1
|
Susarrey-Arce A, Marin A, Massey A, Oknianska A, Díaz-Fernandez Y, Hernández-Sánchez JF, Griffiths E, Gardeniers JGE, Snoeijer JH, Lohse D, Raval R. Pattern Formation by Staphylococcus epidermidis via Droplet Evaporation on Micropillars Arrays at a Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7159-69. [PMID: 27341165 DOI: 10.1021/acs.langmuir.6b01658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We evaluate the effect of epoxy surface structuring on the evaporation of water droplets containing Staphylococcus epidermidis (S. epidermidis). During evaporation, droplets with S. epidermidis cells yield to complex wetting patterns such as the zipping-wetting1-3 and the coffee-stain effects. Depending on the height of the microstructure, the wetting fronts propagate circularly or in a stepwise manner, leading to the formation of octagonal or square-shaped deposition patterns.4,5 We observed that the shape of the dried droplets has considerable influence on the local spatial distribution of S. epidermidis deposited between micropillars. These changes are attributed to an unexplored interplay between the zipping-wetting1 and the coffee-stain6 effects in polygonally shaped droplets containing S. epidermidis. Induced capillary flows during evaporation of S. epidermidis are modeled with polystyrene particles. Bacterial viability measurements for S. epidermidis show high viability of planktonic cells, but low biomass deposition on the microstructured surfaces. Our findings provide insights into design criteria for the development of microstructured surfaces on which bacterial propagation could be controlled, limiting the use of biocides.
Collapse
Affiliation(s)
- A Susarrey-Arce
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre and Department of Chemistry, University of Liverpool , Oxford Street, L69 3BX Liverpool, United Kingdom
| | - A Marin
- Institute of Fluid Mechanics and Aerodynamics, Bundeswehr University Munich , 85577 Neubiberg, Germany
| | - A Massey
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre and Department of Chemistry, University of Liverpool , Oxford Street, L69 3BX Liverpool, United Kingdom
| | - A Oknianska
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre and Department of Chemistry, University of Liverpool , Oxford Street, L69 3BX Liverpool, United Kingdom
| | - Y Díaz-Fernandez
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre and Department of Chemistry, University of Liverpool , Oxford Street, L69 3BX Liverpool, United Kingdom
| | - J F Hernández-Sánchez
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, J. M. Burgers Centre for Fluid Dynamics, University of Twente , P.O. Box 217, 7500AE Enschede, The Netherlands
| | - E Griffiths
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre and Department of Chemistry, University of Liverpool , Oxford Street, L69 3BX Liverpool, United Kingdom
| | - J G E Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500AE Enschede, The Netherlands
| | - J H Snoeijer
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, J. M. Burgers Centre for Fluid Dynamics, University of Twente , P.O. Box 217, 7500AE Enschede, The Netherlands
- Mesoscopic Transport Phenomena, Eindhoven University of Technology , Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, J. M. Burgers Centre for Fluid Dynamics, University of Twente , P.O. Box 217, 7500AE Enschede, The Netherlands
| | - R Raval
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre and Department of Chemistry, University of Liverpool , Oxford Street, L69 3BX Liverpool, United Kingdom
| |
Collapse
|
2
|
Lemée F, Mourer M, Aranda L, Clarot I, Regnouf-de-Vains JB. Bacteriophilic tetra-p-guanidinoethyl-calix[4]arene derived polymers. Syntheses and E. coli sequestration studies. NEW J CHEM 2016. [DOI: 10.1039/c6nj01563h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New resins functionalized by the antibacterial tetra-p-guanidinoethylcalix[4]arene were synthesized, and their bacteriophilic properties were evaluated (E. coli) by capillary electrophoresis.
Collapse
Affiliation(s)
- Frédéric Lemée
- Université de Lorraine
- SRSMC
- UMR 7565
- Vandœuvre-lès-Nancy
- France
| | - Maxime Mourer
- Université de Lorraine
- SRSMC
- UMR 7565
- Vandœuvre-lès-Nancy
- France
| | - Lionel Aranda
- Université de Lorraine
- Institut Jean Lamour – UMR 7198
- Vandœuvre-lès-Nancy
- France
- CNRS
| | - Igor Clarot
- Université de Lorraine
- SRSMC
- UMR 7565
- Vandœuvre-lès-Nancy
- France
| | | |
Collapse
|