1
|
Deng XR, Hu AW, Hu SQ, Yang WL, Sun C, Xiao SJ, Yang GP, Zheng QQ, Liang RP, Zhang L, Qiu JD. An in-situ strategy to construct uracil-conjugated covalent organic frameworks with tunable fluorescence/recognition characteristics for sensitive and selective Mercury(II) detection. Anal Chim Acta 2023; 1252:341056. [PMID: 36935154 DOI: 10.1016/j.aca.2023.341056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Previous researches of covalent organic frameworks (COFs) have shown their potential as fluorescent probes, but the regulation of their optical properties and recognition characteristics still remains a challenge, and most of reports required complicated post-decoration to improve the sensing performance. In this context, we propose a novel in-situ strategy to construct uracil-conjugated COFs and modulate their fluorescence properties for sensitive and selective mercury(II) detection. By using 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) and 1,3,6,8-tetrakis(4-aminophenyl)pyrene (TAPPy) as fundamental blocks and 5-aminouraci (5-AU) as the functional monomer, a series of COFs (Py-COFs and Py-U-COFs-1 to Py-U-COFs-5) with tunable fluorescence were solvothermally synthesized through an in-situ Schiff base reaction. The π-conjugated framework serves as a signal reporter, the evenly and densely distributed uracil acts as a mercury(II) receptor, and the regular pores (channels) make the rapid and sensitive detection of the mercury(II) possible. In this research, we manage to regulate the crystalline structure, the fluorescence properties, and the sensing performance of COFs by simply changing the molar ratio of precursors. We expect this research to open up a new strategy for effective and controllable construction of functionalized COFs for environmental analysis.
Collapse
Affiliation(s)
- Xi-Rui Deng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - A-Wei Hu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Sheng-Qian Hu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Wen-Li Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Chen Sun
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013, PR China
| | - Gui-Ping Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Qiong-Qing Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China.
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013, PR China.
| |
Collapse
|
2
|
Mahendran GB, Ramalingam SJ, Rayappan JBB, Gumpu MB, Kumar RG, Lakshmanakumar M, Nesakumar N. Amperometric Detection of Mercury Ions Using Piperazine‐Functionalized Reduced Graphene Oxide as an Efficient Sensing Platform. ChemistrySelect 2022. [DOI: 10.1002/slct.202103601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- G. Balu Mahendran
- PG and Research Department of Chemistry A.V.V.M Sri Pushpam College (Autonomous) Affiliated to Bharathidasan University Poondi, Thanjavur Tamil Nadu 613 503 India
| | - S. Jothi Ramalingam
- PG and Research Department of Chemistry A.V.V.M Sri Pushpam College (Autonomous) Affiliated to Bharathidasan University Poondi, Thanjavur Tamil Nadu 613 503 India
| | - John Bosco Balaguru Rayappan
- School of Electrical & Electronics Engineering SASTRA Deemed to be University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed to be University Thanjavur 613 401 Tamil Nadu India
| | - Manju Bhargavi Gumpu
- Department of Physics National Institute of Technology Tiruchirappalli 620 015 Tamil Nadu India
| | - Rajendran Ganesh Kumar
- PG and Research Department of Chemistry Pachaiyappa's College Chennai 600 030 Tamil Nadu India
| | - Muthaiyan Lakshmanakumar
- School of Electrical & Electronics Engineering SASTRA Deemed to be University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed to be University Thanjavur 613 401 Tamil Nadu India
| | - Noel Nesakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed to be University Thanjavur 613 401 Tamil Nadu India
- School of Chemical & Biotechnology SASTRA Deemed to be University Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
3
|
Detection of Mercury Ion with High Sensitivity and Selectivity Using a DNA/Graphene Oxide Hybrid Immobilized on Glass Slides. BIOSENSORS-BASEL 2021; 11:bios11090300. [PMID: 34562890 PMCID: PMC8471904 DOI: 10.3390/bios11090300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 01/25/2023]
Abstract
Excessive mercury ions (Hg2+) cause great pollution to soil/water and pose a major threat to human health. The high sensitivity and high selectivity in the Hg2+ detection demonstrated herein are significant for the research areas of analytical chemistry, chemical biology, physical chemistry, drug discovery, and clinical diagnosis. In this study, a series of simple, low-cost, and highly sensitive biochips based on a graphene oxide (GO)/DNA hybrid was developed. Hg2+ is detected with high sensitivity and selectivity by GO/DNA hybrid biochips immobilized on glass slides. The performance of the biosensors can be improved by introducing more phosphorothioate sites and complementary bases. The best limit of detection of the biochips is 0.38 nM with selectivity of over 10:1. This sensor was also used for Hg2+ detection in Dendrobium. The results show this biochip is promising for Hg2+ detection.
Collapse
|
4
|
Shahrokhian S, Rezaee S. Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.141] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Sun M, Hu J, Zhai C, Zhu M, Pan J. CuI as Hole-Transport Channel for Enhancing Photoelectrocatalytic Activity by Constructing CuI/BiOI Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13223-13230. [PMID: 28368568 DOI: 10.1021/acsami.7b01840] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, CuI, as a typical hole-transport channel, was used to construct a high-performance visible-light-driven CuI/BiOI heterostructure for photoelectrocatalytic applications. The heterostructure combines the broad visible absorption of BiOI and high hole mobility of CuI. Compared to pure BiOI, the CuI/BiOI heterostructure exhibited distinctly enhanced photoelectrocatalytic performance for the oxidation of methanol and organic pollutants under visible-light irradiation. The photogenerated electron-hole pairs of the excited BiOI can be separated efficiently through CuI, in which the CuI acts as a superior hole-transport channel to improve photoelectrocatalytic oxidization of methanol and organic pollutants. The outstanding photoelectrocatalytic activity shows that the p-type CuI works as a promising hole-transport channel to improve the photocatalytic performance of traditional semiconductors.
Collapse
Affiliation(s)
- Mingjuan Sun
- School of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, China
| | - Jiayue Hu
- School of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, China
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, China
| | - Mingshan Zhu
- School of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, China
| | - Jianguo Pan
- School of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, China
| |
Collapse
|
6
|
Zhang T, Liu J, Wang C, Leng X, Xiao Y, Fu L. Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosens Bioelectron 2017; 89:28-42. [DOI: 10.1016/j.bios.2016.06.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
|
7
|
Cai Q, Hong W, Li J, Jian C, Liu W. A silicon photoanode for efficient ethanol oxidation under alkaline conditions. RSC Adv 2017. [DOI: 10.1039/c7ra02848b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A Pt/ZrO2/n-Si electrode has been employed as the anode for the EOR, exhibiting improved EOR activity and durability under solar illumination.
Collapse
Affiliation(s)
- Qian Cai
- Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Wenting Hong
- Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Jing Li
- Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Chuanyong Jian
- Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Wei Liu
- Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
8
|
Bhat SA, Rather MA, Pandit SA, Ingole PP, Bhat MA. Sensitive electrochemical sensing of acetaminophen and hydroquinone over single-pot synthesized stabilizer free Ag/Ag-oxide-graphene nanocomposites. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Graphene-based materials for the electrochemical determination of hazardous ions. Anal Chim Acta 2016; 946:9-39. [DOI: 10.1016/j.aca.2016.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/11/2016] [Accepted: 10/15/2016] [Indexed: 01/07/2023]
|
10
|
Zhai C, Zhu M, Pang F, Bin D, Lu C, Goh MC, Yang P, Du Y. High Efficiency Photoelectrocatalytic Methanol Oxidation on CdS Quantum Dots Sensitized Pt Electrode. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5972-5980. [PMID: 26890804 DOI: 10.1021/acsami.5b10234] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A cadmium sulfide quantum dots sensitized Pt (Pt-CdS) composite was synthesized using a solvothermal method and characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectroscopy. The catalytic properties of the as-prepared electrode for methanol oxidation were evaluated by cyclic voltammetry (CV), chronoamperometry, electrochemical impedance spectrum (EIS) and photocurrent responses. The as-prepared Pt-CdS electrode displayed a significant enhancement in the electrocatalytic activity and stability for methanol oxidation in the presence of visible light irradiation. The synergistic effect of both the electro- and photocatalytic reaction contributes to this enhanced catalytic performance. Our result suggests a new paradigm to construct photoelectrocatalysts with high performance and good stability for direct methanol fuel cells with the assistance of visible-light illumination.
Collapse
Affiliation(s)
- Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, China
| | - Mingshan Zhu
- School of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, China
- Department of Chemistry, University of Toronto , Toronto M5S 3H6, Canada
| | - Fenzhi Pang
- College of Pharmacy, Chemistry Teaching & Research, Suzhou Health College , Suzhou 215009, China
| | - Duan Bin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | - Cheng Lu
- Department of Chemistry, University of Toronto , Toronto M5S 3H6, Canada
| | - M Cynthia Goh
- Department of Chemistry, University of Toronto , Toronto M5S 3H6, Canada
| | - Ping Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | - Yukou Du
- School of Materials Science and Chemical Engineering, Ningbo University , Ningbo 315211, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| |
Collapse
|
11
|
Zhang Z, Duan F, He L, Peng D, Yan F, Wang M, Zong W, Jia C. Electrochemical clenbuterol immunosensor based on a gold electrode modified with zinc sulfide quantum dots and polyaniline. Mikrochim Acta 2016. [DOI: 10.1007/s00604-015-1730-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Electrochemical aptasensor for lysozyme based on a gold electrode modified with a nanocomposite consisting of reduced graphene oxide, cuprous oxide, and plasma-polymerized propargylamine. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1675-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Wang L, Zhao F, Han Q, Hu C, Lv L, Chen N, Qu L. Spontaneous formation of Cu2O-g-C3N4 core-shell nanowires for photocurrent and humidity responses. NANOSCALE 2015; 7:9694-9702. [PMID: 25958952 DOI: 10.1039/c5nr01521a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The assembly of low dimensional g-C3N4 structures in a geometrically well-defined fashion and the complexation of g-C3N4 with other materials are the main approaches to construct fancy structures for special functions. While high temperature was often indispensable for the preparation process, the realization of room temperature assembly of the low dimensional g-C3N4 and the preparation of g-C3N4-based semiconductor composites will provide many additional advantages for new functional materials and applications. Herein, the unique cuprous oxide (Cu2O)-graphitic carbon nitrides (g-C3N4) core-shell nanowires with highly hierarchical sharp edges on the surface have been prepared by a spontaneous reduction and assembly approach based on oxygen-functional g-C3N4 (O-functional g-C3N4) at room temperature. Combined with the hybrid effect of Cu2O with g-C3N4, such hierarchical Cu2O-g-C3N4 core-shell nanowires possess sensitivity to humidity and photocurrent response.
Collapse
Affiliation(s)
- Lixia Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Liu S, Kang M, Yan F, Peng D, Yang Y, He L, Wang M, Fang S, Zhang Z. Electrochemical DNA Biosensor Based on Microspheres of Cuprous Oxide and Nano-chitosan for Hg(II) Detection. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Kang M, Peng D, Zhang Y, Yang Y, He L, Yan F, Sun S, Fang S, Wang P, Zhang Z. An electrochemical sensor based on rhodamine B hydrazide-immobilized graphene oxide for highly sensitive and selective detection of Cu(ii). NEW J CHEM 2015. [DOI: 10.1039/c5nj00157a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Cu2+ sensor based on rhodamine B hydrazide (RBH)-immobilized graphene oxide (GO) was fabricated and estimated to be a detection limit of 0.061 nM for Cu2+ detection.
Collapse
Affiliation(s)
- Mengmeng Kang
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Donglai Peng
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Resoration
| | - Yuanchang Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Yanqin Yang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Resoration
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Fufeng Yan
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Shumin Sun
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Shaoming Fang
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Resoration
| | - Peiyuan Wang
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Resoration
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Resoration
| |
Collapse
|