1
|
Nazli A, Malanga M, Sohajda T, Béni S. Cationic Cyclodextrin-Based Carriers for Drug and Nucleic Acid Delivery. Pharmaceutics 2025; 17:81. [PMID: 39861729 PMCID: PMC11768558 DOI: 10.3390/pharmaceutics17010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host-guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems. First, we identified different cationic moieties that are commonly employed in the design of cyclodextrins with enhanced complexation ability. Subsequently, a wide range of cationic cyclodextrin-based drug delivery systems were analyzed with emphasis on chemistry, drug release profiles, and therapeutic outcomes. The evaluation of the delivery platforms was also based on the four major types of drugs, such as anticancer, anti-inflammatory, antibacterial, and antidiabetic agents. The delivery systems for nucleic acids were also summarized while focusing on their condensation ability, transfection efficiency, and biocompatibility in comparison to commercially available vectors such as PEI 25 kDa and lipofectamine 2000. Furthermore, we highlighted the potential of cationic cyclodextrins in constructing multimodal delivery systems for the simultaneous encapsulation of both drugs and nucleic acids. Finally, the challenges and limitations associated with cationic cyclodextrin setups were discussed.
Collapse
Affiliation(s)
- Adila Nazli
- Department of Pharmacognosy, Semmelweis University, 1085 Budapest, Hungary;
| | - Milo Malanga
- CarboHyde Zrt., Berlini u. 47-49, 1045 Budapest, Hungary; (M.M.); (T.S.)
| | - Tamás Sohajda
- CarboHyde Zrt., Berlini u. 47-49, 1045 Budapest, Hungary; (M.M.); (T.S.)
| | - Szabolcs Béni
- Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
2
|
Rivero-Barbarroja G, Benito JM, Ortiz Mellet C, García Fernández JM. Cyclodextrin-Based Functional Glyconanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2517. [PMID: 33333914 PMCID: PMC7765426 DOI: 10.3390/nano10122517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/29/2022]
Abstract
Cyclodextrins (CDs) have long occupied a prominent position in most pharmaceutical laboratories as "off-the-shelve" tools to manipulate the pharmacokinetics of a broad range of active principles, due to their unique combination of biocompatibility and inclusion abilities. The development of precision chemical methods for their selective functionalization, in combination with "click" multiconjugation procedures, have further leveraged the nanoscaffold nature of these oligosaccharides, creating a direct link between the glyco and the nano worlds. CDs have greatly contributed to understand and exploit the interactions between multivalent glycodisplays and carbohydrate-binding proteins (lectins) and to improve the drug-loading and functional properties of nanomaterials through host-guest strategies. The whole range of capabilities can be enabled through self-assembly, template-assisted assembly or covalent connection of CD/glycan building blocks. This review discusses the advancements made in this field during the last decade and the amazing variety of functional glyconanomaterials empowered by the versatility of the CD component.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | - Juan Manuel Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | | |
Collapse
|
3
|
Neva T, Carbajo-Gordillo AI, Benito JM, Lana H, Marcelo G, Ortiz Mellet C, Tros de Ilarduya C, Mendicuti F, García Fernández JM. Tuning the Topological Landscape of DNA-Cyclodextrin Nanocomplexes by Molecular Design. Chemistry 2020; 26:15259-15269. [PMID: 32710799 DOI: 10.1002/chem.202002951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/25/2022]
Abstract
Original molecular vectors that ensure broad flexibility to tune the shape and surface properties of plasmid DNA (pDNA) condensates are reported herein. The prototypic design involves a cyclodextrin (CD) platform bearing a polycationic cluster at the primary face and a doubly linked aromatic module bridging two consecutive monosaccharide units at the secondary face that behaves as a topology-encoding element. Subtle differences at the molecular level then translate into disparate morphologies at the nanoscale, including rods, worms, toroids, globules, ellipsoids, and spheroids. In vitro evaluation of the transfection capabilities revealed marked selectivity differences as a function of nanocomplex morphology. Remarkably high transfection efficiencies were associated with ellipsoidal or spherical shapes with a lamellar internal arrangement of pDNA chains and CD bilayers. Computational studies support that the stability of such supramolecular edifices is directly related to the tendency of the molecular vector to form noncovalent dimers upon DNA templating. Because the stability of the dimers depends on the protonation state of the polycationic clusters, the coaggregates display pH responsiveness, which facilitates endosomal escape and timely DNA release, a key step in successful transfection. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes.
Collapse
Affiliation(s)
- Tania Neva
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Ana I Carbajo-Gordillo
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Juan M Benito
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Hugo Lana
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080, Pamplona, Spain
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química, "Andrés M. del Rio" (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof García González 1, 41012, Sevilla, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080, Pamplona, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química, "Andrés M. del Rio" (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Spain
| | - José M García Fernández
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
4
|
González-Cuesta M, Ortiz Mellet C, García Fernández JM. Carbohydrate supramolecular chemistry: beyond the multivalent effect. Chem Commun (Camb) 2020; 56:5207-5222. [DOI: 10.1039/d0cc01135e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Hetero)multivalency acts as a multichannel switch that shapes the supramolecular properties of carbohydrates in an intrinsically multifactorial biological context.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | | |
Collapse
|
5
|
Jiménez Blanco JL, Benito JM, Ortiz Mellet C, García Fernández JM. Molecular nanoparticle-based gene delivery systems. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
García-Moreno MI, Ortega-Caballero F, Rísquez-Cuadro R, Ortiz Mellet C, García Fernández JM. The Impact of Heteromultivalency in Lectin Recognition and Glycosidase Inhibition: An Integrated Mechanistic Study. Chemistry 2017; 23:6295-6304. [PMID: 28240441 DOI: 10.1002/chem.201700470] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 01/06/2023]
Abstract
The vision of multivalency as a strategy limited to achieve affinity enhancements between a protein receptor and its putative sugar ligand (glycotope) has proven too simplistic. On the one hand, binding of a glycotope in a dense glycocalix-like construct to a lectin partner has been shown to be sensitive to the presence of a third sugar entity (heterocluster effect). On the other hand, several carbohydrate processing enzymes (glycosidases and glycosyltransferases) have been found to be also responsive to multivalent presentations of binding partners (multivalent enzyme inhibition), a phenomenon first discovered for iminosugar-type inhibitory species (inhitopes) and recently demonstrated for multivalent carbohydrate constructs. By assessing a series of homo- and heteroclusters combining α-d-glucopyranosyl-related glycotopes and inhitopes, it was shown that multivalency and heteromultivalency govern both kinds of events, allowing for activation, deactivation or enhancement of specific recognition phenomena towards a spectrum of lectin and glycosidase partners in a multimodal manner. This unified scenario originates from the ability of (hetero)multivalent architectures to trigger glycosidase binding modes that are reminiscent of those harnessed by lectins, which should be considered when profiling the biological activity of multivalent architectures.
Collapse
Affiliation(s)
- M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012, Sevilla, Spain
| | - Fernando Ortega-Caballero
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012, Sevilla, Spain
| | - Rocío Rísquez-Cuadro
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012, Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012, Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-University of Sevilla, Avda. Americo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
7
|
Przybylski C, Benito JM, Bonnet V, Mellet CO, García Fernández JM. Deciphering of polycationic carbohydrate based non-viral gene delivery agents by ESI-LTQ-Orbitrap using CID/HCD pairwise tandem mass spectrometry. RSC Adv 2016. [DOI: 10.1039/c6ra14508f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the study herein, we demonstrated that ESI-(MS)MS combining CID and HCD is a useful tool for the structural deciphering of five representative members of a polycationic cyclodextrin library used as non viral agents for gene delivery.
Collapse
Affiliation(s)
- Cédric Przybylski
- Université d’Evry-Val-d’Essonne
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement
- CNRS UMR 8587
- F-91025 Evry
- France
| | - Juan M. Benito
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- E-41092 Sevilla
- Spain
| | - Véronique Bonnet
- Université de Picardie Jules Verne
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources
- CNRS UMR 7378
- 80039 Amiens
- France
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- E-41012 Sevilla
- Spain
| | | |
Collapse
|
8
|
Gallego-Yerga L, Lomazzi M, Franceschi V, Sansone F, Ortiz Mellet C, Donofrio G, Casnati A, García Fernández JM. Cyclodextrin- and calixarene-based polycationic amphiphiles as gene delivery systems: a structure-activity relationship study. Org Biomol Chem 2015; 13:1708-23. [PMID: 25474077 DOI: 10.1039/c4ob02204a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multi-head/multi-tail facial amphiphiles built on cyclodextrin (CD) and calixarene (CA) scaffolds are paradigmatic examples of monodisperse gene delivery systems. The possibility to precisely control the architectural features at the molecular level offers unprecedented opportunities for conducting structure-activity relationship studies. A major requirement for those channels is the design of a sufficiently diverse ensemble of compounds for parallel evaluation of their capabilities to condense DNA into transfection nanoparticles where the gene material is protected from the environment. Here we have undertaken the preparation of an oriented library of β-cyclodextrin (βCD) and calix[4]arene (CA4) vectors with facial amphiphilic character designed to ascertain the effect of the cationic head nature (aminothiourea-, arginine- or guanidine-type groups) and the macrocyclic platform on the abilities to complex plasmid DNA (pDNA) and in the efficiency of the resulting nanocomplexes to transfect cells in vitro. The hydrophobic domain, formed by hexanoyl or hexyl chains, remains constant in each series, matching the overall structure found to be optimal in previous studies. DLS, TEM and AFM data support that all the compounds self-assemble in the presence of pDNA through a process that involves initially electrostatic interactions followed by formation of βCD or CA4 bilayers between the oligonucleotide filaments. Spherical transfectious nanoparticles that are monomolecular in DNA are thus obtained. Evaluation in epithelial COS-7 and human rhabdomyosarcoma RD-4 cells evidenced the importance of having primary amino groups in the vector to warrant high levels of transfection, probably because of their buffering capacity. The results indicate that the optimal cationic head depends on the macrocyclic core, aminothiourea groups being preferred in the βCD series and arginine groups in the CA4 series. Whereas the transfection efficiency relationships remain essentially unchanged within each series, irrespective of the cell type, the optimal platform (βD or CA4) strongly depends on the cell type. The results illustrate the potential of monodisperse vector prototypes and diversity-oriented strategies on identifying the optimal candidates for gene therapy applications.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Dept. Química Orgánica, Facultad de Química, Universidad de Sevilla, c/Profesor García González 1, 41012 Sevilla, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gallego-Yerga L, Blanco-Fernández L, Urbiola K, Carmona T, Marcelo G, Benito JM, Mendicuti F, Tros de Ilarduya C, Ortiz Mellet C, García Fernández JM. Host-Guest-Mediated DNA Templation of Polycationic Supramolecules for Hierarchical Nanocondensation and the Delivery of Gene Material. Chemistry 2015; 21:12093-104. [PMID: 26184887 DOI: 10.1002/chem.201501678] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/14/2022]
Abstract
Only a few examples of monodisperse molecular entities that can compact exogenous nucleic acids into nanocomplexes, protect the cargo from the biological environment, facilitate cell internalization, and promote safe transfection have been reported up to date. Although these species open new venues for fundamental studies on the structural requirements that govern the intervening processes and their application in nonviral gene-vector design, the synthesis of these moieties generally requires a relatively sophisticated chemistry, which hampers further development in gene therapy. Herein, we report an original strategy for the reversible complexation and delivery of DNA based on the supramolecular preorganization of a β-cyclodextrin-scaffolded polycationic cluster facilitated by bisadamantane guests. The resulting gemini-type, dual-cluster supramolecules can then undergo DNA-templated self-assembly at neutral pH value by bridging parallel DNA oligonucleotide fragments. This hierarchical DNA condensation mechanism affords transfectious nanoparticles with buffering capabilities, thus facilitating endosomal escape following cell internalization. Protonation also destabilizes the supramolecular dimers and consequently the whole supramolecular edifice, thus assisting DNA release. Our advanced hypotheses are supported by isothermal titration calorimetry, NMR and circular dichroism spectroscopic analysis, gel electrophoresis, dynamic light scattering, TEM, molecular mechanics, molecular dynamics, and transfection studies conducted in vitro and in vivo.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/Prof. García González 1, 41012 Sevilla (Spain)
| | - Laura Blanco-Fernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080, Pamplona (Spain)
| | - Koldo Urbiola
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080, Pamplona (Spain)
| | - Thais Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Edificio de Farmacia, Campus Universitario, Ctra, Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid (Spain)
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Edificio de Farmacia, Campus Universitario, Ctra, Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid (Spain)
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Avda. Americo Vespucio 49, 41092 Sevilla (Spain)
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Edificio de Farmacia, Campus Universitario, Ctra, Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid (Spain).
| | - Conchita Tros de Ilarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080, Pamplona (Spain).
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/Prof. García González 1, 41012 Sevilla (Spain).
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Avda. Americo Vespucio 49, 41092 Sevilla (Spain).
| |
Collapse
|
10
|
Méndez-Ardoy A, Díaz-Moscoso A, Ortiz Mellet C, Di Giorgio C, Vierling P, Benito JM, García Fernández JM. Harmonized tuning of nucleic acid and lectin binding properties with multivalent cyclodextrins for macrophage-selective gene delivery. RSC Adv 2015. [DOI: 10.1039/c5ra16087a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polycationic amphiphilic cyclodextrins (paCDs) have been shown to behave as efficient non-viral gene carriers paralleling the efficacy of commercial vectors towards a variety of cell lines.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Departamento de Química Orgánica
- Facultad de Química
- Univ. Sevilla
- C/Prof. García González 1
- E-41012 Sevilla
| | | | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Univ. Sevilla
- C/Prof. García González 1
- E-41012 Sevilla
| | - Christophe Di Giorgio
- Institut de Chimie de Nice
- ICN – Université de Nice Sophia Antipolis – CNRS UMR 7272
- F-06100 Nice
- France
| | - Pierre Vierling
- Institut de Chimie de Nice
- ICN – Université de Nice Sophia Antipolis – CNRS UMR 7272
- F-06100 Nice
- France
| | - Juan M. Benito
- Instituto de Investigaciones Químicas
- CSIC – Univ. Sevilla
- E-41092 Sevilla
- Spain
| | | |
Collapse
|