1
|
Lopez-Barbosa N, Campaña AL, Cruz JC, Ornelas-Soto N, Osma JF. Enhanced Catalytic Dye Decolorization by Microencapsulation of Laccase from P. Sanguineus CS43 in Natural and Synthetic Polymers. Polymers (Basel) 2020; 12:polym12061353. [PMID: 32560036 PMCID: PMC7362170 DOI: 10.3390/polym12061353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
Polymeric microcapsules with the fungal laccase from Pycnoporus sanguineus CS43 may represent an attractive avenue for the removal or degradation of dyes from wastewaters. Microcapsules of alginate/chitosan (9.23 ± 0.12 µm) and poly(styrenesulfonate) (PSS) (9.25 ± 0.35 µm) were synthesized and subsequently tested for catalytic activity in the decolorization of the diazo dye Congo Red. Successful encapsulation into the materials was verified via confocal microscopy of labeled enzyme molecules. Laccase activity was measured as a function of time and the initial reaction rates were recovered for each preparation, showing up to sevenfold increase with respect to free laccase. The ability of substrates to diffuse through the pores of the microcapsules was evaluated with the aid of fluorescent dyes and confocal microscopy. pH and thermal stability were also measured for encapsulates, showing catalytic activity for pH values as low as 4 and temperatures of about 80 °C. Scanning electron microscope (SEM) analyses demonstrated the ability of PSS capsules to avoid accumulation of byproducts and, therefore, superior catalytic performance. This was corroborated by the direct observation of substrates diffusing in and out of the materials. Compared with our PSS preparation, alginate/chitosan microcapsules studied by others degrade 2.6 times more dye, albeit with a 135-fold increase in units of enzyme per mg of dye. Similarly, poly(vinyl) alcohol microcapsules from degrade 1.7 times more dye, despite an eightfold increase in units of enzyme per mg of dye. This could be potentially beneficial from the economic viewpoint as a significantly lower amount of enzyme might be needed for the same decolorization level achieved with similar encapsulated systems.
Collapse
Affiliation(s)
- Natalia Lopez-Barbosa
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (N.L.-B.); (A.L.C.)
- Department of Biomedical Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia;
| | - Ana Lucía Campaña
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (N.L.-B.); (A.L.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia;
| | - Nancy Ornelas-Soto
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico;
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (N.L.-B.); (A.L.C.)
- Correspondence: ; Tel.: +57-1-339-4949
| |
Collapse
|
2
|
Facile Fabrication of a Novel and Reusable 3D Laccase Reactor for Efficient Removal of Pollutants from Wastewater. Catal Letters 2019. [DOI: 10.1007/s10562-019-02732-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
3
|
Lin J, Lai Q, Liu Y, Chen S, Le X, Zhou X. Laccase – methacrylyol functionalized magnetic particles: Highly immobilized, reusable, and efficacious for methyl red decolourization. Int J Biol Macromol 2017; 102:144-152. [DOI: 10.1016/j.ijbiomac.2017.03.169] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
4
|
Sarma R, Islam M, Miller AF, Bhattacharyya D. Layer-by-Layer-Assembled Laccase Enzyme on Stimuli-Responsive Membranes for Chloro-Organics Degradation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14858-14867. [PMID: 28397501 PMCID: PMC5787852 DOI: 10.1021/acsami.7b01999] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Functionalized membranes provide versatile platforms for the incorporation of biocatalysts and nanostructured materials for efficient and benign environmental remediation. The existing techniques for remediating chloro-organics in water consist of both physical and chemical means mostly using metal oxide-based catalysts, despite associated environmental concerns. To offer bioinspired remediation as an alternative, we herein demonstrate a layer-by-layer approach to immobilize laccase enzyme onto pH-responsive functionalized membranes for the degradation of chloro-organics in water. The efficacy of these bioinspired membranes toward dechlorination of 2,4,6-trichlorophenol (TCP) is demonstrated under a pressure-driven continuous flow mode (convective flow) for the first time to the best of our knowledge. Over 80% of the initial TCP was degraded at an optimum flow rate under an applied air pressure of about 0.7 bar or lower. This corresponds to degradation of a substantial amount of the initial substrate in only 36 s residence time, whereas it takes hours for degradation in a batch reaction. This, in fact, demonstrates an energy efficient flow-through system with potentially large-scale applications. Comparison of the stability of the enzyme in the solution phase versus immobilized on the membrane phase showed a loss of some 65% of enzyme activity in the solution phase after 22 d, whereas the membrane-bound enzyme lost only a negligible percentage of the activity in a comparable time span. Finally, the membrane was exposed to rigorous cycles of TCP degradation trials to study its reusability. The primary results reveal a loss of only 14% of the initial activity after 4 cycles of use in a period of 25 d, demonstrating its potential to be reused. Regeneration of the functionalized membrane was also validated by dislodging the immobilized enzyme, followed by immobilization of fresh enzyme onto the membrane.
Collapse
Affiliation(s)
- Rupam Sarma
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506
| | - M.S. Islam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506
| | - Anne-Frances Miller
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506
| |
Collapse
|
5
|
Wang S, Sun J, Jia Y, Yang L, Wang N, Xianyu Y, Chen W, Li X, Cha R, Jiang X. Nanocrystalline Cellulose-Assisted Generation of Silver Nanoparticles for Nonenzymatic Glucose Detection and Antibacterial Agent. Biomacromolecules 2016; 17:2472-8. [DOI: 10.1021/acs.biomac.6b00642] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shiwen Wang
- Key
Laboratory of Advanced Technologies of Materials, Ministry of Education
of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biological Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing, 100190, China
| | - Jiashu Sun
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biological Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing, 100190, China
| | - Yuexiao Jia
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biological Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing, 100190, China
| | - Lu Yang
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biological Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing, 100190, China
| | - Nuoxin Wang
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biological Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing, 100190, China
| | - Yunlei Xianyu
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biological Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing, 100190, China
| | - Wenwen Chen
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biological Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing, 100190, China
| | - Xiaohong Li
- Key
Laboratory of Advanced Technologies of Materials, Ministry of Education
of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ruitao Cha
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biological Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing, 100190, China
| | - Xingyu Jiang
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biological Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National Center for NanoScience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing, 100190, China
| |
Collapse
|
6
|
Yang C, Yu DG, Pan D, Liu XK, Wang X, Bligh SA, Williams GR. Electrospun pH-sensitive core-shell polymer nanocomposites fabricated using a tri-axial process. Acta Biomater 2016; 35:77-86. [PMID: 26902432 DOI: 10.1016/j.actbio.2016.02.029] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/21/2016] [Accepted: 02/19/2016] [Indexed: 01/06/2023]
Abstract
A modified tri-axial electrospinning process was developed for the generation of a new type of pH-sensitive polymer/lipid nanocomposite. The systems produced are able to promote both dissolution and permeation of a model poorly water-soluble drug. First, we show that it is possible to run a tri-axial process with only one of the three fluids being electrospinnable. Using an electrospinnable middle fluid of Eudragit S100 (ES100) with pure ethanol as the outer solvent and an unspinnable lecithin-diclofenac sodium (PL-DS) core solution, nanofibers with linear morphology and clear core/shell structures can be fabricated continuously and smoothly. X-ray diffraction proved that these nanofibers are structural nanocomposites with the drug present in an amorphous state. In vitro dissolution tests demonstrated that the formulations could preclude release in acidic conditions, and that the drug was released from the fibers in two successive steps at neutral pH. The first step is the dissolution of the shell ES100 and the conversion of the core PL-DS into sub-micron sized particles. This frees some DS into solution, and later the remaining DS is gradually released from the PL-DS particles through diffusion. Ex vivo permeation results showed that the composite nanofibers give a more than twofold uplift in the amount of DS passing through the colonic membrane as compared to pure DS; 74% of the transmitted drug was in the form of PL-DS particles. The new tri-axial electrospinning process developed in this work provides a platform to fabricate structural nanomaterials, and the core-shell polymer-PL nanocomposites we have produced have significant potential applications for oral colon-targeted drug delivery. STATEMENT OF SIGNIFICANCE A modified tri-axial electrospinning is demonstrated to create a new type of core-shell pH-sensitive polymer/lipid nanocomposites, in which an electrospinnable middle fluid is exploited to support the un-spinnable outer and inner fluids. The structural nanocomposites are able to provide a colon-targeted sustained release and an enhanced permeation performance of diclofenac sodium. The developed tri-axial process can provide a platform for fabricating new structural nanomaterials with high quality. The strategy of a combined usage of polymeric excipients and phospholipid in a core-shell format should provide new possibilities of developing novel drug delivery systems for efficacious oral administration of poorly-water soluble drugs.
Collapse
|
7
|
Patel SKS, Choi SH, Kang YC, Lee JK. Large-scale aerosol-assisted synthesis of biofriendly Fe₂O₃ yolk-shell particles: a promising support for enzyme immobilization. NANOSCALE 2016; 8:6728-38. [PMID: 26952722 DOI: 10.1039/c6nr00346j] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes. Yolk-shell particles have an average diameter of 1-3 μm with pore diameters in the range of 16 to 28 nm. The maximum immobilization of GOx, HRP, and laccase resulted in the enzyme loading of 292, 307 and 398 mg per g of support, respectively. After cross-linking of immobilized laccase by glutaraldehyde, immobilization efficiency was improved from 83.5% to 90.2%. K(m) and V(max) values were 41.5 μM and 1722 μmol min(-1) per mg protein for cross-linked laccase and those for free laccase were 29.3 μM and 1890 μmol min(-1) per mg protein, respectively. The thermal stability of the enzyme was enhanced up to 18-fold upon cross-linking, and the enzyme retained 93.1% of residual activity after ten cycles of reuse. The immobilized enzyme has shown up to 32-fold higher stability than the free enzyme towards different solvents and it showed higher efficiency than free laccase in the decolorization of dyes and degradation of bisphenol A. The synthesized yolk-shell particles have 3-fold higher enzyme loading efficiency and lower acute toxicity than the commercial Fe2O3 spherical particles. Therefore, the use of unique yolk-shell structure Fe2O3 particles with multiple-shells will be promising for the immobilization of various enzymes in biotechnological applications with improved electrochemical properties. To the best of our knowledge, this is the first report on the use of one pot synthesized Fe2O3 yolk-shell structure particles for the immobilization of enzymes.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, South Korea.
| | - Seung Ho Choi
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, South Korea.
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, South Korea.
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, South Korea.
| |
Collapse
|
8
|
Liu S, Zhu Y, Li W, Li Y, Li B. Preparation of a magnetic responsive immobilized lipase–cellulose microgel catalyst system: role of the surface properties of the magnetic cellulose microgel. RSC Adv 2016. [DOI: 10.1039/c5ra24984h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Surface modification of the magnetic cellulose particles has been conducted by using AEAPS, the modified magnetic cellulose particles were then used for the immobilization of lipase for catalysis reaction.
Collapse
Affiliation(s)
- Shilin Liu
- College of Food Science & Technology
- Huazhong Agricultural University
- Wuhan
- China
| | - Ya Zhu
- College of Food Science & Technology
- Huazhong Agricultural University
- Wuhan
- China
| | - Wei Li
- College of Food Science & Technology
- Huazhong Agricultural University
- Wuhan
- China
| | - Yan Li
- College of Food Science & Technology
- Huazhong Agricultural University
- Wuhan
- China
| | - Bin Li
- College of Food Science & Technology
- Huazhong Agricultural University
- Wuhan
- China
| |
Collapse
|
9
|
Lin J, Fan L, Miao R, Le X, Chen S, Zhou X. Enhancing catalytic performance of laccase via immobilization on chitosan/CeO 2 microspheres. Int J Biol Macromol 2015; 78:1-8. [DOI: 10.1016/j.ijbiomac.2015.03.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/05/2015] [Accepted: 03/20/2015] [Indexed: 01/25/2023]
|
10
|
Li M, Wang S, Jiang J, Sun J, Li Y, Huang D, Long YZ, Zheng W, Chen S, Jiang X. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo. NANOSCALE 2015; 7:8071-8075. [PMID: 25872493 DOI: 10.1039/c5nr01439e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.
Collapse
Affiliation(s)
- Mengmeng Li
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|