo-β-lactamase CcrA by fluorescence spectra and molecular dynamic simulation. LUMINESCENCE 2018; 33:954-961. [DOI: 10.1002/bio.3495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/18/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Penghui Shi
- College of Life Science; Northwest University; Xi'an Shaanxi People's Republic of China
| | - Yan Zhang
- College of Life Science; Northwest University; Xi'an Shaanxi People's Republic of China
| | - Yuhua Li
- College of Life Science; Northwest University; Xi'an Shaanxi People's Republic of China
| | - Liujiao Bian
- College of Life Science; Northwest University; Xi'an Shaanxi People's Republic of China
| |
Collapse
|
29
|
Blackman AG, Gahan LR. Metal-coordinated Hydroxide as a Nucleophile: a Brief History. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Allan G. Blackman
- Centre for Biomedical and Chemical Sciences; School of Science; Auckland University of Technology; Private Bag 92006 Auckland New Zealand
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
30
|
Abboud MI, Kosmopoulou M, Krismanich AP, Johnson JW, Hinchliffe P, Brem J, Claridge TDW, Spencer J, Schofield CJ, Dmitrienko GI. Cyclobutanone Mimics of Intermediates in Metallo-β-Lactamase Catalysis. Chemistry 2018; 24:5734-5737. [PMID: 29250863 PMCID: PMC5947706 DOI: 10.1002/chem.201705886] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 01/25/2023]
Abstract
The most important resistance mechanism to β-lactam antibiotics involves hydrolysis by two β-lactamase categories: the nucleophilic serine and the metallo-β-lactamases (SBLs and MBLs, respectively). Cyclobutanones are hydrolytically stable β-lactam analogues with potential to inhibit both SBLs and MBLs. We describe solution and crystallographic studies on the interaction of a cyclobutanone penem analogue with the clinically important MBL SPM-1. NMR experiments using 19 F-labeled SPM-1 imply the cyclobutanone binds to SPM-1 with micromolar affinity. A crystal structure of the SPM-1:cyclobutanone complex reveals binding of the hydrated cyclobutanone through interactions with one of the zinc ions, stabilisation of the hydrate by hydrogen bonding to zinc-bound water, and hydrophobic contacts with aromatic residues. NMR analyses using a 13 C-labeled cyclobutanone support assignment of the bound species as the hydrated ketone. The results inform on how MBLs bind substrates and stabilize tetrahedral intermediates. They support further investigations on the use of transition-state and/or intermediate analogues as inhibitors of all β-lactamase classes.
Collapse
Affiliation(s)
- Martine I. Abboud
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Magda Kosmopoulou
- School of Cellular and Molecular MedicineUniversity of Bristol, Medical Sciences BuildingBristolBS8 1TDUK
| | - Anthony P. Krismanich
- Department of ChemistryUniversity of Waterloo200 University Ave. W.Waterloo, OntarioN2L 3G1Canada
| | - Jarrod W. Johnson
- Department of ChemistryUniversity of Waterloo200 University Ave. W.Waterloo, OntarioN2L 3G1Canada
| | - Philip Hinchliffe
- School of Cellular and Molecular MedicineUniversity of Bristol, Medical Sciences BuildingBristolBS8 1TDUK
| | - Jürgen Brem
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | - James Spencer
- School of Cellular and Molecular MedicineUniversity of Bristol, Medical Sciences BuildingBristolBS8 1TDUK
| | | | - Gary I. Dmitrienko
- Department of ChemistryUniversity of Waterloo200 University Ave. W.Waterloo, OntarioN2L 3G1Canada
| |
Collapse
|
31
|
Hinchliffe P, Tanner CA, Krismanich AP, Labbé G, Goodfellow VJ, Marrone L, Desoky AY, Calvopiña K, Whittle EE, Zeng F, Avison MB, Bols NC, Siemann S, Spencer J, Dmitrienko GI. Structural and Kinetic Studies of the Potent Inhibition of Metallo-β-lactamases by 6-Phosphonomethylpyridine-2-carboxylates. Biochemistry 2018; 57:1880-1892. [PMID: 29485857 PMCID: PMC6007964 DOI: 10.1021/acs.biochem.7b01299] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/15/2018] [Indexed: 01/05/2023]
Abstract
There are currently no clinically available inhibitors of metallo-β-lactamases (MBLs), enzymes that hydrolyze β-lactam antibiotics and confer resistance to Gram-negative bacteria. Here we present 6-phosphonomethylpyridine-2-carboxylates (PMPCs) as potent inhibitors of subclass B1 (IMP-1, VIM-2, and NDM-1) and B3 (L1) MBLs. Inhibition followed a competitive, slow-binding model without an isomerization step (IC50 values of 0.3-7.2 μM; Ki values of 0.03-1.5 μM). Minimum inhibitory concentration assays demonstrated potentiation of β-lactam (Meropenem) activity against MBL-producing bacteria, including clinical isolates, at concentrations at which eukaryotic cells remain viable. Crystal structures revealed unprecedented modes of binding of inhibitor to B1 (IMP-1) and B3 (L1) MBLs. In IMP-1, binding does not replace the nucleophilic hydroxide, and the PMPC carboxylate and pyridine nitrogen interact closely (2.3 and 2.7 Å, respectively) with the Zn2 ion of the binuclear metal site. The phosphonate group makes limited interactions but is 2.6 Å from the nucleophilic hydroxide. Furthermore, the presence of a water molecule interacting with the PMPC phosphonate and pyridine N-C2 π-bond, as well as the nucleophilic hydroxide, suggests that the PMPC binds to the MBL active site as its hydrate. Binding is markedly different in L1, with the phosphonate displacing both Zn2, forming a monozinc enzyme, and the nucleophilic hydroxide, while also making multiple interactions with the protein main chain and Zn1. The carboxylate and pyridine nitrogen interact with Ser221 and -223, respectively (3 Å distance). The potency, low toxicity, cellular activity, and amenability to further modification of PMPCs indicate these and similar phosphonate compounds can be further considered for future MBL inhibitor development.
Collapse
Affiliation(s)
- Philip Hinchliffe
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Carol A. Tanner
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | - Geneviève Labbé
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | - Laura Marrone
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Ahmed Y. Desoky
- Department
of Chemistry, College of Science, University
of Hail, Saudi Arabia
| | - Karina Calvopiña
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Emily E. Whittle
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Fanxing Zeng
- Department
of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Matthew B. Avison
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Niels C. Bols
- Department
of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Stefan Siemann
- Department
of Chemistry and Biochemistry, Laurentian
University, Sudbury, Ontario, Canada P3E 2C6
| | - James Spencer
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Gary I. Dmitrienko
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- School
of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
32
|
Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin Microbiol Rev 2018. [PMID: 29540434 DOI: 10.1128/cmr.00077-17] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The global incidence of drug-resistant Gram-negative bacillary infections has been increasing, and there is a dire need to develop novel strategies to overcome this problem. Intrinsic resistance in Gram-negative bacteria, such as their protective outer membrane and constitutively overexpressed efflux pumps, is a major survival weapon that renders them refractory to current antibiotics. Several potential avenues to overcome this problem have been at the heart of antibiotic drug discovery in the past few decades. We review some of these strategies, with emphasis on antibiotic hybrids either as stand-alone antibacterial agents or as adjuvants that potentiate a primary antibiotic in Gram-negative bacteria. Antibiotic hybrid is defined in this review as a synthetic construct of two or more pharmacophores belonging to an established agent known to elicit a desired antimicrobial effect. The concepts, advances, and challenges of antibiotic hybrids are elaborated in this article. Moreover, we discuss several antibiotic hybrids that were or are in clinical evaluation. Mechanistic insights into how tobramycin-based antibiotic hybrids are able to potentiate legacy antibiotics in multidrug-resistant Gram-negative bacilli are also highlighted. Antibiotic hybrids indeed have a promising future as a therapeutic strategy to overcome drug resistance in Gram-negative pathogens and/or expand the usefulness of our current antibiotic arsenal.
Collapse
|
33
|
Khrenova MG, Nemukhin AV. Modeling the Transient Kinetics of the L1 Metallo-β-Lactamase. J Phys Chem B 2018; 122:1378-1386. [DOI: 10.1021/acs.jpcb.7b10188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Maria G. Khrenova
- Department
of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander V. Nemukhin
- Department
of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
34
|
Ferraresso L, de Arruda E, de Moraes T, Fazzi R, Da Costa Ferreira A, Abbehausen C. Copper(II) and zinc(II) dinuclear enzymes model compounds: The nature of the metal ion in the biological function. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Docquier JD, Mangani S. An update on β-lactamase inhibitor discovery and development. Drug Resist Updat 2017; 36:13-29. [PMID: 29499835 DOI: 10.1016/j.drup.2017.11.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 11/27/2022]
Abstract
Antibiotic resistance, and the emergence of pan-resistant clinical isolates, seriously threatens our capability to treat bacterial diseases, including potentially deadly hospital-acquired infections. This growing issue certainly requires multiple adequate responses, including the improvement of both diagnosis methods and use of antibacterial agents, and obviously the development of novel antibacterial drugs, especially active against Gram-negative pathogens, which represent an urgent medical need. Considering the clinical relevance of both β-lactam antibiotics and β-lactamase-mediated resistance, the discovery and development of combinations including a β-lactamase inhibitor seems to be particularly attractive, despite being extremely challenging due to the enormous diversity, both structurally and mechanistically, of the potential β-lactamase targets. This review will cover the evolution of currently available β-lactamase inhibitors along with the most recent research leading to new β-lactamase inhibitors of potential clinical interest or already in the stage of clinical development.
Collapse
Affiliation(s)
- Jean-Denis Docquier
- Department of Medical Biotechnology, University of Siena, Viale Bracci 16, 53100 Siena, Italy.
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
36
|
Shi P, Qiao P, Zhang Y, Li S, Feng X, Bian L. Spectroscopy analysis and molecular dynamics studies on the binding of penicillin V and sulbactam to beta-lactamase II from Bacillus cereus. J Pharm Biomed Anal 2017; 138:206-214. [PMID: 28219797 DOI: 10.1016/j.jpba.2017.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/15/2022]
Abstract
The molecular recognition and interaction of beta-lactamase II from Bacillus cereus (Bc II) with penicillin V (PV) and sulbactam (Sul) especially conformational changes of Bc II in the binding process were studied through spectroscopy analysis in combination with molecular dynamics (MD) simulation. The results show that in the binding process, a new coordination bond is observed between the Zn2 of Bc II and the carboxyl-O of PV or Sul by replacing His204. Electrostatic interaction between Zn2 and the ligand provide main driving force for the binding affinity. Compared with apo Bc II, there are mainly four loops showing significant conformational changes in ligand-bound Bc II. A weak conformational transformation from β-sheets to random coils is observed in the loop2 of ligand-bound Bc II. The conformational transformation may depend on the functional group and binding pose of the ligand, giving the binding pocket greater flexibility and accordingly allowing for an induced fit of the enzyme-ligand binding site around the newly introduced ligand. The change in the loop2 of ligand-bound Bc II may lead to the opening of the binding pocket of Bc II. Therefore, loop2 can be considered a gate for control of ligand access in Bc II, hence its dynamic response should be considered in new drug design and development.
Collapse
Affiliation(s)
- Penghui Shi
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Pan Qiao
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Yeli Zhang
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Shuaihua Li
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Xuan Feng
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
37
|
Hou CFD, Liu JW, Collyer C, Mitić N, Pedroso MM, Schenk G, Ollis DL. Insights into an evolutionary strategy leading to antibiotic resistance. Sci Rep 2017; 7:40357. [PMID: 28074907 PMCID: PMC5225480 DOI: 10.1038/srep40357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) with activity towards a broad-spectrum of β-lactam antibiotics have become a major threat to public health, not least due to their ability to rapidly adapt their substrate preference. In this study, the capability of the MBL AIM-1 to evade antibiotic pressure by introducing specific mutations was probed by two alternative methods, i.e. site-saturation mutagenesis (SSM) of active site residues and in vitro evolution. Both approaches demonstrated that a single mutation in AIM-1 can greatly enhance a pathogen's resistance towards broad spectrum antibiotics without significantly compromising the catalytic efficiency of the enzyme. Importantly, the evolution experiments demonstrated that relevant amino acids are not necessarily in close proximity to the catalytic centre of the enzyme. This observation is a powerful demonstration that MBLs have a diverse array of possibilities to adapt to new selection pressures, avenues that cannot easily be predicted from a crystal structure alone.
Collapse
Affiliation(s)
- Chun-Feng D Hou
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Jian-Wei Liu
- CSIRO Entomology, Black Mountain, ACT 2601, Australia
| | - Charles Collyer
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David L Ollis
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
38
|
Pedroso MM, Selleck C, Enculescu C, Harmer JR, Mitić N, Craig WR, Helweh W, Hugenholtz P, Tyson GW, Tierney DL, Larrabee JA, Schenk G. Characterization of a highly efficient antibiotic-degrading metallo-β-lactamase obtained from an uncultured member of a permafrost community. Metallomics 2017; 9:1157-1168. [DOI: 10.1039/c7mt00195a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microorganisms in the permafrost contain a potent mechanism to inactivate antibiotics.
Collapse
|
39
|
Purg M, Pabis A, Baier F, Tokuriki N, Jackson C, Kamerlin SCL. Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0150. [PMID: 27698033 PMCID: PMC5052733 DOI: 10.1098/rsta.2016.0150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 05/27/2023]
Abstract
Diverse organophosphate hydrolases have convergently evolved the ability to hydrolyse man-made organophosphates. Thus, these enzymes are attractive model systems for studying the factors shaping enzyme functional evolution. Methyl parathion hydrolase (MPH) is an enzyme from the metallo-β-lactamase superfamily, which hydrolyses a wide range of organophosphate, aryl ester and lactone substrates. In addition, MPH demonstrates metal-ion-dependent selectivity patterns. The origins of this remain unclear, but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. Here, we present detailed mechanistic studies of the paraoxonase and arylesterase activities of MPH complexed with five different transition metal ions, and demonstrate that the hydrolysis reactions proceed via similar pathways and transition states. However, while it is possible to discern a clear structural origin for the selectivity between different substrates, the selectivity between different metal ions appears to lie instead in the distinct electrostatic properties of the metal ions themselves, which causes subtle changes in transition state geometries and metal-metal distances at the transition state rather than significant structural changes in the active site. While subtle, these differences can be significant for shaping the metal-ion-dependent activity patterns observed for this enzyme.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Collapse
Affiliation(s)
- Miha Purg
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, Uppsala 75124, Sweden
| | - Anna Pabis
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, Uppsala 75124, Sweden
| | - Florian Baier
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Colin Jackson
- Research School of Chemistry, Building 138, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Shina Caroline Lynn Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, Uppsala 75124, Sweden
| |
Collapse
|
40
|
Selleck C, Larrabee JA, Harmer J, Guddat LW, Mitić N, Helweh W, Ollis DL, Craig WR, Tierney DL, Monteiro Pedroso M, Schenk G. AIM-1: An Antibiotic-Degrading Metallohydrolase That Displays Mechanistic Flexibility. Chemistry 2016; 22:17704-17714. [DOI: 10.1002/chem.201602762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher Selleck
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - James A. Larrabee
- Department of Chemistry and Biochemistry; Middlebury College; Middlebury Vermont 05753 USA
| | - Jeffrey Harmer
- Centre for Advanced Imaging; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - Nataša Mitić
- Department of Chemistry; Maynooth University; Maynooth, Co. Kildare Ireland
| | - Waleed Helweh
- Department of Chemistry and Biochemistry; Middlebury College; Middlebury Vermont 05753 USA
| | - David L. Ollis
- Research School of Chemistry; Australian National University of Canberra; ACT 0200 Australia
| | - Whitney R. Craig
- Department of Chemistry and Biochemistry; Miami University, Oxford; Ohio 45056 USA
| | - David L. Tierney
- Department of Chemistry and Biochemistry; Miami University, Oxford; Ohio 45056 USA
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| |
Collapse
|
41
|
Brem J, Cain R, Cahill S, McDonough MA, Clifton IJ, Jiménez-Castellanos JC, Avison MB, Spencer J, Fishwick CWG, Schofield CJ. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat Commun 2016; 7:12406. [PMID: 27499424 PMCID: PMC4979060 DOI: 10.1038/ncomms12406] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/29/2016] [Indexed: 12/24/2022] Open
Abstract
β-Lactamases enable resistance to almost all β-lactam antibiotics. Pioneering work revealed that acyclic boronic acids can act as 'transition state analogue' inhibitors of nucleophilic serine enzymes, including serine-β-lactamases. Here we report biochemical and biophysical analyses revealing that cyclic boronates potently inhibit both nucleophilic serine and zinc-dependent β-lactamases by a mechanism involving mimicking of the common tetrahedral intermediate. Cyclic boronates also potently inhibit the non-essential penicillin-binding protein PBP 5 by the same mechanism of action. The results open the way for development of dual action inhibitors effective against both serine- and metallo-β-lactamases, and which could also have antimicrobial activity through inhibition of PBPs.
Collapse
Affiliation(s)
- Jürgen Brem
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Ricky Cain
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Samuel Cahill
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Michael A. McDonough
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Ian J. Clifton
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | | - Matthew B. Avison
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
42
|
Structural Insights into Recognition of Hydrolyzed Carbapenems and Inhibitors by Subclass B3 Metallo-β-Lactamase SMB-1. Antimicrob Agents Chemother 2016; 60:4274-82. [PMID: 27161644 DOI: 10.1128/aac.03108-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022] Open
Abstract
Metallo-β-lactamases (MBLs) confer resistance to carbapenems, and their increasing global prevalence is a growing clinical concern. To elucidate the mechanisms by which these enzymes recognize and hydrolyze carbapenems, we solved 1.4 to 1.6 Å crystal structures of SMB-1 (Serratia metallo-β-lactamase 1), a subclass B3 MBL, bound to hydrolyzed carbapenems (doripenem, meropenem, and imipenem). In these structures, SMB-1 interacts mainly with the carbapenem core structure via elements in the active site, including a zinc ion (Zn-2), Q157[113] (where the position in the SMB-1 sequence is in brackets after the BBL number), S221[175], and T223[177]. There is less contact with the carbapenem R2 side chains, strongly indicating that SMB-1 primarily recognizes the carbapenem core structure. This is the first report describing how a subclass B3 MBL recognizes carbapenems. We also solved the crystal structure of SMB-1 in complex with the approved drugs captopril, an inhibitor of the angiotensin-converting enzyme, and 2-mercaptoethanesulfonate, a chemoprotectant. These drugs are inhibitors of SMB-1 with Ki values of 8.9 and 184 μM, respectively. Like carbapenems, these inhibitors interact with Q157[113] and T223[177] and their thiol groups coordinate the zinc ions in the active site. Taken together, the data indicate that Q157[113], S221[175], T223[177], and the two zinc ions in the active site are key targets in the design of SMB-1 inhibitors with enhanced affinity. The structural data provide a solid foundation for the development of effective inhibitors that would overcome the carbapenem resistance of MBL-producing multidrug-resistant microbes.
Collapse
|
43
|
Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proc Natl Acad Sci U S A 2016; 113:E3745-54. [PMID: 27303030 DOI: 10.1073/pnas.1601368113] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics and are unaffected by clinically available β-lactamase inhibitors (βLIs). Active-site architecture divides MBLs into three classes (B1, B2, and B3), complicating development of βLIs effective against all enzymes. Bisthiazolidines (BTZs) are carboxylate-containing, bicyclic compounds, considered as penicillin analogs with an additional free thiol. Here, we show both l- and d-BTZ enantiomers are micromolar competitive βLIs of all MBL classes in vitro, with Kis of 6-15 µM or 36-84 µM for subclass B1 MBLs (IMP-1 and BcII, respectively), and 10-12 µM for the B3 enzyme L1. Against the B2 MBL Sfh-I, the l-BTZ enantiomers exhibit 100-fold lower Kis (0.26-0.36 µM) than d-BTZs (26-29 µM). Importantly, cell-based time-kill assays show BTZs restore β-lactam susceptibility of Escherichia coli-producing MBLs (IMP-1, Sfh-1, BcII, and GOB-18) and, significantly, an extensively drug-resistant Stenotrophomonas maltophilia clinical isolate expressing L1. BTZs therefore inhibit the full range of MBLs and potentiate β-lactam activity against producer pathogens. X-ray crystal structures reveal insights into diverse BTZ binding modes, varying with orientation of the carboxylate and thiol moieties. BTZs bind the di-zinc centers of B1 (IMP-1; BcII) and B3 (L1) MBLs via the free thiol, but orient differently depending upon stereochemistry. In contrast, the l-BTZ carboxylate dominates interactions with the monozinc B2 MBL Sfh-I, with the thiol uninvolved. d-BTZ complexes most closely resemble β-lactam binding to B1 MBLs, but feature an unprecedented disruption of the D120-zinc interaction. Cross-class MBL inhibition therefore arises from the unexpected versatility of BTZ binding.
Collapse
|
44
|
Wang DY, Abboud MI, Markoulides MS, Brem J, Schofield CJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem 2016; 8:1063-84. [PMID: 27327972 DOI: 10.4155/fmc-2016-0078] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Avibactam, which is the first non-β-lactam β-lactamase inhibitor to be introduced for clinical use, is a broad-spectrum serine β-lactamase inhibitor with activity against class A, class C, and, some, class D β-lactamases. We provide an overview of efforts, which extend to the period soon after the discovery of the penicillins, to develop clinically useful non-β-lactam compounds as antibacterials, and, subsequently, penicillin-binding protein and β-lactamase inhibitors. Like the β-lactam inhibitors, avibactam works via a mechanism involving covalent modification of a catalytically important nucleophilic serine residue. However, unlike the β-lactam inhibitors, avibactam reacts reversibly with its β-lactamase targets. We discuss chemical factors that may account for the apparently special nature of β-lactams and related compounds as antibacterials and β-lactamase inhibitors, including with respect to resistance. Avenues for future research including non-β-lactam antibacterials acting similarly to β-lactams are discussed.
Collapse
Affiliation(s)
| | | | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, UK
| | | |
Collapse
|
45
|
Pitondo-Silva A, Devechio BB, Moretto JAS, Stehling EG. High prevalence of bla VIM-1 gene in bacteria from Brazilian soil. Can J Microbiol 2016; 62:820-826. [PMID: 27392282 DOI: 10.1139/cjm-2015-0787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated bacteria from soil samples to (i) determine the main bacterial genera and species having resistance to carbapenem and other β-lactams and (ii) establish if the mechanism of resistance was due to the production of metallo-β-lactamases. The isolates were characterized by PCR for metallo-β-lactamases and integrons, by antimicrobial susceptibility testing, and by sequencing. The antimicrobial profile of 40 imipenem-resistant Gram-positive soil isolates from all Brazilian regions demonstrated that 31 (77.5%) of them were multidrug resistant. Among the 40 isolates, 19 presented the blaVIM gene and class 1 integrons by PCR. Six of the 19 isolates were identified as Paenibacillus sp., 12 as Bacillus sp., and just 1 was classified as Staphylococcus sp., by sequencing of the 16S rRNA gene. These results suggest that bacteria from soil can act as a source of blaVIM-1 genes, representing a threat to public health.
Collapse
Affiliation(s)
- André Pitondo-Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo - Ribeirão Preto, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo - Ribeirão Preto, Brazil
| | - Beatriz Baptistella Devechio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo - Ribeirão Preto, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo - Ribeirão Preto, Brazil
| | - Jéssica Aparecida Silva Moretto
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo - Ribeirão Preto, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo - Ribeirão Preto, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo - Ribeirão Preto, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo - Ribeirão Preto, Brazil
| |
Collapse
|
46
|
Montagner C, Nigen M, Jacquin O, Willet N, Dumoulin M, Karsisiotis AI, Roberts GCK, Damblon C, Redfield C, Matagne A. The Role of Active Site Flexible Loops in Catalysis and of Zinc in Conformational Stability of Bacillus cereus 569/H/9 β-Lactamase. J Biol Chem 2016; 291:16124-37. [PMID: 27235401 DOI: 10.1074/jbc.m116.719005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 11/06/2022] Open
Abstract
Metallo-β-lactamases catalyze the hydrolysis of most β-lactam antibiotics and hence represent a major clinical concern. The development of inhibitors for these enzymes is complicated by the diversity and flexibility of their substrate-binding sites, motivating research into their structure and function. In this study, we examined the conformational properties of the Bacillus cereus β-lactamase II in the presence of chemical denaturants using a variety of biochemical and biophysical techniques. The apoenzyme was found to unfold cooperatively, with a Gibbs free energy of stabilization (ΔG(0)) of 32 ± 2 kJ·mol(-1) For holoBcII, a first non-cooperative transition leads to multiple interconverting native-like states, in which both zinc atoms remain bound in an apparently unaltered active site, and the protein displays a well organized compact hydrophobic core with structural changes confined to the enzyme surface, but with no catalytic activity. Two-dimensional NMR data revealed that the loss of activity occurs concomitantly with perturbations in two loops that border the enzyme active site. A second cooperative transition, corresponding to global unfolding, is observed at higher denaturant concentrations, with ΔG(0) value of 65 ± 1.4 kJ·mol(-1) These combined data highlight the importance of the two zinc ions in maintaining structure as well as a relatively well defined conformation for both active site loops to maintain enzymatic activity.
Collapse
Affiliation(s)
- Caroline Montagner
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Michaël Nigen
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Olivier Jacquin
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Nicolas Willet
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Mireille Dumoulin
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Andreas Ioannis Karsisiotis
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Gordon C K Roberts
- the Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom, and
| | - Christian Damblon
- Département de Chimie, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | - Christina Redfield
- the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - André Matagne
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| |
Collapse
|
47
|
Zhai L, Zhang YL, Kang JS, Oelschlaeger P, Xiao L, Nie SS, Yang KW. Triazolylthioacetamide: A Valid Scaffold for the Development of New Delhi Metallo-β-Lactmase-1 (NDM-1) Inhibitors. ACS Med Chem Lett 2016; 7:413-7. [PMID: 27096051 DOI: 10.1021/acsmedchemlett.5b00495] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/16/2016] [Indexed: 11/30/2022] Open
Abstract
The metallo-β-lactamases (MβLs) cleave the β-lactam ring of β-lactam antibiotics, conferring resistance against these drugs to bacteria. Twenty-four triazolylthioacetamides were prepared and evaluated as inhibitors of representatives of the three subclasses of MβLs. All these compounds exhibited specific inhibitory activity against NDM-1 with an IC50 value range of 0.15-1.90 μM, but no activity against CcrA, ImiS, and L1 at inhibitor concentrations of up to 10 μM. Compounds 4d and 6c are partially mixed inhibitors with K i values of 0.49 and 0.63 μM using cefazolin as the substrate. Structure-activity relationship studies reveal that replacement of hydrogen on the aromatic ring by chlorine, heteroatoms, or alkyl groups can affect bioactivity, while leaving the aromatic ring of the triazolylthiols unmodified maintains the inhibitory potency. Docking studies reveal that the typical potent inhibitors of NDM-1, 4d and 6c, form stable interactions in the active site of NDM-1, with the triazole bridging Zn1 and Zn2, and the amide interacting with Lys 211 (Lys224).
Collapse
Affiliation(s)
- Le Zhai
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
- College
of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721016, P. R. China
| | - Yi-Lin Zhang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Joon S. Kang
- Department
of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, California 91768, United States
| | - Peter Oelschlaeger
- Department
of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, United States
| | - Lin Xiao
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Sha-Sha Nie
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ke-Wu Yang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
48
|
Sugrue E, Hartley CJ, Scott C, Jackson CJ. The Evolution of New Catalytic Mechanisms for Xenobiotic Hydrolysis in Bacterial Metalloenzymes. Aust J Chem 2016. [DOI: 10.1071/ch16426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An increasing number of bacterial metalloenzymes have been shown to catalyse the breakdown of xenobiotics in the environment, while others exhibit a variety of promiscuous xenobiotic-degrading activities. Several different evolutionary processes have allowed these enzymes to gain or enhance xenobiotic-degrading activity. In this review, we have surveyed the range of xenobiotic-degrading metalloenzymes, and discuss the molecular and catalytic basis for the development of new activities. We also highlight how our increased understanding of the natural evolution of xenobiotic-degrading metalloenzymes can be been applied to laboratory enzyme design.
Collapse
|
49
|
González MM, Vila AJ. An Elusive Task: A Clinically Useful Inhibitor of Metallo-β-Lactamases. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
50
|
Comparative Study of a Novel Biochemical Assay, the Rapidec Carba NP Test, for Detecting Carbapenemase-Producing Enterobacteriaceae. J Clin Microbiol 2015; 54:453-6. [PMID: 26582833 DOI: 10.1128/jcm.02626-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 01/31/2023] Open
Abstract
The novel biochemical test, the Rapidec Carba NP (RCNP), was evaluated using carbapenemase- and non-carbapenemase-producing Enterobacteriaceae isolates. The RCNP test was compared with the Carba NP test (CNP) and the modified Hodge test. Compared to the CNP test, the RCNP test had identical sensitivity (96%) and lower specificity (93% versus 100%). The medium used to culture the isolates significantly affected test sensitivity and specificity. The RCNP test was quicker and easier to perform than the other tests.
Collapse
|