1
|
Schorr K, Chen X, Sasaki T, Arias-Loza AP, Lang J, Higuchi T, Goepferich A. Rethinking Thin-Layer Chromatography for Screening Technetium-99m Radiolabeled Polymer Nanoparticles. ACS Pharmacol Transl Sci 2024; 7:2604-2611. [PMID: 39296255 PMCID: PMC11406700 DOI: 10.1021/acsptsci.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024]
Abstract
Thin-layer chromatography (TLC) is commonly employed to screen technetium-99m labeled polymer nanoparticle batches for unreduced pertechnetate and radio-colloidal impurities. Although this method is widely accepted, our findings applying radiolabeled PLGA/PLA-PEG nanoparticles underscore its lack of transferability between different settings and its limitations as a standalone quality control tool. While TLC profiles may appear similar for purified and radiocolloid containing nanoparticle formulations, their in vivo behavior can vary significantly, as demonstrated by discrepancies between TLC results and single-photon emission computed tomography (SPECT) and biodistribution data. This highlights the urgent need for a case-by-case evaluation of TLC methods for each specific nanoparticle type. Our study revealed that polymeric nanoparticles cannot be considered analytically uniform entities in the context of TLC analysis, emphasizing the complex interplay between nanoparticle composition, radiolabeling conditions, and subsequent biological behavior.
Collapse
Affiliation(s)
- Kathrin Schorr
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Bavaria 86156, Germany
| | - Takanori Sasaki
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria 97080, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
| | - Anahi Paula Arias-Loza
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria 97080, Germany
| | - Johannes Lang
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria 97080, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| |
Collapse
|
2
|
García MC, Calderón-Montaño JM, Rueda M, Longhi M, Rabasco AM, López-Lázaro M, Prieto-Dapena F, González-Rodríguez ML. pH-temperature dual-sensitive nucleolipid-containing stealth liposomes anchored with PEGylated AuNPs for triggering delivery of doxorubicin. Int J Pharm 2022; 619:121691. [PMID: 35331830 DOI: 10.1016/j.ijpharm.2022.121691] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
Liposomes (Lip) are useful nanocarriers for drug delivery and cancer nanomedicine because of their ability to efficiently encapsulate drugs with different physical and chemical properties. The pH gradient between normal and tumoral tissues, and their rapid metabolism that induces hyperthermia encourage the development of pH- and thermo-sensitive Lip for delivering anticancer drugs. Nucleolipids have been studied as scaffolding material to prepare Lip, mainly for cancer therapy. Herein, we report for the first time the use of 1,2-dipalmitoyl-sn-glycero-3-(cytidine diphosphate) (DG-CDP) to develop pH/thermo-sensitive nucleolipid-containing stealth Lip stabilized by combination with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol, anchored with NH2-PEGylated gold nanoparticles (PEG-AuNPs, 15 nm) for triggering delivery of doxorubicin (Dox). The optimal composition of DPPC, DG-CDP and cholesterol (94:3:3) was established by Langmuir isotherms. Unloaded and Dox-loaded Lip and AuNPs-Lip exhibited nano-scale sizes (415-650 nm), acceptable polydispersity indexes (<0.33), spherical shapes, and negative Z-potential (-23- -6.6 mV) due to the phosphate groups of DG-CDP, which allowed the anchoring with positively charged AuNPs. High EE% were achieved (>78%) and although efficient control in the Dox release towards different receptor media was observed, the release of Dox from PEG-AuNPs-Lip-Dox was significantly triggered at acidic pH and hyperthermia temperature, demonstrating its responsiveness to both stimuli. Dox-loaded Lip showed high cytotoxic activity against MDA-MB-231 breast cancer cells and SK-OV-3 ovarian cancer cells, suggesting that Dox was released from these nanocarriers over time. Overall, the liposomal formulations showed promising properties as stimuli-responsive nanocarriers for cancer nanomedicine, with prospects for hyperthermia therapy.
Collapse
Affiliation(s)
- Mónica C García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba X5000HUA, Argentina; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain.
| | - José Manuel Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain
| | - Manuela Rueda
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González s/n, 41012 Seville, Spain
| | - Marcela Longhi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba X5000HUA, Argentina
| | - Antonio M Rabasco
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain
| | - Francisco Prieto-Dapena
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González s/n, 41012 Seville, Spain
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain.
| |
Collapse
|
3
|
Recent Progress in Technetium-99m-Labeled Nanoparticles for Molecular Imaging and Cancer Therapy. NANOMATERIALS 2021; 11:nano11113022. [PMID: 34835786 PMCID: PMC8618883 DOI: 10.3390/nano11113022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has played a tremendous role in molecular imaging and cancer therapy. Over the last decade, scientists have worked exceptionally to translate nanomedicine into clinical practice. However, although several nanoparticle-based drugs are now clinically available, there is still a vast difference between preclinical products and clinically approved drugs. An efficient translation of preclinical results to clinical settings requires several critical studies, including a detailed, highly sensitive, pharmacokinetics and biodistribution study, and selective and efficient drug delivery to the target organ or tissue. In this context, technetium-99m (99mTc)-based radiolabeling of nanoparticles allows easy, economical, non-invasive, and whole-body in vivo tracking by the sensitive clinical imaging technique single-photon emission computed tomography (SPECT). Hence, a critical analysis of the radiolabeling strategies of potential drug delivery and therapeutic systems used to monitor results and therapeutic outcomes at the preclinical and clinical levels remains indispensable to provide maximum benefit to the patient. This review discusses up-to-date 99mTc radiolabeling strategies of a variety of important inorganic and organic nanoparticles and their application to preclinical imaging studies.
Collapse
|
4
|
Alies B, Ouelhazi MA, Noireau A, Gaudin K, Barthélémy P. Silver Ions Detection via Nucleolipids Self-Assembly. Anal Chem 2019; 91:1692-1695. [PMID: 30543097 DOI: 10.1021/acs.analchem.8b04066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A novel hybrid bioinspired amphiphile featuring a cytosine moiety, which self-assembles into liposomes can be used to detect silver ions in aqueous media. The coordination of Ag+ ions by the nucleotide moiety increases membrane rigidity, which enhances the fluorescence of a common reporter, Thioflavin T. Ag+ can be sensed even at trace concentrations (3 ppb) with great specificity over other metals ions. These nucleotide based supramolecular structures can be used to detect silver ions in drinking water, demonstrating the robustness of this approach.
Collapse
Affiliation(s)
- Bruno Alies
- University of Bordeaux , ARNA Laboratory , F-33000 Bordeaux , France
| | | | - Angéline Noireau
- University of Bordeaux , ARNA Laboratory , F-33000 Bordeaux , France
| | - Karen Gaudin
- University of Bordeaux , ARNA Laboratory , F-33000 Bordeaux , France
| | | |
Collapse
|
5
|
Nuthanakanti A. Cytidine and ribothymidine nucleolipids synthesis, organogelation, and selective anion and metal ion responsiveness. NEW J CHEM 2019. [DOI: 10.1039/c9nj03276b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleolipids of 2′,3′-O-diacylatedribothymidine supports the organogelation by utilizing inherent self-base pairing and solvent mediated bifurcated H-bonding and hydrophobic effect. These organogels exhibits unusual Hg2+ mediated base pairing.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| |
Collapse
|
6
|
Baillet J, Desvergnes V, Hamoud A, Latxague L, Barthélémy P. Lipid and Nucleic Acid Chemistries: Combining the Best of Both Worlds to Construct Advanced Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705078. [PMID: 29341288 DOI: 10.1002/adma.201705078] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Hybrid synthetic amphiphilic biomolecules are emerging as promising supramolecular materials for biomedical and technological applications. Herein, recent progress in the field of nucleic acid based lipids is highlighted with an emphasis on their molecular design, synthesis, supramolecular properties, physicochemical behaviors, and applications in the field of health science and technology. In the first section, the design and the study of nucleolipids are in focus and then the glyconucleolipid family is discussed. In the last section, recent contributions of responsive materials involving nucleolipids and their use as smart drug delivery systems are discussed. The supramolecular materials generated by nucleic acid based lipids open new challenges for biomedical applications, including the fields of medicinal chemistry, biosensors, biomaterials for tissue engineering, drug delivery, and the decontamination of nanoparticles.
Collapse
Affiliation(s)
- Julie Baillet
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| | - Valérie Desvergnes
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| | - Aladin Hamoud
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| | - Laurent Latxague
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| | - Philippe Barthélémy
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| |
Collapse
|
7
|
Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci 2017; 104:273-292. [DOI: 10.1016/j.ejps.2017.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
|
8
|
Ramin MA, Sindhu KR, Appavoo A, Oumzil K, Grinstaff MW, Chassande O, Barthélémy P. Cation Tuning of Supramolecular Gel Properties: A New Paradigm for Sustained Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605227. [PMID: 28151562 DOI: 10.1002/adma.201605227] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Hydrogels formed by the self-assembly of low-molecular-weight gelators (LMWGs) are promising scaffolds for drug-delivery applications. A new biocompatible hydrogel, resulting from the self-assembly of nucleotide-lipid salts can be safely injected in vivo. The resulting hydrogel provides sustained-release of protein for more than a week.
Collapse
Affiliation(s)
- Michael A Ramin
- ARNA Laboratory, Inserm, U1212, CNRS 5320, Université de Bordeaux, F-33000, Bordeaux, France
| | | | - Ananda Appavoo
- ARNA Laboratory, Inserm, U1212, CNRS 5320, Université de Bordeaux, F-33000, Bordeaux, France
| | - Khalid Oumzil
- ARNA Laboratory, Inserm, U1212, CNRS 5320, Université de Bordeaux, F-33000, Bordeaux, France
| | - Mark W Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| | | | - Philippe Barthélémy
- ARNA Laboratory, Inserm, U1212, CNRS 5320, Université de Bordeaux, F-33000, Bordeaux, France
| |
Collapse
|
9
|
Chaturvedi S, Mishra AK. Small Molecule Radiopharmaceuticals - A Review of Current Approaches. Front Med (Lausanne) 2016; 3:5. [PMID: 26942181 PMCID: PMC4763069 DOI: 10.3389/fmed.2016.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/15/2016] [Indexed: 12/24/2022] Open
Abstract
Radiopharmaceuticals are an integral component of nuclear medicine and are widely applied in diagnostics and therapy. Though widely applied, the development of an “ideal” radiopharmaceutical can be challenging. Issues such as specificity, selectivity, sensitivity, and feasible chemistry challenge the design and synthesis of radiopharmaceuticals. Over time, strategies to address the issues have evolved by making use of new technological advances in the fields of biology and chemistry. This review presents the application of few advances in design and synthesis of radiopharmaceuticals. The topics covered are bivalent ligand approach and lipidization as part of design modifications for enhanced selectivity and sensitivity and novel synthetic strategies for optimized chemistry and radiolabeling of radiopharmaceuticals.
Collapse
Affiliation(s)
- Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation , Delhi , India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation , Delhi , India
| |
Collapse
|
10
|
Kaul A, Chaturvedi S, Attri A, Kalra M, Mishra AK. Targeted theranostic liposomes: rifampicin and ofloxacin loaded pegylated liposomes for theranostic application in mycobacterial infections. RSC Adv 2016. [DOI: 10.1039/c6ra01135g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Theranostic liposomes as effective drug delivery systems for the management of infections.
Collapse
Affiliation(s)
- Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
| | - Asha Attri
- Ram Gopal College of Pharmacy
- Gurgaon
- India
| | | | - A. K. Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
| |
Collapse
|