1
|
Orbán B, Höltzl T. Acetylene and Ethylene Adsorption during Floating Fe Catalyst Formation at the Onset of Carbon Nanotube Growth and the Effect of Sulfur Poisoning: a DFT Study. Inorg Chem 2024; 63:13624-13635. [PMID: 38986139 PMCID: PMC11270998 DOI: 10.1021/acs.inorgchem.4c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Here, we investigated the adsorption of acetylene and ethylene on iron clusters and nanoparticles, which is a crucial aspect in the nascent phase of carbon nanotube growth by floating catalyst chemical vapor deposition (FCCVD). The effect of sulfur on adsorption was also studied due to its indispensable role in the process and its commonly known impact on metal catalyst poisoning. We performed systematic density functional theory (DFT) computations, considering numerous adsorption configurations and iron particles of various sizes (Fen, n = 3-10, 13, 55). We found that acetylene binds significantly more strongly than ethylene and prefers different adsorption sites. The presence of sulfur decreased the adsorption strength only in the immediate proximity of the adsorbate, suggesting that the effect of sulfur is mainly of steric origin while electronic effects play only a minor role. Higher sulfur coverage of the catalyst surface significantly weakened the binding of acetylene or ethylene. To further investigate this interaction, Bader's atoms in molecules (AIM) analysis and charge density difference (CDD) were used, which showed electron transfer from iron clusters or nanoparticles to the adsorbate molecules. The charge transfer exhibited a decreasing trend as sulfur coverage increased. These results can also contribute to the understanding of other iron-based catalytic processes involving hydrocarbons and sulfur, such as the Fischer-Tropsch synthesis.
Collapse
Affiliation(s)
- Balázs Orbán
- Department
of Inorganic and Analytical Chemistry, Budapest
University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Tibor Höltzl
- Department
of Inorganic and Analytical Chemistry, Budapest
University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN-BME
Computation Driven Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- Furukawa
Electric Institute of Technology, Késmárk utca 28/A, H-1158 Budapest, Hungary
| |
Collapse
|
2
|
Huang C, Mu Y, Chu Y, Gu H, Liao Z, Han M, Zeng L. A review of vertical graphene and its energy storage system applications. J Chem Phys 2023; 159:211001. [PMID: 38038203 DOI: 10.1063/5.0179107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
The pursuit of advanced materials to meet the escalating demands of energy storage system has led to the emergence of vertical graphene (VG) as a highly promising candidate. With its remarkable strength, stability, and conductivity, VG has gained significant attention for its potential to revolutionize energy storage technologies. This comprehensive review delves deeply into the synthesis methods, structural modifications, and multifaceted applications of VG in the context of lithium-ion batteries, silicon-based lithium batteries, lithium-sulfur batteries, sodium-ion batteries, potassium-ion batteries, aqueous zinc batteries, and supercapacitors. The review elucidates the intricate growth process of VG and underscores the paramount importance of optimizing process parameters to tailor VG for specific applications. Subsequently, the pivotal role of VG in enhancing the performance of various energy storage and conversion systems is exhaustively discussed. Moreover, it delves into structural improvement, performance tuning, and mechanism analysis of VG composite materials in diverse energy storage systems. In summary, this review provides a comprehensive look at VG synthesis, modification, and its wide range of applications in energy storage. It emphasizes the potential of VG in addressing critical challenges and advancing sustainable, high-performance energy storage devices, providing valuable guidance for the development of future technologies.
Collapse
Affiliation(s)
- Chaozhu Huang
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongbiao Mu
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Youqi Chu
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huicun Gu
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zifan Liao
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meisheng Han
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Zeng
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Orbán B, Höltzl T. The promoter role of sulfur in carbon nanotube growth. Dalton Trans 2022; 51:9256-9264. [PMID: 35667372 DOI: 10.1039/d2dt00355d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the effect of sulfur on the interaction of iron catalyst nanoparticles and carbon nanotubes (CNTs), typically present in a floating catalyst chemical vapor deposition (FCCVD) process. As a reference, the interaction of graphene with the Fe fcc(111) surface is used. In both systems we performed a systematic density functional theory (DFT) study on the interaction with different sulfur contents. We found that the presence of sulfur changes the nature and strength of interaction between graphene and the iron surface from strong chemisorption to weak physisorption. Furthermore, sulfur significantly reduces the CNT-iron binding, indicating a beneficial effect on the CNT growth and its promoter role. We believe that these results induce further experimental studies and optimization of the CNT synthesis process.
Collapse
Affiliation(s)
- Balázs Orbán
- Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Tibor Höltzl
- Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Műegyetem rkp. 3, H-1111, Budapest, Hungary.,MTA-BME Computation Driven Research Group, Műegyetem rkp. 3, H-1111, Budapest, Hungary.,Furukawa Electric Institute of Technology, Késmárk utca 28/A, H-1158, Budapest, Hungary.
| |
Collapse
|
4
|
Distinctive Features of Graphene Synthesized in a Plasma Jet Created by a DC Plasma Torch. MATERIALS 2020; 13:ma13071728. [PMID: 32272737 PMCID: PMC7178695 DOI: 10.3390/ma13071728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/18/2022]
Abstract
Synthesis of graphene materials in a plasma stream from an up to 40 kW direct current (DC) plasma torch is investigated. These materials are created by means of the conversion of hydrocarbons under the pressure 350–710 Torr without using catalysts, without additional processes of inter-substrate transfer and the elimination of impurities. Helium and argon are used as plasma-forming gas, propane, butane, methane, and acetylene are used as carbon precursors. Electron microscopy and Raman imaging show that synthesis products represent an assembly of flakes varying in the thickness and the level of deformity. An occurrence of hydrogen in the graphene flakes is discovered by X-ray photoelectron spectroscopy, thermal analysis, and express-gravimetry. Its quantity depends on the type of carrier gas. Quasi-one-dimensional approach under the local thermodynamic equilibrium was used to investigate the evolution of the composition of helium and argon plasma jets with hydrocarbon addition. Hydrogen atoms appear in the hydrogen-rich argon jet under higher temperature. This shows that solid particles live longer in the hydrogen-rich environment compared with the helium case providing some enlargement of graphene with less hydrogen in its structure. In conclusion, graphene in flakes appears because of the volumetric synthesis in the hydrogen environment. The most promising directions of the practical use of graphеne flakes are apparently related to structural ceramics.
Collapse
|
5
|
Fukuhara S, Misawa M, Shimojo F, Shibuta Y. Ab initio molecular dynamics simulation of ethanol dissociation reactions on alloy catalysts in carbon nanotube growth. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Fukuhara S, Shimojo F, Shibuta Y. Conformation and catalytic activity of nickel – carbon cluster for ethanol dissociation in carbon nanotube synthesis: Ab initio molecular dynamics simulation. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Lin PA, Gomez-Ballesteros JL, Burgos JC, Balbuena PB, Natarajan B, Sharma R. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles. J Catal 2017; 349:149-155. [PMID: 28740274 DOI: 10.1016/j.jcat.2017.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Rational catalyst design requires an atomic scale mechanistic understanding of the chemical pathways involved in the catalytic process. A heterogeneous catalyst typically works by adsorbing reactants onto its surface, where the energies for specific bonds to dissociate and/or combine with other species (to form desired intermediate or final products) are lower. Here, using the catalytic growth of single-walled carbon nanotubes (SWCNTs) as a prototype reaction, we show that the chemical pathway may in-fact involve the entire catalyst particle, and can proceed via the fluctuations in the formation and decomposition of metastable phases in the particle interior. We record in situ and at atomic resolution, the dynamic phase transformations occurring in a Cobalt catalyst nanoparticle during SWCNT growth, using a state-of-the-art environmental transmission electron microscope (ETEM). The fluctuations in catalyst carbon content are quantified by the automated, atomic-scale structural analysis of the time-resolved ETEM images and correlated with the SWCNT growth rate. We find the fluctuations in the carbon concentration in the catalyst nanoparticle and the fluctuations in nanotube growth rates to be of complementary character. These findings are successfully explained by reactive molecular dynamics (RMD) simulations that track the spatial and temporal evolution of the distribution of carbon atoms within and on the surface of the catalyst particle. We anticipate that our approach combining real-time, atomic-resolution image analysis and molecular dynamics simulations will facilitate catalyst design, improving reaction efficiencies and selectivity towards the growth of desired structure.
Collapse
Affiliation(s)
- Pin Ann Lin
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203, USA.,University of Maryland - IREAP, College Park, MD 20742, USA
| | | | - Juan C Burgos
- University of Maryland - IREAP, College Park, MD 20742, USA
| | - Perla B Balbuena
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Bharath Natarajan
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203, USA.,University of Maryland - IREAP, College Park, MD 20742, USA.,Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203, USA
| | - Renu Sharma
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203, USA
| |
Collapse
|
8
|
Khalilov U, Bogaerts A, Xu B, Kato T, Kaneko T, Neyts EC. How the alignment of adsorbed ortho H pairs determines the onset of selective carbon nanotube etching. NANOSCALE 2017; 9:1653-1661. [PMID: 28074964 DOI: 10.1039/c6nr08005g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Unlocking the enormous technological potential of carbon nanotubes strongly depends on our ability to specifically produce metallic or semiconducting tubes. While selective etching of both has already been demonstrated, the underlying reasons, however, remain elusive as yet. We here present computational and experimental evidence on the operative mechanisms at the atomic scale. We demonstrate that during the adsorption of H atoms and their coalescence, the adsorbed ortho hydrogen pairs on single-walled carbon nanotubes induce higher shear stresses than axial stresses, leading to the elongation of HC-CH bonds as a function of their alignment with the tube chirality vector, which we denote as the γ-angle. As a result, the C-C cleavage occurs more rapidly in nanotubes containing ortho H-pairs with a small γ-angle. This phenomenon can explain the selective etching of small-diameter semiconductor nanotubes with a similar curvature. Both theoretical and experimental results strongly indicate the important role of the γ-angle in the selective etching mechanisms of carbon nanotubes, in addition to the nanotube curvature and metallicity effects and lead us to clearly understand the onset of selective synthesis/removal of CNT-based materials.
Collapse
Affiliation(s)
- U Khalilov
- Department of Chemistry, Research Group PLASMANT, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| | - A Bogaerts
- Department of Chemistry, Research Group PLASMANT, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| | - B Xu
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - T Kato
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - T Kaneko
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - E C Neyts
- Department of Chemistry, Research Group PLASMANT, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| |
Collapse
|
9
|
Levchenko I, Ostrikov KK, Zheng J, Li X, Keidar M, B K Teo K. Scalable graphene production: perspectives and challenges of plasma applications. NANOSCALE 2016; 8:10511-10527. [PMID: 26837802 DOI: 10.1039/c5nr06537b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h(-1) m(-2) was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.
Collapse
Affiliation(s)
- Igor Levchenko
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia.
| | - Kostya Ken Ostrikov
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia. and Joint CSIRO - QUT Sustainable Materials and Devices Laboratory, Commonwealth Scientific and Industrial Research Organisation, P.O. Box 218, Lindfield, New South Wales 2070, Australia. and Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jie Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xingguo Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Michael Keidar
- School of Engineering and Applied Science, George Washington University, Washington, DC 20052, USA
| | - Kenneth B K Teo
- AIXTRON Nanoinstruments, Buckingway Business Park, Swavesey, Cambridge CB24 4FQ, UK
| |
Collapse
|
10
|
Shimamura K, Shibuta Y, Ohmura S, Arifin R, Shimojo F. Dissociation dynamics of ethylene molecules on a Ni cluster using ab initio molecular dynamics simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:145001. [PMID: 26953616 DOI: 10.1088/0953-8984/28/14/145001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The atomistic mechanism of dissociative adsorption of ethylene molecules on a Ni cluster is investigated by ab initio molecular-dynamics simulations. The activation free energy to dehydrogenate an ethylene molecule on the Ni cluster and the corresponding reaction rate is estimated. A remarkable finding is that the adsorption energy of ethylene molecules on the Ni cluster is considerably larger than the activation free energy, which explains why the actual reaction rate is faster than the value estimated based on only the activation free energy. It is also found from the dynamic simulations that hydrogen molecules and an ethane molecule are formed from the dissociated hydrogen atoms, whereas some exist as single atoms on the surface or in the interior of the Ni cluster. On the other hand, the dissociation of the C-C bonds of ethylene molecules is not observed. On the basis of these simulation results, the nature of the initial stage of carbon nanotube growth is discussed.
Collapse
Affiliation(s)
- K Shimamura
- Department of Physics, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, 657-8501, Japan
| | | | | | | | | |
Collapse
|
11
|
Trinh QT, Nguyen AV, Huynh DC, Pham TH, Mushrif SH. Mechanistic insights into the catalytic elimination of tar and the promotional effect of boron on it: first-principles study using toluene as a model compound. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00358c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of a monolayer subsurface B into the Ni catalyst results in a corrugated Ni top surface and the activation of toluene is significantly promoted on B–Ni.
Collapse
Affiliation(s)
- Quang Thang Trinh
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- 637459 Singapore
| | - Anh Vu Nguyen
- School of Chemical Engineering
- Hanoi University of Science and Technology
- Hanoi
- Vietnam
| | - Dang Chinh Huynh
- School of Chemical Engineering
- Hanoi University of Science and Technology
- Hanoi
- Vietnam
| | - Thanh Huyen Pham
- School of Chemical Engineering
- Hanoi University of Science and Technology
- Hanoi
- Vietnam
| | - Samir H. Mushrif
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- 637459 Singapore
| |
Collapse
|
12
|
Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors. Nat Commun 2015; 6:10306. [PMID: 26691537 PMCID: PMC4703880 DOI: 10.1038/ncomms10306] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/27/2015] [Indexed: 11/08/2022] Open
Abstract
Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level. Atomic scale simulation of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. Here, the authors look at cap nucleation of nanotubes from hydrocarbon precursors, specifically probing the role of hydrogen in the early stages of growth.
Collapse
|
13
|
Ab initio molecular dynamics simulation of ethanol decomposition on platinum cluster at initial stage of carbon nanotube growth. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Santos EJG, Nørskov JK, Harutyunyan AR, Abild-Pedersen F. Toward Controlled Growth of Helicity-Specific Carbon Nanotubes. J Phys Chem Lett 2015; 6:2232-2237. [PMID: 26266596 DOI: 10.1021/acs.jpclett.5b00880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The underlying mechanisms for the nucleation of carbon nanotubes as well as their helicity, remain elusive. Here, using van der Waals dispersion force calculations implemented within density functional theory, we study the cap formation, believed to be responsible for the chirality of surface-catalyzed carbon nanotubes. We find the energetics associated with growth along different facets to be independent of the surface orientation and that the growth across an edge along the axis of the metal particle leads to a perfect honeycomb lattice in a curved geometry. The formation of defects in the graphene matrix, which bend the carbon plane, requires that two or more graphene embryos with significantly different growth axis merge. Such scenario is only possible at the front- or back-end of the metal particle where growth symmetry is broken. The graphene embryos reconstruct their hexagonal structure into pentagons, heptagons, and octagons counterpart to accommodate the tube curvature.
Collapse
Affiliation(s)
- Elton J G Santos
- †Department of Chemical Engineering, Stanford University, Shriram Center, Room 129, Stanford, California 94305, United States
- ‡SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
- ∥School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, United Kingdom
- ⊥School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast BT9 5AL, United Kingdom
| | - Jens K Nørskov
- †Department of Chemical Engineering, Stanford University, Shriram Center, Room 129, Stanford, California 94305, United States
- ‡SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Avetik R Harutyunyan
- §Honda Research Institute USA, Inc., 1381 Kinnear Road, Columbus, Ohio 43212, United States
| | - Frank Abild-Pedersen
- ‡SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
15
|
Bal KM, Neyts EC. On the time scale associated with Monte Carlo simulations. J Chem Phys 2014; 141:204104. [DOI: 10.1063/1.4902136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Kristof M. Bal
- Department of Chemistry, University of Antwerp, Research Group PLASMANT, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Erik C. Neyts
- Department of Chemistry, University of Antwerp, Research Group PLASMANT, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| |
Collapse
|
16
|
Shibuta Y, Arifin R, Shimamura K, Oguri T, Shimojo F, Yamaguchi S. Low reactivity of methane on copper surface during graphene synthesis via CVD process: Ab initio molecular dynamics simulation. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.06.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|